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Abstract

Background

The Air Quality Index (AQI) in the United States is widely used to communicate daily air qual-

ity information to the public. While use of the AQI has led to reported changes in individual

behaviors, such behavior modifications will only mitigate adverse health effects if AQI values

are indicative of public health risks. Few studies have assessed the capability of the AQI to

accurately predict respiratory morbidity risks.

Methods and findings

In three major regions of California, Poisson generalized linear models were used to assess

seasonal associations between 1,373,165 respiratory emergency department visits and

short-term exposure to multiple metrics between 2012–2014, including: daily concentrations

of NO2, O3, and PM2.5; the daily reported AQI; and a newly constructed health-based air

quality index. AQI values were positively associated (average risk ratio = 1.03, 95% CI

1.02–1.04) during the cooler months of the year (November-February) in all three regions

when the AQI was very highly correlated with PM2.5 (R2� 0.89). During the warm season

(March-October) in the San Joaquin Valley region, neither AQI values nor the individual

underlying air pollutants were associated with respiratory morbidity. Additionally, AQI values

were not positively associated with respiratory morbidity in the Southern California region

during the warm season, despite strong associations of the individual underlying air pollut-

ants with respiratory morbidity; in contrast, health-based index values were observed to be

significantly associated with respiratory morbidity as part of an applied policy analysis in this

region, with a combined risk ratio of 1.02 (95% CI: 1.01–1.03).

Conclusions

In regions where individual air pollutants are associated with respiratory morbidity, and dur-

ing seasons with relatively simple air mixtures, the AQI can effectively serve as a risk com-

munication tool for respiratory health risks. However, the predictive ability of the AQI and
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any other index is contingent upon the monitored values being representative of actual pop-

ulation exposures. Other approaches, such as health-based indices, may be needed in

order to effectively communicate health risks of air pollution in regions and seasons with

more complex air mixtures.

Introduction

Since 1980, air pollution concentrations in the United States have steadily decreased [1], but

thousands of excess deaths and tens of thousands of excess morbidities are still attributed to

exposure each year. In California alone, an estimated 3,100 excess deaths and 7,731 excess

morbidity cases are attributable annually to air pollution exceeding recommended standards

[2]. Health risks associated with short-term exposure to outdoor air pollution are reported to

the public by the U.S. Environmental Protection Agency (EPA) through the Air Quality Index

(AQI), which has been used as a model for many other air quality indices around the world

[3–5].

Each city in the United States with a population over 350,000 is required to report the AQI

to the public using a federally prescribed method, including detailed guidance on how to calcu-

late and communicate risk associated with index values [6]. The AQI uses a simple aggregation

method to determine local air quality: while all five criteria pollutants are considered, only the

single pollutant with the highest concentration relative to its national standard is used to calcu-

late the daily index value. As such, the AQI essentially functions as a regulatory-based, single-

pollutant index calibrated to the National Ambient Air Quality Standards (NAAQS). These

standards are reviewed by the EPA every five years [7], and although not required [8], the

index values have been updated with each NAAQS revision.

The AQI was designed to provide a uniform and simple method of reporting air pollution

concentrations that exceed federal regulatory levels. The AQI also provides a ready-made plat-

form to alert the public to extreme pollution episodes. The existing literature shows evidence

of avoidance behavior in response to air quality alerts among both susceptible populations and

individuals with no underlying health conditions [9–13]. However, the AQI was not specifi-

cally designed to act as a risk communication tool for acute health risks, even though it has

been appropriated for this purpose. Only the single pollutant with the highest NAAQS-related

concentration determines the AQI daily value; thus, the potential additive or mixed effects of

multiple pollutants on air quality are ignored [5, 14–16]. Since index levels are linked to health

advisories, actual health risk may be understated or misrepresented using the existing AQI

framework.

Alternatives to the AQI, and similarly constructed air pollution indices, have been devel-

oped in order to address the limitations of its inherent single-pollutant model [3–5, 17, 18].

The most mature efforts in this regard has been the development and implementation of an air

quality health index (AQHI) in Canada [19]. In contrast to the U.S.-based AQI, in which index

values reflect local air quality conditions, health-based index values go a step further in an

effort to report the daily index values as a function of health risk. Health-based indices exist in

several global nations, primarily modeled after the Canadian AQHI. The AQHI addresses

many of the concerns surrounding the AQI, particularly by accounting for the multi-pollutant

effects of air pollution when calculating health risk [19]. Health-based indices have been evalu-

ated in Canada and China, where AQHI reports were found to generally reflect true health

outcomes in study regions compared to existing single-pollutant, concentration-based models

[14, 16, 20–22].
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Despite the fact the AQI was not explicitly designed to function as a risk communication

tool, it is possible that it may be able to functionally fulfill this objective. The present study

tests the efficacy of the existing AQI in reflecting health risks by investigating associations

between population-level health outcomes with index values. Specifically, associations between

respiratory morbidity (emergency department (ED) visits) and daily AQI values and health-

based index values were evaluated for California from 2012–2014. Due to its relatively poor air

quality in the United States and its demographic and geographical diversity, California serves

as an excellent case study for this analysis. Additionally, due to the aforementioned high excess

morbidity and mortality attributable to air pollution, California is one of the regions in the

United States that would most immediately benefit from a better understanding of the

strengths and limitations of the AQI as a risk communication tool. However, the intent of this

analysis is not to propose changes to California’s air quality reporting, but to use this location

to test whether the current AQI is a generally reliable tool for reporting real health risks.

Materials and methods

ED data was accessed via California’s Office of Statewide Health Planning and Development

(data can be requested at https://oshpd.ca.gov/data-and-reports/research-data-request-

information/). The study population was derived from adults over 18 years of age in 25 Cali-

fornia counties, yielding a capture population of 32,708,938 residents constituting 86.9% of the

state’s total population. All respiratory ED visits from 2012–2014 were gathered from this pop-

ulation and coded according to the 9th version of the International Classification of Diseases

(ICD-9; World Health Organization, Geneva). Respiratory visits were defined as asthma (493),

upper respiratory infection (465), pneumonia (480–486), and chronic obstructive pulmonary

disease (490–496) (all 2-digit extensions were used). While the standards determining the AQI

include mortality and cardiovascular disease in addition to respiratory morbidity, we chose to

focus on respiratory health risks since these outcomes are most commonly used by the public

in considering how to respond to health index reports [23].

Daily pollutant concentrations based on NAAQS averaging times (1-hour maximum for

nitrogen dioxide [NO2], 8-hour maximum for ground-level ozone [O3], and 24-hour average

for fine particulate matter [PM2.5]) and daily AQI values (retrospective, not forecast) were

obtained from EPA Air Data at the county-level [24]. In counties with multiple monitors, the

daily maximum and daily average from monitors with a threshold of 75% of available days per

season was obtained. Meteorological data was collected for each county from January 2012 to

December 2014, including daily temperature and relative humidity.

The daily health-based index used in this study was constructed using the quantitative

approach used to develop the AQHI in Canada by Stieb et al. 2005 [15], and is meant to be a

generic index that uses additive effects of nationally representative coefficients for PM2.5, O3,

and NO2. These index values represent the additive excess risk of each individual pollutant on

respiratory morbidity. The methods and individual studies used in the random effects meta-

analysis to derive the coefficients for each pollutant are contained in S1 Appendix and S1

Table, respectively.

Time-series analysis using a quasi-Poisson generalized linear model (GLM) was used to

determine the association between respiratory morbidity and index values. The quasi-likeli-

hood estimation was used to account for overdispersion. Decisions in regard to model selec-

tion were made a priori based on epidemiology studies looking at the short-term effects of

outdoor air pollution. The full GLM model incorporated the daily count of total respiratory

ED visits, the daily pollutant concentration, and the daily AQI or health-based index value.

Linear terms were used for day of the week, and non-linear adjustments were made using
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natural splines to control for long-term trends, seasonality, relative humidity, same day tem-

perature, and the temperature at the average of lag days 1 to 3. Similar to the methods reported

in other studies, the Akaike information criterion was used to select the optimal number of

degrees of freedom (df), or knots, in the model [25–27]. Separate seasonal analyses were com-

pleted for the cooler months (November-February) and the warmer months (March-October).

Analyses completed during the cool and warm seasons used 8 df and 16 df per season per year,

respectively, to account for long-term trends and seasonality. This model was validated by

comparing observed vs. fitted adjusted R2 values for each predictor variable by location and

season (see S4 Table).

The associations between AQI values and pollutant concentrations with respiratory ED vis-

its were assessed by relative risk (RR) and 95% confidence interval (CI) per inter-quartile

range (IQR) increase in index values. County-level associations with AQI values or individual

pollutant concentrations in both the warm and cool season were pooled using a random-

effects model to account for heterogeneity between county estimates. Associations between

newly constructed health-based index values were only completed for regions where AQI val-

ues were not significantly associated with population health risk. Primary results are reported

for a 4-day average lag structure from lag days 0 through 3; results for all individual lag days

investigated in the analysis are shown in S3 Table. Using county-level US Census data from

2012–2014 [28] a subsequent post-hoc analysis was conducted to determine if socioeconomic

status impacted our results (results shown in S5 Table).

Results

The study counties were grouped into three distinct regions based in part on geographic proxim-

ity, but primarily on similarity in air pollution profiles observed throughout the study period.

Additionally, only counties that had both health information and monitor data for the three study

pollutants were included, and as such represent areas where AQI values are fully informed by

these criteria air pollutants. Fig 1 depicts a map of each region and their associated counties (see

S2 Table for a breakdown of health events and pollutant concentrations for individual counties).

Demographics of respiratory ED visitors across all three years are presented in Table 1.

Overall, 51.4% of visitors were over 40 years old and 60.4% were female. Race and ethnicity

among visitors was 38% white, 35.7% Hispanic, 16.2% black, 4.3% Asian or Pacific Islander,

and 0.3% Native American, Eskimo, or Aleut.

From 2012–2014, there were a total of 1,373,165 respiratory ED visits across the three study

regions: Southern California (Ventura, Santa Barbara, San Louis Obispo, San Diego, San Ber-

nardino, Riverside, Orange, Los Angeles, and Imperial counties) had 839,222 ED visits; San

Joaquin Valley (Tulare, Stanislaus, San Joaquin, Merced, Madera, Kings, Kern, and Fresno

counties) had 233,715 ED visits; and San Francisco Bay Area (Sonoma, Solano, Santa Clara,

San Mateo, Napa, Monterey [not geographically in the San Francisco Bay area but its air qual-

ity profile matches the rest of the listed counties], Contra Costa, and Alameda counties) had

300,228 ED visits. As a result of the higher number of respiratory ED visits per day during the

cooler season, the total number of counts was roughly equal between the two seasons, despite

different numbers of days in each period, as shown in Table 2.

Spearman correlations between AQI values, individual pollutant concentrations, and

weather variables are shown by region and season in Table 3. Very high positive correlations

(0.89 to 0.98) were observed for PM2.5 and AQI values in all three regions during the cooler

months of the year; during the warmer months, there were only moderate correlations

observed for PM2.5 and AQI values (0.58 to 0.71), in addition to moderate to high positive cor-

relations for O3 and AQI values (0.66 to 0.89).
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Fig 1. Map of regions and associated counties included in the study.

https://doi.org/10.1371/journal.pone.0242031.g001

Table 1. Demographics of study population observed from 2012–2014 in three regions of California.

San Francisco Bay Area San Joaquin Valley Southern California

Total ED Visits 300,228 233,715 839,222

Age

18–40 139,227 (46.4%) 122,612 (52.5%) 405,300 (48.3%)

41–64 108,697 (36.2%) 78,940 (33.8%) 291,971 (34.8%)

65 + 52,304 (17.4%) 32,163 (13.8%) 141,951 (16.9%)

Sex

Female 178,167 (59.3%) 143,170 (61.3%) 507,866 (60.5%)

Male 122,061 (40.7%) 90,545 (38.7%) 331,356 (39.5%)

Race/Ethnicity

White 107,786 (35.9%) 96,773 (41.4%) 316,726 (37.7%)

Hispanic 84,217 (28.1%) 94,809 (40.6%) 311,663 (37.1%)

Black 63,211 (21.1%) 24,440 (10.5%) 134,765 (16.1%)

Asian / Pacific Islander 22,600 (7.5%) 4,378 (1.9%) 31,642 (3.8%)

Native American / Eskimo / Aleut 1,670 (0.6%) 650 (0.3%) 1,684 (0.2%)

Other 20,744 (6.9%) 12,665 (5.4%) 42,742 (5.1%)

Total ED visits over the study period are shown by age, sex, and race/ethnicity.

https://doi.org/10.1371/journal.pone.0242031.t001
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Individual pollutant results

Fig 2 illustrates the association of individual air pollutants (PM2.5, NO2, and O3) with respira-

tory ED visits by season and region. The associations depicted in this figure are based on the

IQR of the underlying pollutants, shown in Table 2. Of particular note is the lack of significant

positive associations between the three individual pollutants and respiratory ED visits from

March to October in the San Joaquin Valley region, even though positive significant associa-

tions were observed in this region during the cooler months. Also of note is the significant pos-

itive associations with morbidity risk for the individual pollutants in the Southern California

region during the warmer months despite there being no significant association with AQI val-

ues during this same time period and region.

Table 2. Median and inter-quartile range for pollutant concentrations (24-hour PM2.5, 8-hour O3, and 1-hour NO2) and daily Air Quality Index, by region and sea-

son from 2012–2014.

Season Region Respiratory ED Visits PM2.5 (μg/m3) O3 (ppb) NO2 (ppb) AQI

ED Visits per 100k people Daily Avg Median IQR Median IQR Median IQR Median IQR
March—October Southern California 2,495 1,970 9.9 5.4 57 18 23 20.3 67 46

San Joaquin Valley 3,283 532 9.2 5.8 58 21 19 15 68 52

San Francisco Bay Area 2,709 720 6.9 4.8 38 12 13.9 13.3 40 15

November—February Southern California 1,843 2,971 8.3 6.5 43 8 35.9 17.1 55 25

San Joaquin Valley 2,601 861 17.6 18.4 34 13 28 16 71 47

San Francisco Bay Area 1,904 1,033 9.5 8.4 30 11 28.7 13.6 43 25

https://doi.org/10.1371/journal.pone.0242031.t002

Table 3. Spearman correlations by season and region for air pollutants and meteorological variables, from 2012–2014.

November–February March–October

Region Variable AQI Health-based Index PM2.5 NO2 O3 Temp AQI Health-based Index PM2.5 NO2 O3 Temp

Southern California Health-based Index 0.82 0.78

PM2.5 0.89 0.88 0.60 0.76

NO2 0.37 0.55 0.39 0.37 0.73 0.33

O3 0.27 0.40 0.15 0.07 0.89 0.80 0.48 0.42

Temp� 0.04 0.02 -0.01 0.06 0.08 0.38 0.28 0.28 0.23 0.39

RH�� -0.09 -0.24 -0.04 -0.46 -0.17 -0.23 -0.43 -0.47 -0.28 -0.52 -0.44 -0.62

San Joaquin Valley Health-based Index 0.71 0.81

PM2.5 0.98 0.97 0.58 0.50

NO2 0.27 0.53 0.28 0.11 0.28 0.19

O3 0.30 0.23 0.28 0.20 0.69 0.60 0.38 0.13

Temp� -0.17 -0.09 -0.18 -0.16 0.19 0.63 0.52 0.26 -0.04 0.42

RH�� -0.24 -0.14 -0.23 -0.20 -0.44 -0.10 -0.56 -0.66 -0.28 -0.05 -0.32 -0.67

San Francisco Bay Area Health-based Index 0.79 0.80

PM2.5 0.97 0.95 0.71 0.70

NO2 0.53 0.63 0.54 0.38 0.50 0.24

O3 -0.14 -0.10 -0.18 0.01 0.66 0.77 0.31 0.05

Temp� -0.30 -0.19 -0.34 -0.19 0.06 0.27 0.28 0.16 0.08 0.24

RH�� -0.19 -0.16 -0.16 -0.42 -0.26 0.05 -0.41 -0.45 -0.21 -0.31 -0.38 -0.48

� Mean temperature

�� Mean relative humidity

https://doi.org/10.1371/journal.pone.0242031.t003
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AQI results

While there is some inter-county variation in observed associations, our pooled analysis found

that the daily levels of the AQI are significantly associated with respiratory ED visits for all

three study regions in the cooler months (November to February), as shown in Fig 3. An inter-

quartile increase in AQI values was associated with a 4% increase in respiratory morbidity risk

in San Joaquin Valley (RR: 1.04, 95% CI: 1.02–1.07 and San Francisco Bay Area (RR: 1.04, 95%

CI: 1.02, 1.05), and with a 2% increase in respiratory morbidity in Southern California (RR:

1.02, 95% CI: 1.01, 1.03). More important than the magnitude of the relative risks is the

observed positive associations of AQI values and population-level respiratory morbidity.

During the warmer months of the year (March to October), AQI values were significantly

associated with respiratory ED visits in the San Francisco Bay region with a combined RR of

1.02 (95% CI: 1.01–1.03). All individual counties in this region showed positive associations,

although not all positive associations were statistically significant at the county level.

However, unlike the San Francisco Bay Area, AQI values were not significantly associated

with respiratory ED visits in either the San Joaquin Valley or the Southern California regions

during the warm season. In Southern California, a significant positive association was only

observed in San Diego County, offset by the significant negative association observed in River-

side County (RR: 0.98, 95% CI: 0.96–0.99) during the same time period. In the San Joaquin

Valley region, none of the individual counties demonstrated a positive significant association

between AQI and respiratory ED visits during the warmer months, and one county (Madera

County) demonstrated significant negative associations (RR: 0.95, 95% CI: 0.90–0.99).

Health-based index results

Due to the observed positive association of individual pollutants, but not AQI values, with

respiratory morbidity in Southern California, an exploratory analysis was conducted to deter-

mine whether a health-based index combining the excess risk of three individual pollutants

(PM2.5, O3, and NO2) would better predict population-level health risks in the region. In order

to complete an applied policy analysis, the evaluation focused specifically on four counties

Fig 2. Relative risks of respiratory ED visits for AQI values and individual air pollutants for 2012–2014, by region. Relative risks are presented per IQR increase in

AQI values and pollutant concentrations and are shown for the four-day moving average of lag days 0 through 3. Abbreviations: AQI, air quality index; CI, confidence

interval; IQR, inter-quartile range; NO2, nitrogen dioxide; O3, ozone; RR, relative risk; PM2.5, fine particulate matter.

https://doi.org/10.1371/journal.pone.0242031.g002
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comprising the Southcoast Air Quality Management District (Los Angeles, Orange, Riverside,

and San Bernardino) in the Southern California region. Local air quality agencies are best

suited for making specific decisions regarding risk communication, and therefore these four

counties were selected for analysis in an effort to demonstrate how these types of assessments

can be directly relevant to the management level where such decisions are made.

As shown in Fig 4, the observed associations for both AQI values and health-based index

values are nearly identical during the cooler months in the Southcoast Air Quality Manage-

ment District, with significant associations observed in three of the four investigated counties

for both indices. However, during the warmer season, the health-based index values were sig-

nificantly associated with respiratory morbidity in 3 of the 4 counties during the warmer

months, while the AQI was not positively associated with respiratory morbidity in any of the

four counties and was even observed to be significantly, negatively associated with respiratory

morbidity in one county. The pooled estimate of the association between the heath-based

index and respiratory ED visits stays consistently significant throughout the year, with a com-

bined RR of 1.02 (95% CI: 1.01, 1.04) during the cooler season and a combined RR of 1.02

(95% CI: 1.01, 1.03) during the warmer season. No such positive association was observed for

the AQI, which had a combined RR of 1.00 (95% CI: 0.98, 1.01).

Fig 3. Relative risks of respiratory ED visits for inter-quartile change in AQI values during the cooler months (November to February) versus the warmer months

(March to October) from 2012–2014, by county and region. Associations are shown for a four-day moving average of lag days 0 through 3. Abbreviations: AQI, air

quality index; CI, confidence interval; RR, relative risk.

https://doi.org/10.1371/journal.pone.0242031.g003
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Discussion

Even in circumstances when the AQI’s underlying pollutants are associated with respiratory

health risks, there is no guarantee the index itself will be. Very few studies have assessed this

association between AQI values and health outcomes in the US. In a review by Chen and

Copes 2013 [29], only two studies were found meeting these criteria and few new studies of

this nature have been identified since the time of the review. And while the studies available

investigated the relationship between the AQI and specific health outcomes in their cohorts of

interest, both used the AQI as a representation of true pollution rather than looking at whether

AQI values are associated with population-level respiratory health outcomes, as done in the

present analysis. This also does not include studies that use AQI categories to report results

while directly assessing the associations of AQI values with adverse health outcomes [30].

However, the results of these other studies still offer insight into the conditions necessary for

an effective AQI.

In one study, Balluz et al. 2007 [31] assessed ischemic heart disease data from the Behavioral

Risk Factor Surveillance System (BRFSS) and the association with annual PM2.5 AQI values

from the EPA’s Air Quality System (AQS) database across 51 U.S. counties. Adjusting for

covariates, they found that counties with higher PM2.5-driven index values were significantly

associated with ischemic heart disease across the country. In this study, associations did not

vary significantly across different annual quarters. In contrast, investigating a narrower cohort,

Letz and Quinn 2005 [32] did not observe significant associations between AQI levels and

morbidity. Specifically, they found that among basic military trainees in San Antonio, Texas,

the number of daily ED visits for asthma during the ozone season was not associated with

either PM2.5- or O3-determined AQI levels. This suggests regional and seasonal variability

could play a role in the AQI’s association with health risk.

In the present analysis, AQI values were found to be positively associated with respiratory

risk across a large number of study counties, particularly during the cooler months of the year.

This outcome suggests that in addition to its intended design to communicate extreme air

quality events to the public, the AQI can function as a daily risk communication tool to inform

behavior modification decisions—but only at certain times and locations.

Results show that in California, the AQI was most effective at predicting respiratory risk

when index values are most highly correlated with PM2.5 (see Table 3). In all three regions, the

Fig 4. Results of an applied policy analysis showing relative risks of respiratory ED visits for health-based index vs. AQI in the Southcoast Air Quality

Management District in Southern California from 2012–2014. Relative risks are presented per IQR increase of the index value. Abbreviations: AQI, air quality index;

IQR, inter-quartile range; RR, relative risk.

https://doi.org/10.1371/journal.pone.0242031.g004
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correlations between AQI values and PM2.5 concentrations are over 0.89 during the cooler

months of the year. Thus, during this season, the AQI essentially represents the population

level health risks of daily PM2.5 concentrations which was observed to be positively associated

with health outcomes in all three regions.

It is unsurprising to see that AQI values are not reflective of population-level morbidity in

the San Joaquin region during the warmer months of the year given that none of the individual

pollutants used to calculate the AQI were observed to have significant positive associations.

This result does not necessarily mean that air pollution is not an important risk factor for

respiratory health in this region, but more likely suggests that pollution levels measured at cen-

tral site monitors are not reflecting the individual exposures responsible for excess morbidity.

Improved air pollution monitoring, which better reflects population-level exposures, may be

needed in these and other similar locations before effective risk communication is possible.

This could include increasing the density of monitors, improving the placement of monitors,

or in using alterative modern techniques that may better reflect distribution of the spatial dis-

tribution of pollutants [33].

While a positive association between at least some of the individual air pollutants and health

outcomes is an essential condition for the AQI to reflect population-level health risks, this con-

dition alone does not guarantee that AQI values will be significantly associated with health out-

comes. For instance, during the warmer season, both Southern California and San Francisco

Bay showed positive significant associations between respiratory ED visits and the individual

pollutants PM2.5 and NO2; yet only daily AQI values in the San Francisco Bay region were sig-

nificantly associated with respiratory ED visits (Fig 2). There are several potential characteris-

tics of the study regions that may be important factors contributing to this result including: the

high correlation of AQI values and O3 in the Southern California region (Table 3) and the

higher concentrations and variability of multiple pollutants in Southern California as com-

pared to the San Francisco Bay area (Table 2). A broader investigation involving a larger num-

ber of locations will be needed to definitively determine whether it is the unequal health risks

of various pollutants on a per unit basis [34], the inability of the AQI to account for the com-

bined health risks of multiple pollutants [35], or some other yet to be identified reason that

best explains why the AQI values are not associated with population-level risks in times and

locations in which positive associations are observed for the underlying pollutants.

The health-based index used in this study was created to determine if a multi-pollutant

index constructed based on health studies, rather than regulatory levels, could better predict

health risks in situations where AQI values are not associated with population-level health out-

comes as part of an applied policy analysis. Results from an analysis of the four Southcoast Air

Quality Management District counties showed that these generic health-based index values

not only predicted health risks during the cooler months in a similar manner to AQI values,

but also consistently predicted respiratory morbidity during the warmer months when the

AQI could not (Fig 4).

The generic health-based index used in this analysis was based on coefficients derived from

a meta-analysis of nationally representative studies as opposed to creating a region-specific

health index using coefficients derived specifically from this region. Even though a tailor-made

index using region-specific coefficients may provide even better results, the goal of this study

was not to create an optimal index, but rather to assess whether a multi-pollutant, health-

based approach could generally remedy the risk communication limitations of the AQI. Addi-

tional analysis would need to be completed before considering alternative index formulations

in other locations, and it shouldn’t be assumed that just because a health-based index was

observed to be better approach in one area that it will be the correct approach elsewhere.
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The findings of this study have important implications for both practitioners and patients.

The U.S. EPA recommends that medical pratitioners advise patients to use the AQI to inform

behavior modification decisions [36] despite a lack of scientific evidence that typically accom-

panies clinical practice recommendations [15, 37]. The results of this study demonstrate that

while AQI values are associated with population-level health risks in some locations for part of

the year, the index may not reliably function as a risk communication tool when the monitored

concentrations of the underlying pollutants are not associated with population-level health

risks (as was the case in the San Joaquin Region during the warmer months of the year in this

study). In these circumstances, it is advisable to consider efforts to improve exposure estimates

used in generating index values to better reflect population-level exposures. Should well-exe-

cuted exposure assessments still produce poor associations between pollutant concentrations

and AQI values, it is possible that these associations simply do not hold true under the given

situation. Alternatively, in circumstances where the underlying pollutants are associated with

health outcomes but AQI values are not (such as Southern California during the warmer

months of the year) it may be advisable to consider alternative approaches to the AQI such as a

health-based index. Overall, the inconsistent ability of the AQI to reliably reflect daily health

risks may explain why patients in some locales have reported relying on personal observations

of outdoor conditions as much as air quality indices to inform behavior modification decisions

[38].

This analysis was unable to assess differential impacts among various subpopulations. In

addition to any increased susceptibility to the adverse effects of outdoor air pollution among

individuals with low socio-economic indicators [39] there are also important equity issues as it

relates to the ability to access and respond to risk information presented via the AQI [40].

Even in circumstances in which the AQI is predictive of health risks among susceptible indi-

viduals, if those same individuals are unable of these advisories or based on personal circum-

stances cannot modify their behaviors in ways to minimize their exposures to outdoor

pollution, then the index may have limited functionality to protect health. Additionally, this

study had insufficient power to subset results according to different AQI value groupings, and

as such its associations with health outcomes at very low or very high pollution levels remains

unclear. However, the authors were primarily concerned with characterizing the efficacy of the

AQI at the most common, moderate levels, which has been well defined in this analysis.

Further efforts to evaluate and improve risk communication indices are warranted given

the potential health benefits of individual behavior modification to reduce exposure to outdoor

air pollution. Regardless of which index design is used to communicate monitored and pre-

dicted air pollution concentrations to the general public, the utilized approach should be tested

and evaluated to ensure that it is reflective of the relevant health outcomes of interest.

Conclusion

The use of air quality indices to communicate health risks associated with air pollution expo-

sure is widespread in the United States and abroad, with vulnerable populations becoming

increasingly reliant on these reports to avoid harmful pollution exposure. While the AQI was

not specifically designed to function as a risk communication tool, it may be generally able to

fulfill that objective as long as AQI values are highly correlated with a single pollutant (particu-

larly PM2.5). However, in locations and during times with more complex air mixtures, AQI

values may not fully capture population-level respiratory health risks, even when positive asso-

ciations are observed for the underlying pollutants. In these and similar circumstances, it may

be advisable for local air quality agencies to explore alternative risk communication

approaches so that the public receives accurate health information.
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