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ABSTRACT

Tremendous advances in next-generation sequenc-
ing technology have enabled the accumulation of
large amounts of omics data in various research
areas over the past decade. However, study lim-
itations due to small sample sizes, especially in
rare disease clinical research, technological hetero-
geneity and batch effects limit the applicability of
traditional statistics and machine learning analy-
sis. Here, we present a meta-transfer learning ap-
proach to transfer knowledge from big data and re-
duce the search space in data with small sample
sizes. Few-shot learning algorithms integrate meta-
learning to overcome data scarcity and data hetero-
geneity by transferring molecular pattern recognition
models from datasets of unrelated domains. We ex-
plore few-shot learning models with large scale pub-
lic dataset, TCGA (The Cancer Genome Atlas) and
GTEx dataset, and demonstrate their potential as pre-
training dataset in other molecular pattern recogni-
tion tasks. Our results show that meta-transfer learn-
ing is very effective for datasets with a limited sam-
ple size. Furthermore, we show that our approach
can transfer knowledge across technological hetero-
geneity, for example, from bulk cell to single-cell data.
Our approach can overcome study size constraints,
batch effects and technical limitations in analyzing
single-cell data by leveraging existing bulk-cell se-
quencing data.

INTRODUCTION

The development of next-generation sequencing (NGS) en-
ables a systematic measurement and analysis of biological
questions. During the last decades, a massive amount of bi-
ological data are produced. However, at the forefront of the

research field, there are still a lack of data issues. The un-
derlying problem arising is that we cannot fully facilitate ex-
isting data for new inquiries. There are different reasons for
that (i) each of the datasets is generated under the unique ex-
perimental setup, i.e. biological heterogeneity, (ii) the batch
effect adds noise onto the data in the same experimental se-
tups (1) and (iii) as new sequencing technologies are devel-
oped, technological heterogeneity is introduced (2). Conse-
quently, there is a lack of methodology to integrate vari-
ous NGS studies. We need a new methodology to facilitate
integrative analysis with pre-existing large-scale biological
data to newly produced data for complex biological ques-
tions. Thus, the availability of the end-to-end learning with
multiple datasets can accelerate this integrative analysis of
various data sources (3).

Recently, various machine learning has been introduced
to handle biological and biomedical data heterogeneity and
integrate different datasets to address novel medical and bi-
ological questions. Especially in single-cell omics, these new
approaches are used to overcome the technical limitations
in this field. Gene regulatory network inference study with
single-cell sequencing data showed that the data integration
with additional genomic data can overcome technical lim-
itations and improve inference results (4,5). Stumpf et al.
showed the potential of inter-species knowledge transfer for
single-cell sequencing data analysis (6). BERMUDA intro-
duced autoencoder-based approaches to remove batch ef-
fects between datasets in a similar context (7). Mieth et al.
obtained improved clustering results by applying a trans-
fer learning model to a small single-cell sequencing dataset.
They transferred knowledge from a large well-annotated
source dataset to an unannotated small dataset (8). In con-
trast, MARS applied a meta-learning scheme in a single-cell
dataset (9). They trained a deep neural network model with
a well-annotated large-scale single-cell sequencing dataset
from the TabulaMuris consortium (10) to learn cell type
classification ability. In this study the meta-training step
improved cell-type classification power and enabled to an-
notate unknown cell types. Interestingly, the meta-training
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dataset does not have to contain the same cell types as
the test dataset. Meta-training aims to pre-train a model
to set initial parameters to learn efficiently from a new,
small dataset (11). This meta-learning approach has already
gained attention in cancer genomics, where many large-
scale datasets have already been generated compared to
other fields (12). Other studies utilized well-known TCGA,
CCLE (13) and functional genomics datasets as a source
dataset for meta-training to perform survival analysis (14)
and investigate cancer-drug discovery (15).

Although various studies proposed meta-learning and
transfer learning approaches to overcome technical limita-
tions in biological and biomedical data (16), the methodol-
ogy to overcome technological heterogeneity is not well ad-
dressed yet. To fully facilitate our accumulated knowledge
in a public database, we must utilize various datasets across
different technologies, for example, bulk-cell sequencing to
single-cell sequencing. In this study, we aim to analyse the
potential of meta-transfer learning approaches to overcome
both data heterogeneity and extremely small sample sizes.
Therefore, we train a few-shot learning model to distin-
guish different expression patterns with only a few exam-
ples for unique class labels, i.e. cell or organ types. Meta-
training datasets can be large scale NGS datasets about dif-
ferent tissues or organs’ gene-expression profiles or various
case–control datasets. Similar to a few-shot image classifi-
cation tasks, we expect that the model can recognize unique
patterns in a gene-expression profile during meta-training
with large-scale and multi-label datasets (17). Furthermore,
we expect to transfer this learned knowledge to different
classification tasks from different technologies (18). Con-
sequently, we show that the model can learn how to han-
dle classification tasks in high-throughput omics biology.
This few-shot learning model with a meta-learning algo-
rithm can build a reliable classifier with a marginal amount
of data and overcome batch effects and technological het-
erogeneity in single-cell sequencing projects. In the follow-
ing, we refer to this few-shot classification model as a trans-
ferable molecular patterns (TMP) recognition model.

MATERIALS AND METHODS

Related works

Few-shot learning. Few-shot learning (FSL) has been used
in various ways in different fields. Wang et al. summarized
FSL studies in three main areas: (i) training data augmenta-
tion by prior knowledge, (ii) constraining hypothesis space
by prior knowledge and (iii) altering search strategies in hy-
pothesis space by prior knowledge (19). This work will focus
on few-shot learning for altering search strategies in hypoth-
esis space by prior knowledge. Our TMP model is based on
relation networks (20); however, we further fine-tuned the
model with an additional training dataset in the single-cell
sequencing data study (Figure 1).

Meta-transfer learning. Meta-transfer learning (MTL) is
introduced by Sun et al. to leverage few-shot classification
accuracy with a pre-trained deep neural network (21). They
integrated meta-learning and transfer learning to search
hyperparameters effectively. Sun-MTL added lightweight
neuron operations for embedded feature vectors, scaling

and shifting, and fine-tuned it for effective transfer learning.
In Sun-MTL, the embedding layer is fixed after pre-training
with the entire data and only fine-tuned the classifier to pre-
vent the model from overfitting (22,23).

In a ‘transfer’ point of view, Sun-MTL uses weights of
deep neural network (DNN) models pre-trained on a large-
scale dataset for another task. TMP also uses a large-scale
dataset for the pre-training step on the model. Compared to
the Sun-MTL, the TMP uses additional training data dur-
ing a fine-tuning phase for a special purpose, transferring
knowledge across different technological heterogeneity. In
a ‘meta’ point of view, Sun-MTL has a base learner with
two light-weight neuron operations. Those are hyperparam-
eters trained on few-shot learning tasks. Instead of the base
learner, TMP trains a relation network, another DNNs, as
a classifier considering non-linearity on embedded feature
vectors. It is an equivalent part to a base learner with the
two operations in Sun-MTL. Those neural networks are
also trained on few-shot learning tasks. Unlike Sun-MTL,
the TMP-model fine-tunes not only the relation network but
also the feature extractor.

Nevertheless, Sun-MTL and TMP have a similar concept
in terms of both transfer- and meta-learning. They are, how-
ever, different in implementation details for domain-specific
applications. Here, we will use Sun-MTL for the specific
model of Sun et al. and meta-transfer learning as a general
term to describe the model training scheme used in TMP
and Sun-MTL (21). Our TMP is the first application of the
meta-transfer learning concept on similar tasks with differ-
ent datasets generated from different omics technologies.

Implementation few-shot learning model with meta- and
transfer-learning

Transferable molecular pattern recognition model network
structure. Our network model has two trainable networks,
the feature encoder and the relation network (20). Feature
encoder blocks are composed of a fully connected layer, a
batch normalization layer and a ReLU layer. Feature en-
coder for a gene expression profile of 18 000 genes is com-
posed of three blocks of feature encoders. Additionally,
the feature encoder is a non-negative network by clamping
negative weight to zero during iterations to focus on co-
expressional patterns rather than other regulatory mecha-
nisms. This approach is inspired by work with non-negative
kernel autoencoders (24). The relation network block is
composed of three blocks. Two blocks are composed of a
fully connected layer, a batch normalization layer, and a
ReLU layer. The last block is composed of a fully connected
layer and a sigmoid function for the output value.

The feature encoder (f(x)) has three encoding blocks.
Each of the fully connected layers is set to 4000, 2000 and
1000 neurons. The relation network (r(x)) is set to 500 and
100 neurons. Consequently, the 18 000 genes are embedded
into 1000 length size vectors through the feature encoder,
and the relation network gets two feature vectors for com-
parison.

In training and evaluation, we used the same design with
a support set S = {xi , yi }C∗K

i=1 and a test (or query) set T ={
xj , yj

}T
j=1 from given dataset. We randomly selected five
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Figure 1. Overview of our TMP-model scheme. (A) Training and testing schemes of our model. Pre-training dataset is a large scale bulk-cell sequencing
dataset and fine-tuning dataset is a single-cell sequencing dataset. (B) Hypothesis of this study. Pre-training with large-scale datasets can improve models
based on small datasets and different sequencing technologies. (C) Adjusted rand indexes (ARI) for PCA-based clustering in cell type classification problems
in single-cell sequencing datasets. The blue line is an average score, and the light green area is 95% confidence interval. Created with BioRender.com.

classes (C = 5) for each training iteration and five samples
for each class (K = 5) for a support set. In the same class set,
we randomly selected ten samples (T = 10; training and test-
ing batch sizes) for a training/testing batch set. With these
datasets, loss is defined as follows:

L =
C·K∑

i

T∑

j

mse
[
r ( f (xi ), f (xj )), 1(yi == yj )

]
(1)

After each iteration, we clamped negative weights in the
feature encoder to zero. We use the Adam optimizer with a
learning rate of 0.0005, and every 100 000 epochs decreased
the learning rate by half. We stopped pre-training the model
at 300 000 epochs and transferred this network onto differ-
ent datasets. For fine-tuning, we used the Adam optimizer
with a learning rate of 0.0001. The results reflect the evalu-
ation scores at 100 000 epochs of fine-tuning.

Few-shot training with GTEx. The GTEx dataset was used
as a pre-training dataset in both TCGA data analysis and
single-cell pancreas datasets analysis. To ensure that pre-
training has been carried out with sufficient samples among
different labels, we held out tissue with <100 samples, i.e.

bladder (21), cervix ectocervix (9), cervix endocervix (10),
fallopian tube (9), kidney medulla (4) and kidney cortex
(85). We randomly selected five tissues during the training
phase and selected five examples as support set and ten sam-
ples as training batch query set.

Few-shot training with TCGA. To investigate a few-shot
learning task in omics data, we used a pre-trained model
with the GTEx dataset and fine-tuned it with the subset of
TCGA data. The fine-tuning dataset (15 samples per class)
was randomly selected and tested with the others. The accu-
racy is obtained from 5000 episodes with 10 test batch sizes.
To further investigate the data quantity issue, we evaluated
various classes and numbers of data out of 33 cancer types
and their samples. Because some of the classes in the TCGA
dataset has <75 samples, we excluded the cancer types with
<100 samples in the training step. Training with the TCGA
dataset was done until 50 000 epochs with step size 1500.
In every 2500 epochs, we checked batch accuracy and early
stopped the training. If the average batch accuracy of 2500
epochs is >0.99, the fine-tuning was stopped. Evaluation is
done with 1000 episodes with 10 test batch sizes. We did ten
repeats with random seed numbers from 1 to 10.

file:BioRender.com
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Few-shot training with single-cell pancreas data. For the
batch effect and technological heterogeneity task, five
datasets were split such that one dataset was used for train-
ing, and the remaining datasets were held for evaluation.
We removed cells which have not enough samples for train-
ing and testing in a 5-way 5-shot task, namely t cell (7),
schwann (13), epsilon (18) in Baron, epsilon (3), unclear (4)
in Muraro, MHC class II cell (5), mast cell (7), epsilon cell
(7), unclassified cell (2) in Segerstolpe, acinar (6), delta (9)
in Wang, PP.contaminated(8) and delta.contaminated(9) in
Xin. In fine-tuning, we selected 15 samples per class in the
training datasets. The evaluation has been carried out by
5000 episodes with 10 test batch sizes. Average and 95% con-
fidence interval are represented. Raw values are available in
the GitHub repository. Each sample was randomly selected,
thus we repeated this training ten times and reported the
distribution of the average value over these replicates. Ad-
ditionally, the average value and 95% confidence interval for
each run are available in the GitHub repository.

Data preprocessing

We downloaded processed data of TCGA, GTEx and
five single-cell datasets (section in Data Availability). We
removed the ambiguous label, ‘not applicable’, in the
Segerstolpe dataset. Depending on its technological origin,
each dataset has a different set of genes. Thus, we need
to fix the gene list for further analysis. A total of 18 000
genes are selected from the intersection of TCGA, GTEx
and StringDB. Because our goal is not mining novel genes
for cell-type annotation, StringDB is applied as the sim-
plest feature selection method to control memory usage and
training speed. Different gene-IDs are converted to gene
symbols with the Biomart package, and missing genes in the
independent dataset are filled with 0. After filtering the gene
list, we Log2-normalized the gene expression levels and re-
scaled it to a 0-1 scale.

Conventional machine learning methods

We used the Python package scikit-learn http://scikit-learn.
org/stable/index.html to implement conventional machine
learning methods.

For PCA and k-means clustering, we randomly selected
five classes and a small subset of data per class from 2 to
25 for training. All other data points are projected on the
latent space, and we did k-means clustering to find five clus-
ters. Because k-means is starting with random initialization,
we did 100 repeats for each data point. The performance is
evaluated with an adjusted rand index (ARI), and average
ARI with 95% confidence intervals are shown.

RESULTS

Meta-transfer learning for recognizing transferable molecu-
lar patterns and handling of small-size data

In this study, we used a two-step learning phase, namely
the pre-training phase and the fine-tuning phase in Figure
1A. In the pre-training phase, the model learns how to rec-
ognize gene expression patterns from large-scale transcrip-
tome data. The data for fine-tuning phase does not have to

be in the same context or the same technology compared to
the data used for pre-training phase. However, it needs to be
within a similar context or similar sequencing technology
for adjusting batch effects or technological heterogeneity.

The machine learning model requires a reasonable
amount of data for the training phase to ensure a good per-
formance in terms of accuracy (Figure 1B). In the single-cell
sequencing data field, many approaches use dimensional-
ity reduction methods to overcome the technical limitation
of single-cell sequencing itself. For example, recent studies
employed PCA (principal component analysis), tSNE (t-
distributed stochastic neighbor embedding) or UMAP (uni-
form manifold approximation and projection). Other recent
methods are based on autoencoders and intend to reduce
noise and batch effects and embed single-cell gene expres-
sion profiles into feature vectors with reduced size. Those
approaches can be very effective when the given dataset has
well-balanced and large enough samples. In our study, we
used PCA and k-means clustering with single-cell data to
evaluate the impact of data size on a model. We aimed at
keeping this analysis as simple as possible and thus we did
not use transductive inferences such as tSNE or UMAP. We
used a randomly picked small dataset to calculate the princi-
pal components based on human pancreas single-cell data.
After that, all samples are projected to the latent space and
clustered subsequently (details in the Materials and Meth-
ods). Until data size reaches ten samples per class, the ARI
(Adjusted rand indexes) score did not change. When more
data are used for finding the latent space, the k-means clus-
tering results gradually improved (Figure 1C). In the fol-
lowing, we will focus on the ‘small-size data’ condition and
show that meta-transfer learning can improve a model hav-
ing limited data, which is a crucial limiting factor in many
areas of biomedical research.

Overview of our TMP

TMP is based on a relation network model for few-shot im-
age classification (20) that comprises two trainable DNN.
The first network projects the given gene expression pro-
file into the feature vector, and the second network mea-
sures the distance between two given feature vectors. Both
DNNs are trained by backpropagation to find proper la-
tent spaces and relevant distance measures for the latent
spaces. Given large-scale multi-class gene expression profile
datasets, TMP learns how to embed given gene expression
data and measure distances between data points in latent
space. Afterward, this pre-trained model is fine-tuned with
a small amount of data from the target task (Figure 1A).
Details about the deep neural networks can be found in the
Materials and Methods section.

In this study, we pre-trained the model with GTEx data,
i.e. human tissue-level gene expression profiles. Based on
this pre-trained model, we adapted it for two different
datasets: (i) TCGA cancer dataset to analyze the few-shot
learning model concerning its ability to recognize transfer-
able molecular patterns and (ii) to human single-cell pan-
creas datasets to show the possibility of cross-modal data
integrative analysis. TMP can learn gene expression pat-
terns from GTEx and thus can be directly applied for other
datasets and tasks. Furthermore, with these adjusted pa-

http://scikit-learn.org/stable/index.html
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Figure 2. An accuracy chart of 5way-5shot task with TCGA dataset. (A) An 5-way 5-shot accuracy chart during fine-tuning with TCGA pan-cancer
dataset. Both red and blue lines used 15 samples for each of 33 different cancer types. The red line is pre-trained with GTEx dataset, and the blue line
is randomly initialized. (B) Accuracy score varying number of classes during fine-tuning. Red lines are pre-trained models and blue lines are randomly
initialized models. Number of samples is fixed to 15. Dotted line is average score of tests and colored are is a 95% confidence interval. (C) Accuracy score
varying number of samples during fine-tuning. Red lines are pre-trained models and blue lines are randomly initialized models. Number of classes is fixed
to five. Dotted line is average score of tests and colored are is a 95% confidence interval. (D) Illustration to compare learning processes for both variables,
pre-training and given data sizes in fine-tuning. Created with BioRender.com.

rameters, the model can quickly be adapted to a new task.
Our approach demonstrates that batch effects or technolog-
ical heterogeneity in single-cell omics can be handled and
compensated with TMP.

Transfer learning can improve classifiers built with small-size
data

Our few-shot learning model aims to solve a variety of
classification problems with limited data. We transferred
knowledge from a large-scale dataset that is not directly re-
lated to the classification problem to achieve the goal. To in-
vestigate the general performance of the few-shot learning
model on the transcriptome dataset, we used TCGA and
GTEx datasets which are large-scale omics with multi-class
labels datasets. TCGA has a human organ-level class label,
and GTEx has a human tissue-level class label. Thus, the
two datasets are in a similar context but have different class
label sets, which makes them ideal candidates for few-shot
learning (19). First, we trained our model with the GTEx
dataset. With this pre-training step, the model learns to clas-
sify different types of tissues by gene expression patterns.
Without any additional fine-tuning, the GTEx pre-trained
model shows 78.91% ± 0.76% accuracy on TCGA. The
TCGA pre-trained model shows 84.57% ± 0.66% accuracy
on the GTEx data in a 5-way 5-shot task (Supplementary
Table S3). Next, we compared the cancer type classification

problem with recently published methods. We fine-tuned the
model with only 15 samples per class and tested with the
remaining (495 samples out of 9781; 5% of the dataset). Al-
though the accuracy of the model can be affected by the
randomly chosen 15 samples, we could obtain an average
accuracy of 94%+ in 10 repeated training runs, even though
we used only 5% of the TCGA data for fine-tuning (Figure
2A). Although accuracy in few-shot learning is not directly
comparable to standard models, our approach shows simi-
lar performance (95.6% and 95.7% accuracy) compared to
recent CNN-based classification models that used 80% of
the data for training (25).

When using all 33 classes in the TCGA cancer dataset,
the pre-trained model converged early in comparison to the
randomly initialized model which needs more epochs to
converge. However, fully trained both models have similar
accuracy (Figure 2A). With this fully supervised setup, we
can see that transferred knowledge can reduce search space
and help to reach early convergence. To investigate trans-
ferred knowledge as general information that can enhance
the few-shot learning model, we trained the model with a
subset of the samples of the 33 classes and tested with all
remaining samples. We compared two baseline models: pre-
trained with GTEx (i) and a randomly initialized model (ii)
and further trained them with 5, 10, 15, 20 and 25 classes
out of the 33 classes. This fine-tuning is stopped when batch
accuracy reached 99% to avoid overfitting (Materials and

file:BioRender.com
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Methods section). With this result, we can observe that
transferred knowledge is very useful when fine-tuning data
are limited to a small number of different classes. With
a pre-trained model, we can build a few-shot model with
80%+ accuracy with only 1.5% of the TCGA dataset (10
out of 33 classes and 15 samples per class). Because the
meta-learning algorithm is efficient with small data sizes,
in the cancer datasets, a more critical factor in better ac-
curacy was the number of classes than the number of sam-
ples. When we fixed the number of classes to five and varied
the number of samples from 15 to 75, the accuracy change
was not significant (Figure 2B,C). With the ARI measure,
it shows similar patterns (Supplementary Figure S1). In the
case of the randomly initialized models, model parameters
are determined by a small size dataset randomly selected
during fine-tuning. Thus, they show higher variance than
a pre-trained model fine-tuned with a small data size in
the same way. However, if the number of classes is 25, we
can see marginal improvement when the number of sam-
ples is increased (Supplementary Figure S2). The analysis
of the TCGA and GTEx datasets, demonstrates that few-
shot learning with a meta-learning algorithm can be a new
method to facilitate existing large-scale datasets and trans-
fer knowledge (see Supplementary Figure S3). Model ini-
tialization with transferred knowledge can improve model
accuracy and also reduce training times (Figure 2D).

Meta-transfer learning across technological heterogeneity

TCGA and GTEx can not fully reflect the current tech-
nological heterogeneity issue in omics biology. Thus, we
further investigated a single-cell sequencing transcriptome
dataset. Various methods have been introduced for effec-
tive batch correction and integrative analysis with multiple
datasets from various techniques in this field. In our study,
we used five different single-cell datasets from the human
pancreas and the GTEx and TCGA datasets as pre-training
datasets. Pre-trained model with both large-scale datasets
shows accuracies of <50% accuracy on single-cell sequenc-
ing datasets (Supplementary Table S3). Based on this test re-
sults from few-shot baseline models with GTEx and TCGA
datasets, we could show that the models can identify dif-
ferent cell types from single-cell sequencing datasets even
though a model has been trained only as a organ/tissue level
classification task. However, test classification result shows
that the pre-trained models recognize same class label in dif-
ferent dataset to different class label (Supplementary Figure
S4).

Next, we used the Baron dataset out of five different
single-cell datasets for fine-tuning of the GTEx-pretrained
model to validate that our model can transfer knowledge
from a large-scale bulk-cell sequencing dataset to a single-
cell problem. We obtained accuracy from five different
training conditions (Figure 3A): pre-trained and fine-tuned
with the Baron dataset (filled circle), randomly initialized
and trained with the Baron dataset (hollow circle), pre-
trained and fine-tuned with subset of the Baron dataset
(filled square), randomly initialized and trained with subset
of the Baron dataset (hollow square) and pre-trained (filled
diamond). Similar to the results from the TCGA data, pre-
training does not significantly affect the accuracy if a fine-

tuning dataset has enough data. However, if the fine-tuning
data are limited, pre-training can improve the quality of the
model significantly. During training with Baron data, we
observed that the accuracy converges within 100 000 epochs
(Figure 3B). In these single-cell datasets, the classification
accuracy in other similar single-cell sequencing datasets is
improved if a fine-tuning training uses >15 samples from
Baron (Supplementary Table S4). This improvement of ac-
curacy was directly observable in the detailed result of test
episodes. After learning the cell types classification problem
with the baron dataset, the few-shot model was able to dis-
tinguish different cell types more accurately. Furthermore,
we can identify groups of similar cell types across different
datasets (Supplementary Figure S5). Notably, we could ob-
serve interesting classification results in the heatmap such as
‘alpha-contaminated’ and ‘beta-contaminated’ in the Xin
dataset, or ‘dropped’ in Wang dataset, ‘co-expression cell’
and ‘unclassified endocrine cell’ in the Segerstolpe dataset.
Because few-shot model can compare query sample to more
class labels at one time in a 20-way and 5-shot task, we can
see distinct clusters of similar labels and cell clusters that are
not clearly annotated.

We further investigated the fine-tuning with small-size
data, here 15 data per class (see Figure 3A). Thus, we com-
pared all possible scenarios with single-cell datasets. We
chose one dataset out of five as a fine-tuning dataset and
tested its 5-way 5-shot task accuracy with the others. Pre-
trained models and randomly initialized models are fine-
tuned with 15 samples per class from the chosen dataset.
Because the data quality of randomly picked 15 cells can
significantly affect the training, we repeated the training
10 times and tested for significant differences. It turned out
that the pre-trained model is significantly better than the
randomly initialized model when the available training data
are limited (Figure 3C).

DISCUSSION

As next-generation sequencing is routinized in experimen-
tal biology, the speed of data accumulation has been accel-
erated. However, most studies can utilize only partial data
because the biological heterogeneity, batch effects and tech-
nological heterogeneity, which hinder integrative analysis.
Thus, every study has to produce large amounts of data
to obtain a significant result. Few-shot learning with meta-
learning algorithms could solve this issue in biomedical re-
search and has already been used in other areas, for exam-
ple, computer vision (19). Thus, we propose that a few-shot
learning model with a meta-learning algorithm can be used
as a new methodology to exploit existing public resources
and data to build reliable models for small sample size. This
approach is not only cost-efficient but also time-efficient,
and thus, very important for biomedical studies, for exam-
ple, for cancer. In a recent cancer-drug discovery study (15),
meta-learning has been used for functional genomics data
to extract biological knowledge from very small sizes of
screening data. Consequently, by using this new approach,
we can investigate biological systems in higher resolution
and lower costs (12).

Similar to Sun-MTL (21) in the computer vision field,
the TMP also showed that knowledge transfer from large-
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Figure 3. An accuracy chart of 5way-5shot task with five different single-cell pancreas datasets. (A) Comparisons between different training conditions
show that transfer learning makes a significant difference in small-size data conditions. Pre-training refers to pre-training with the GTEx dataset, and it is
represented with filled markers. Fine-tuning refers to additional training with the Baron dataset. ‘F’ indicates that the complete dataset of Baron was used
for the fine-tuning training step, and it is represented with a circle. ‘s’ indicates a data scarcity condition, and it is represented with a square. ‘-’ indicates
no fine-tuning training, and it is represented with a diamond. (B and C) Figures are about the data scarcity condition (filled and hollow square cases). (B)
Accuracy chart during training for fine-tuning with subset of the Baron dataset (15 samples per class) in case for two squares in (A). After 50 000 epochs,
performance of the model converged. Solid lines represent models based on pre-trained networks with GTEx dataset and further trained with a subset of
the Baron dataset. Dotted lines are randomly initialized networks trained with 15 samples per class from the Baron dataset. (C) Pair-wise comparisons
of 5 different single-cell pancreas datasets show accuracy differences between pre-trained and randomly initialized networks. Each of the violin plots is
composed of 10 repeats of training. ‘TF’ indicates fine-tuning started with pre-trained network and ‘Random’ indicates randomly initialized models. The
rows represent the dataset used for fine-tuning, the column the dataset used for testing. Statistical significance evaluated by Student’s t-test is indicated by
*P < 0.05, **P < 0.01, ***P < 0.001. Created with BioRender.com.

scale bulk-cell sequencing data and meta-learning with fine-
tuning dataset makes model training very time efficient
(Figures 2A and 3B) and shows less variability in model
performance (Figures 2C and 3C). The application of meta-
transfer learning for building a few-shot classifier with het-
erogeneous omics datasets is very efficient in our model.
When training a randomly initialized model with a lim-
ited dataset, we can observe that the outcome performance
of the model has higher variance in both analyses, in the
TCGA cancer datasets (Figure 2C) and single-cell pancreas
datasets (Figure 3C). Those high variances are originated in
a randomly chosen dataset and random initialization of the
model. Our results show that transferring knowledge from
a large-scale bulk-cell sequencing dataset can consistently
guide single-cell sequencing models during training with a
small subset of the data.

Compared to Sun-MTL, Our TMP needs to train feature
extractor and classifier during the fine-tuning phase. The
fixed feature extractor and training additional classifier are
key features of transfer learning with baseline model (26).
However, freezing weights of feature extractors only hin-
dered the performance of the TMP. This may be because
of the disparity of two different omics datasets, bulk-cell

and single-cell sequencing. The major source of disparity
is of biological origin in the selective sequencing of individ-
ual cell types. Typically, single-cell data contain more zero-
values than bulk-cell sequencing. In addition, the technical
limitations of single-cell sequencing worsen the quality of
data compared to bulk-cell sequencing (16,27). Because of
these challenges, the quality and feature characteristics of
data are different in our given tasks with bulk- and single-
cell sequencing data, even if the objective of the task is sim-
ilar.

In this work, we used a relatively simple structure of net-
works for the omics data compared to applications in com-
puter vision in order to demonstrate that transfer learning
is a reliable method for handling of biological heterogene-
ity, batch effects and technological heterogeneity in omics
analyses. Thus there is a room for improving the mod-
els for various data integration analyses. We expect that a
more complex but well-optimized structure for biological
data can improve knowledge transfer and expand the ap-
plications also to other sequencing variations. Here, we an-
alyzed single-cell sequencing datasets as an example of a
technological heterogeneity issue. There are already many
successful models for the integration of single-cell sequenc-

file:BioRender.com
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ing datasets: Seurat (28), scVI (29), scVAE (30), Scanorama
(31), MARS (9) and scETM (32). Those methods, however,
focused on only single-cell data integration. Our findings in-
dicate that besides single-cell datasets, other types of data,
for example, existing bulk-cell datasets, are useful for in-
terpreting single-cell sequencing datasets. Moreover, we ex-
pect that our cross-technology transfer learning scheme can
also be applied to those recent state-of-the-art batch cor-
rection models. Based on our findings, we are hypothesize
that meta-transfer learning on large bio-molecular datasets
in combination with fine-tuning can improve model perfor-
mance in many applications struggling with small sample
sizes.
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S1. Single-cell pancreas datasets are summarized in Sup-
plementary Table S2. It can be downloaded at Hemberg-
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4. Aibar,S., González-Blas,C.B., Moerman,T., Imrichova,H.,
Hulselmans,G., Rambow,F., Marine,J.-C., Geurts,P., Aerts,J., van
den Oord,J. and et,al. (2017) SCENIC: single-cell regulatory network
inference and clustering. Nat. Methods, 14, 1083–1086.

5. Yuan,Y. and Bar-Joseph,Z. (2019) Deep learning for inferring gene
relationships from single-cell expression data. Proc. Natl. Acad. Sci.
USA, 116, 27151–27158.

6. Stumpf,P.S., Du,X., Imanishi,H., Kunisaki,Y., Semba,Y., Noble,T.,
Smith,R.C., Rose-Zerili,M., West,J.J., Oreffo,R.O. et al. (2020)
Transfer learning efficiently maps bone marrow cell types from mouse
to human using single-cell RNA sequencing. Commun. Biol., 3, 1–11.

7. Wang,T., Johnson,T.S., Shao,W., Lu,Z., Helm,B.R., Zhang,J. and
Huang,K. (2019) BERMUDA: a novel deep transfer learning method
for single-cell RNA sequencing batch correction reveals hidden
high-resolution cellular subtypes. Genome Biol., 20, 1–15.

8. Mieth,B., Hockley,J.R., Görnitz,N., Vidovic,M. M.-C., Müller,K.-R.,
Gutteridge,A. and Ziemek,D. (2019) Using transfer learning from
prior reference knowledge to improve the clustering of single-cell
RNA-Seq data. Sci. Rep.-UK, 9, 1–14.
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