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A combined Study of Headspace 
Volatiles using Human Sensory, 
Mass Spectrometry and 
chemometrics
K. G. McAdam1 ✉, J. tetteh2, L. Bishop3, H. Digard3, J. cote3, S. Lubbe4 & c. Liu3

Smokeless tobacco products (Stps) are widely used in certain parts of the world, yet there is limited 
understanding of how they are consumed, particularly the impact of chemosensory characteristics on 
their use. in order to develop an understanding of the drivers of Stp use and product acceptability we 
conducted both human sensory panel testing and chemical analyses on a range of Stps. free-sorting 
paired odour testing using sensory panellists identified similarities and clear differences between 
eleven different STPs. Headspace volatiles, analysed by headspace solid-phase microextraction gas 
chromatography mass spectrometry (HS-SPME-GC-MS), identified 20 to 70 components depending 
upon the STP. Key differences in headspace volatiles were found between STPs. For example, the 
headspace of Skoal Bandits Wintergreen was dominated by methyl salicylate, while Marlboro Spice 
consists of a more complex profile including pinene, nicotine, eugenol and cymene. Chemometric 
target factor Analysis (tfA) and Hierarchical cluster Analysis (HcA) of chemistry and sensory data was 
used to deduce chemical drivers of sensory perceptions. the chemometric strategy used showed that 
headspace analysis is a complementary screening tool to sensory analysis in classification studies. This 
study is generic with applications across various product sectors that require routine human sensory 
panel evaluation.

The use of tobacco and nicotine consumption products are rapidly changing worldwide. In particular the use of 
e-cigarette and ‘Heat not Burn’ (HnB) devices are gaining popularity1,2. Use of such ‘Next Generation Products’ 
(NGPs) is related at least in part to the potentially lower risks of these products in comparison to cigarettes3, as the 
level of toxicants from NGPs is significantly lower4–6. One reason for lower toxicant emissions from these prod-
ucts is the absence of combustion (and associated high temperature toxicants) that occurs in a burning cigarette. 
Use of some low toxicant smokeless tobacco products (STPs) is also regarded as lower in risk than cigarette smok-
ing2,3,7,8 although STPs are classified generically as International Agency for Research on Cancer (IARC) Group 
1 Carcinogens9. Important distinctions exist between STPs and cigarettes in both the nature of the toxicants and 
the exposure sites in consumers. Cigarette use exposes the lungs of smokers to both tobacco-based toxicants 
and combustion products10. In contrast, STP use exposes the buccal-oral cavity, and to a lesser degree nasal and 
gastro-intestinal tissues, to tobacco-based rather than combustion-based toxicants11.

STPs encompass a variety of product types globally, with particular concentrations of use in Scandinavia, the 
USA and Indian sub-continent. In recent years use of the Swedish STP snus has grown in Norway12, Canada13 and 
South Africa14. There are significant differences in STPs compositions and manufacturing processes worldwide15. 
Two of the most widely used STPs in the USA and Europe are moist snuff and Snus respectively, both of which 
are composed of finely cut tobacco, high moisture levels (up to 60%), humectants, salt and flavour compounds 
[McAdam et al. 2019]. USA moist snuff is based on finely cut air-cured and fire-cured tobacco varieties that may 
be fermented15. Swedish snus consists of finely ground dark air-cured tobaccos that is pasteurized during manu-
facture to control constituent chemistry post-production; it is found as loose tobacco (loose snus) or portion form 
within a porous fleece material (portion snus).
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The base component of STPs, tobacco, is a complex biomass system consisting of thousands of chemical con-
stituents16 including cellulose/hemicellulose, lignin, pectin, sugars, proteins, amino acids, nicotine and related 
alkaloids. The chemical composition of STPs also diversify once manufacturing differences such as pasteuriza-
tion and fermentation, additives, ageing and flavour compounds are factored in. Toxicant contents of STPs have 
received specific attention11,17–25. A review of STPs by the UK Royal College of Physicians noted that different 
health risks are associated with the use of different STPs in line with the levels of chemical toxicants within those 
products7.

As well as the contents of STPs, the way in which they are used also has important implications for individ-
ual and population risk. There is relatively little information available concerning the patterns and behaviours 
associated with STP use, in contrast to the information available for cigarette smoking26,27. Although studies 
have examined the durations and daily levels of snus consumption in Sweden28, and assessed the degree of STP 
constituent extraction during use29, relatively little is known about factors leading to STP use, product attribute 
preferences, or the identity and the sensory contributions of their chemical components15. Anecdotal evidence 
points to the importance of product aroma as an informal quality metric used by consumers on opening new 
packs of products, as a means of assessing product freshness. Many Swedish snus products have a traditional 
core product characteristic of an overtly ammoniacal-style aroma, modified by volatile top-flavours. In contrast, 
STPs from other countries have distinctly different general aroma characteristics reflecting national consumer 
preferences, with little ammoniacal character. In the USA moist snuff products flavourants such as wintergreen 
oil, spearmint, apple, cherry, vanilla are widely used15. These observations highlight levels of complexity in STP 
composition and consequent drivers of use that have received little attention to date, and these knowledge gaps 
are an important area to address.

In the field of Food Science, successful understanding of the interaction between consumers and the products 
they consume has been gained by combining human panel testing and chemical profiling30,31. Human panel 
testing enables analytically objective measurements to be made concerning product characteristics as perceived 
by human sensory organs32. Testing may be “descriptive”, with the aim of providing information on the influence 
of product parameters on sensorially perceptible properties; alternatively, “discriminatory” sensory analyses can 
define similarities or differences between products. Methods for discriminatory analyses include triangle tests, 
paired comparison, or free-sorting techniques. Use of trained panellists allows assessments to be conducted that 
are neutral and with minimised bias. The use of multiple subjects in panels, often between 8 and 20, increases the 
representativeness of the data generated. Human panel testing is a resource heavy activity, requiring substantial 
efforts in the creation, maintenance and use of an effective panel. Candidate panel members have to be screened 
for sensory acuity and commitment to panel testing; formal training to detailed procedures is required to ensure 
quality of data. Panellists are prone to fatigue, ageing, illness and lack of availability due to competing work pri-
orities. Testing environments need to be free of distractions, with controlled lighting, ventilation and separation 
between subjects. Methodology needs to be robust to avoid bias, with random sample presentation, labelling and 
apparatus free from confounding odours. Given the resource requirements for effective panel testing, chemical 
analysis techniques are often sought as a lower-cost alternative.

However, chemical analysis of STPs, is challenging due to the diversity of tobacco constituents present16,33. 
Approaches that focus on the volatile components present in the headspace of smokeless tobaccos can overcome 
these problems through simplification of the analysed matrix. Headspace gas chromatography linked to mass 
spectrometry (HS-GC-MS) with or without solid-phase microextraction (SPME) is highly suited to volatile spe-
cies analysis such as aldehydes, ketones, alcohols and esters, phenolic compounds and hydrocarbons34. These 
techniques are generally quite rapid, solvent-free, and require minimum sample preparation; they minimize 
analytical interference by extraction agents and co-extracted matrix constituents. HS-GC-MS has enabled the 
development of applications including qualitative fingerprinting and sample discrimination35, dynamic flavour 
monitoring and process optimization36,37, quantification of volatile flavouring compounds based on multivariate 
data modelling38 and high-throughput strategies in food and environmental analyses39.

A major challenge in HS-SPME/GC-MS methodology is to develop and use an effective data analysis strategy 
to accurately interpret the data, taking into consideration sample and chromatographic complexities. A typical 
chromatogram can yield many peaks, and the comparison of chromatograms across samples to identify key com-
ponents that might influence sensory attributes can be a very challenging task40,41. The use of multivariate che-
mometric pattern recognition techniques has proved effective in dealing with such complex data sets. A review 
of chemometric pattern recognition in food analysis, including use of Principal Component Analysis (PCA), has 
been published42 and the technique has been successfully deployed in areas such as wine aging studies43.

Beyond use of pattern recognition for classification, there are situations where identification and quantifi-
cation of components in complex mixtures are needed. In such situations self-modelling pattern recognition 
techniques such as Target Factor Analysis (TFA) has proven very effective in determining the relative quantities 
and identities of complex mixture samples without prior assumptions. The theory and applications of TFA have 
been detailed extensively elsewhere44. It is particularly suitable for resolving complex spectroscopic and chroma-
tographic data45,46, for example monitoring drug permeation profiles through skin via infrared spectroscopy47. 
Besides TFA, use of clustering algorithm and visualization in the form of hierarchical dendrograms has proven 
very effective in classification studies. Spatial groupings can also be used to examine similarities between samples. 
Many reports have shown that such visualization techniques have been used in the monitoring of counterfeit 
drugs48, essential oils in botanic materials49 and gene expression for early immune response induced by live atten-
uated and inactivated influenza vaccines50. Theoretical details of hierarchical clustering dendrograms and appli-
cations of PCA techniques for classification can be found elsewhere51, but a brief description is provided here for 
clarity. Cluster analysis creates groups, or clusters of objects formed in such a way that objects in the same group 
share similar patterns or ‘features’ such as chemical components. The classification tree (dendrogram) is a multi-
level hierarchy, where clusters at one level are joined together as clusters at the next level are formed. Similarities 
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between objects are based on calculated (e.g. Euclidean) distances between samples. There are several clustering 
techniques and the choice depends on the data configuration and complexity52.

These approaches have been employed in a number of food science areas, ranging from olive oils to types of 
wines. These studies demonstrate that differences in sensory and flavour attributes between products are often 
linked to variations in their chemical compositions40,53. To date there has been little work on this aspect of product 
aroma and use ritual associated with STPs. Use of such chemosensory approaches with STPs is less well explored, 
but represent a promising approach to understanding smokeless tobacco product drivers of use. The current 
study is a first step towards building understanding in this area. We report a chemosensory analysis approach for 
discriminating STPs by identifying sensory differences and similarities between different smokeless products and 
explain such classifications on the basis of chemical composition. Our approach was to:

 (a) identify difference and similarities between STPs, using free-sorting human sensory panel techniques,
 (b) analyse core chemical constituents that characterise particular smokeless tobacco products, using 

Headspace-GC/MS,
 (c) examine correlations between the human sensory data and analytical measurements using multivariate 

techniques, including principal component analysis (PCA), hierarchical clustering techniques and target 
factor analysis (TFA), to identify key chemical constituents of the STPs.

The studies involved flavoured and unflavoured snus as well as moist snuff products.

Materials and Methods
In this section, we describe choice of STPs, sample preparation methods, the sensory panel methodology, the 
procedure for headspace volatile analysis and chemometric data analysis strategies.

Stps. Table 1 lists the eleven smokeless tobacco products used in this study. One product (an unflavoured 
snus product) was deployed as two samples in the study, leading to twelve STP samples overall, plus a blank vial 
sample. STPs were chosen to provide diversity in terms of manufacturer, process, product type, country of sale, 
and presence/absence of flavour compounds as follows:

•	 Two products were unflavoured and flavoured variants of the same snus product sold in Sweden (samples 6 
and 7 respectively), providing an examination of the importance of added flavour versus the base snus aroma/
chemical profile.

•	 The unflavoured snus product was deployed twice in sensory studies as two separate products to provide a 
no-difference control check of the sensory panel performance.

•	 Swedish snus products from the same (Samples 7–9) and different manufacturer (Sample 10–11) highlighted 
discriminating power for products with similar general attributes

•	 Snus products from the same manufacturer sold within Canada, Norway, and Sweden (Samples 1, 2, 3 and 
7–9) – each manufactured with the same tobacco but with country-specific flavour profiles, provides an 
examination of discriminating power with regards to STPs possessing very different flavour profiles

•	 Moist snuff products (Samples 4 and 5) with differing flavour descriptors, manufactured using very different 
approaches to the snus products in the sample set.

Specifically, sample 1 (du Maurier Original) was a snus product sold in Canada. Samples 2 and 3 (Pall Mall 
Original and Pall Mall White Portion) were snus products available in Norway and samples 7–9 (Lucky Strike 
Original, Granit Loose, Granit Portion) were Swedish snus products. These products were obtained from the 
manufacturer Fiedler & Lundgren, in Sweden (now part of British American Tobacco). Sample 6 (Lucky Strike 
Control) is tobacco material comprising the Lucky Strike product as sold in Sweden in 2008, composed and 

No. Product Name Code Type Marketa Style (Weight, g)b

1 du Maurier Original DMO Snus Canada Pouch (0.40)

2 Pall Mall Original Portion PMOP Snus Norway Pouch (1.00)

3 Pall Mall White Portion PMWP Snus Norway Pouch (0.80)

4 Marlboro Spice MSS Snus USA Pouch (0.23)

5 Skoal Bandits 
Wintergreen SBWP Moist snuff USA Pouch (0.70)

6 Lucky Strike Control LSCnf Snus Sweden Pouch (1.00)

7 Lucky Strike Original LSOP Snus Sweden Pouch (1.00)

8 Granit Loose GraL Snus Sweden Loose (0.50)

9 Granit Portion GraP Snus Sweden Pouch (1.00)

10 General Loose GenL Snus Sweden Loose (0.50)

11 General Portion GenP Snus Sweden Pouch (1.00)

12 Blank vials Blk — — —

Table 1. List of products showing coding (abbreviation), market and style. aMarket data in 2008. bMaximum 
weight of sample used for headspace analysis is indicated in the brackets. Average weight of sample for sensory 
evaluation was 8 g.
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manufactured as Sample 7 but without the addition of flavours. Samples 10 and 11 (General Loose, and General 
Portion) were Swedish snus products purchased from Swedish internet retailers. Samples 4 and 5 (Marlboro 
Spice, Skoal Bandits Wintergreen) were moist snuff products sold in the US in 2008, sourced from retail outlets in 
North Carolina. Abbreviated names in the table were used for graph labels.

Sensory evaluation. Sensory tests (sniffing) were performed using in-house experienced sensory panelists. 
Tests were designed and conducted in accordance with Institute of Food Science & Technology Guidelines for 
Ethical and Professional Practices for the Sensory Analysis of Foods. Experimental designs were approved by 
the BAT in-house “Human Research Committee” review board. Subjects provided informed consent prior to 
commencement of studies.

Two sessions were conducted using a free-sorting approach[53, 54], resulting in two separate sets of scores. 
Sessions 1 and 2 involved 18 and 22 panelists respectively. Fourteen panelists took part in both sessions. There 
were no gender and age distinctions between the panels. The samples were grouped by panelists according to 
similarity in aroma.

Approximately 8 g of sample were placed in 3-digit coded 125 ml jars. Each panelist received all of the products 
stored in the jars at once. Jars were randomly arranged in a horizontal line (from left to right). The sniffing process 
is summarized as follows:

•	 Session 1: the panelists assessed each glass jar in the order from left to right. Panelists opened each jar, sniffed 
the content and replaced the lid. They were then asked to free-sort the jars into mutually exclusive groups 
based on similarities of aroma. The number of groupings for each panelist ranged from 2 to 11.

•	 Session 2: after a rest period of 20 minutes (during which panellists did not eat or drink), the panelists assessed 
the products in the same way as in session 1 to confirm or modify their initial groupings. The groupings after 
this stage were taken as the final results.

The scores were tabulated in a similarity data matrix with ‘0’ representing dissimilar and ‘1’ for similar odours. 
For example, Fig. 1 shows a similarity matrix with a sample population of A, B and C grouped as (A, B) and then 
C, where ‘Nan’ denotes ‘Not a Number’.

Similarities were converted to dissimilarity distance matrices54 by allocating 0 to the Nan diagonals, and 
assigning 1 to two products in different groups, Fig. 1.

The distance matrix for all the panels in each session was summed across all products to yield a final score 
table for each session. An average distance matrix for the sessions was calculated. Cluster and spatial classification 
analysis were performed on averaged sensory data to enable direct comparison between the chemical and the 
human sensory data. Extended text on sensory characterization for consumer profiling has been published55,56. A 
schematic representation of the data collection process is presented in Fig. 2.

Headspace extraction and analysis procedure. Headspace sampling of smokeless tobaccos used a 1 cm 
long (Supelco) SPME fiber coated with 100 µm polydimethylsiloxane (PDMS) phase. Sample weights are listed 
in Table 1. The differences in weights between products reflect average product weights per unit pouch in a 
container. The average weight of loose snus used was 0.5 g. Samples were placed in a 20 mL headspace vial. For 
semi-quantitative comparison of headspace compounds across the different samples, 50 µl of a solution of 37 µg/
ml toluene-d8 internal standard in methanol (Sigma-Aldrich) was added to the samples. Each sample was incu-
bated at 40 °C for 2 min. The SPME fiber was then inserted into the headspace above the sample which was also 
held at 40 °C for 2 min. The fiber was withdrawn and inserted into the split/splitless inlet of the GC instrument. 
The liner used was a 0.75 mm SPME (Supelco). The GC instrument used a 2 min desorption time at 280 °C. The 
fiber was then ‘baked out’ for 60 min at 280 °C to minimize carryover.

Duplicate HS-SPME/GC-MS analyses were performed on the majority of the samples. LSOP and DMO were 
run in triplicate. PMOP and PMWP were run once due to sample availability. Peak areas of the internal standard 

Figure 1. Similarity and dissimilarity matrices.
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were monitored across different analyses as a QC measure. Relative peak intensity was compared by dividing the 
peak area by the toluene-d8 area.

Gc-MS instrumentation and conditions. An Agilent 6890 GC with an Agilent DB-WAX column (60 m 
x 0.25 mm ID x 0.25 μm film thickness, Agilent 5973 mass spectrometer and Gerstel MPS 2 autosampler was 
used for chemical profiling. Sample injection was in splitless mode with Helium carrier gas at a constant flow of 
1 mL/min. The injector temperature was 280 °C. Initial oven temperature was 40 °C, held for 2 min, and ramped 
at 5 °C/min to 260 °C for 4 min. The MS was auto-tuned and operated in scan mode with no solvent delay with a 
280 °C transfer line temperature, the quadruple mass selector temperature was 150 °C and the source temperature 
was 230 °C. The MS operated in EI mode at an ionisation energy potential of 70 eV, in full scan mode over a mass 
range of 29–400 amu.

MS peak identification. Peaks were identified, where possible, using a flavour library from Agilent 
(Flavour2, containing approximately 1000 compounds) and also the Wiley library (version Wiley 7 N, containing 
approximately 500,000 compounds). To provide the best possible spectra for library matching, background sub-
traction was conducted to reduce signal noise, and co-eluting peaks were deconvoluted where necessary. Both of 
these steps were conducted using HP Agilent Chemstation. Library match factors less than 70% were denoted as 
tentative identifications. The identities of many of the flavour compounds used in this study were known to the 
project team. Where peak identification was regarded as tentative, samples of these compounds were analysed 
by matrix addition to establish retention times and confirm spectra in the analytical system. The use of both 
retention times and library matched mass spectra provided a 2-fold confirmation of identities across the whole 
data set. When measuring peak areas background subtraction was not used, and areas were quantified using ion 
extraction.

chemometric data analysis and visualization. For multivariate data analysis, a master GC-MS data 
table was compiled from all headspace chromatographic profiles. Rows of the master table contain the peak area 
ratio (to toluene-d8 internal standard) of all the identified chemical entities from 22 chromatograms. 205 unique 
chemical entities were identified resulting in a final data matrix of 205 compound rows (×) 22 columns of sam-
ples. A value of 0 was assigned when a compound was undetected. In practice, the peak identification from chro-
matograms carried varying degrees of uncertainty, which results from mainly unresolved peaks as well as human 
and software errors. The peak area ratio data table was analysed without any further pre-treatment or scaling.

Overview of Target Factor Analysis (TFA). To determine the core chemical components that characterises each 
sample, the master GC-MS data table was subjected to TFA. Equations 1 to 4 summarises the main TFA process. 
The theory and applications of TFA have been detailed extensively elsewhere44.

= +D RC E (1)

=+R R B (2)t

=+B C C (3)p

Figure 2. Schematic representation of the data collation process.
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=RB R (4)p

D is the compiled 205-row GC-MS dataset (R) and 22 columns (C) of number of samples. E is the experimen-
tal error. R consists of the significant principal components (or factors) in row domain of D, and C consists of 
the significant principal components (or factors) in column domain of D. B is a transformation matrix deduced 
from the product of R+ and Rt, Rt are the target vectors in the row domains of D. R+ and B+ are the generalized 
inverses of R and B respectively (i.e. X+ = [XTX]−1XT and XT is the transpose of X). Several strategies have been 
reported for selecting Rt. Ideally, a known set of pure vector profiles will be used but in practice this is not always 
possible. One approach is the use of partial vector profiles which are iteratively refined to form key set of unique 
factors. The approach is the so called needle search strategy (or partial target) described extensively elsewhere47,57. 
For example the value 1 is set at each of the rows of Rt keeping the rest at 0. These initial targets are refined and 
constraints such as non-negatively imposed. A selection of key vectors based on the refined target combinations 
spanning the significant factor space are then used to estimate Cp and Rp. Cp and Rp are the estimated pure pro-
files in column and row domains of D to yield minimum noise or error. Dnew = RpCp. The aim is to minimize the 
difference (∆) between D and Dnew such that |D-Dnew | =∆min. Here the core chemical components in Rp and 
corresponding sample intensities in Cp enables chemical uniqueness between samples to be deduced. A recent 
review highlighting these approaches and applications has been published45. Matlab® software58 was used for the 
analysis. The core programming codes were described previously44.

Overview of Hierarchical Cluster Analysis (HCA). Euclidean distances based on the 205 by 22 data matrix of the 
chromatographic dataset were calculated across all samples and analyzed in the same way as the sensory data set. 
By convention, the cross product (similarity) matrix for both sensory and headspace data for each sample were 
calculated and used for the PCA59–61.

Dendrogram classification plots were generated based on average linkage and grouping methodology15. Other 
linkage methods explored in this study included complete, single, centroid and Ward. The number of clusters are 
obtained from visualization of the generated dendrogram layout. Extracted significant principal components 
were also used as a guide to deduce the number of clusters.

Application of Principal Component Analysis (PCA). 3-d scatter plots were used to visualize similarities between 
samples. This involved (a) conducting principal component analysis (PCA) (b) selecting the first n significant 
principal components as input for the number of clusters to be modelled (c) plot the identified clusters in x, 
y, z space. Using the PCA major variations in the data are captured in the main principal components (typi-
cally > 70% of the data). Use of principal components as input for classification reduces noise in the original data 
and highlights the core variations that characterizes the samples. In (b) Euclidean distances between each set of 
principal components were calculated and the relative closeness between each sample projected in x, y, z space. 
For each cluster, the distance from the cluster center to the edge was calculated and shaded in gray. The 3D scatter 
plot enables visualization of a collection of a number of principal components describing a sample projected into 
three-dimensional space. The Matlab® “clusterdata” and “scatter3” functions were used in this study58.

Results and Discussion
The results and discussion are provided in three sections below. First, the results relating to the sensory assess-
ment are presented. Subsequently the results of the general chemical classification based on the sensory distance 
matrix and headspace GC-MS data table are described. This is followed by results relating to TFA extraction of 
the core volatile chemical constituents associated with the sensory effects.

Sensory assessment results. Table 2 presents the summed free-sorting distance matrices for the two sen-
sory sessions described in methodology. Both sessions are shown together as (session 1, session 2). The data on 
the whole were consistent between the two sessions, with similar mean, median and mode scoring differences 
between the same product in different sessions of 4 panellists, irrespective of the magnitude of the difference 
between products. This facilitates power size calculations of optimum replicate numbers for future analyses of 
this kind.

Table 3 shows the averaged sensory data from both sessions. In the table a relatively large value indicates 
strong dissimilarity between the samples. For example, an average of 20 panelists considered SBWP and LSOP 
dissimilar, whilst 9.5 identified dissimilarity between GraP and GraL. On average 6.5 panelists regarded the iden-
tical samples LSCnf1 and LSCnf2 as different, which provides an indication of the level of false positives, or ‘noise’ 
within the data. This error is lower than the smallest difference reported between different products (9.5).

The averaged sensory data from both sessions (Table 3) were subjected to hierarchical and spatial cluster 
analysis. Figures 3 and 4 show the hierarchical dendrogram and 3D-scatter-PCA cluster plot respectively for the 
sensory classifications.

The hierarchical dendogram in Figure 3 is constructed from the first two principal components of the aver-
aged data, and identifies sensory differentiation between products in-line with expectations based on known 
characteristics of the STPs. For example, the Swedish snus products Gra L and Gra P are very similar, consist-
ent with their very similar composition; these products are different configurations (pouched and loose) of the 
same product. PMOP and PMWP were scored with a low level of dissimilarity by panelists. This closeness was 
expected as the two samples are already known to be very similar in tobacco and flavour composition, differing 
predominately by moisture levels with PMOP at 50% and PMWP at around 40% respectively. Using a Euclidian 
distance cut-off level of 0.3622 units, the dendrogram analysis grouped the 12 products into three sets, the group 
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of Swedish snus products (Gen L, LSOP, Gen P, GraP and Gra L), the group of non-Swedish snus products (DMO, 
PMOP, PMWP and LSCnf(1,2)) and the two USA moist snuff products (MSS and SBWP).

In Figure 4, a 3D-spatial classification was constructed from PCA and similarity grouping for averaged sensory 
session data based on the first two principal components (Variance > 60%). The 3D-scatter-PCA cluster analy-
ses identified the following groupings: G1 = [LSCnf(1,2)], i.e the two unflavoured snus products; G2 = [PMOP, 
PMWP, DMO], i.e. the three non-Swedish snus products; G3 = [GenP, GraL, GraP, GenL, LSOP], the five Swedish 
snus products; G4 = [MSS, SBWP], i.e the two USA moist products. The inserted circle around G1 and G2 shows 
the possibility of these groups merging, in agreement with groupings by the dendrogram analysis in Figure 3. 
Consequently, the sensory tests combined with data analysis were successful in correctly grouping and distin-
guishing products according to their flavour profile and STP type.

General chemical classification. Table 4 shows the results obtained from the HS-SPME/GC-MS chroma-
togram of a du Maurier Original (DMO) snus sample. It shows a total of 36 identified peaks and one unidentified 
component marked “?”. The average numbers of peaks found in the other samples are 9 peaks for a Blank vial 
analysis, LSCnf had 23 peaks (“LSCnf(23)”), LSOP(61), GraL(56), GraP(66), GenL(54), GenP(63), PMOP(50), 
PMWP(42), SBWP(42), and MSS(71). The chromatograms are therefore complex.

Figure 5 presents the hierarchical dendrogram chemical classification profile based on the first two princi-
pal components, using the headspace chemical data from all twelve samples. Figure 5 shows that duplicate and 
triplicate samples are clustered similarly for all the samples. The groupings of similar samples confirm the repro-
ducibility of the headspace chemical analysis. The two non-replicated samples, PMOP and PMWP showed a very 
close association as expected based on their compositions. The overall groupings in the samples were identifiable 

Samples LSCnf2 LSCnf1 PMWP GraL GenP DMO PMOP LSOP SBWP GraP GenL MSS*
LSCnf2 0, 0 5, 8 14, 13 15, 22 15, 20 16, 16 9, 17 17, 19 17, 22 15, 22 16, 19 18, -

LSCnf1 5, 8 0, 0 16, 15 16,21 16,19 18, 19 12, 17 18, 18 18, 22 16, 22 16, 19 18, -

PMWP 14, 13 16, 15 0, 0 16, 20 14, 16 13, 13 12, 14 11, 17 18, 22 16,20 14,21 18, -

GraL 15, 22 16, 21 16, 20 0, 0 13, 18 17, 21 16, 20 14, 18 17, 20 10, 9 13,19 18, -

GenP 15, 20 16, 19 14, 16 13, 18 0, 0 15, 19 17, 18 9, 14 18, 22 15,16 10,19 17, -

DMO 16, 16 18, 19 13, 13 17, 21 15, 19 0, 0 14, 20 16, 19 18, 22 17,22 17,21 18, -

PMOP 9, 17 12, 17 12, 14 16, 20 17, 18 14, 20 0, 0 14, 15 18, 22 17,21 14,17 18, -

LSOP 17, 19 18, 18 11, 17 14, 18 9, 14 16, 19 14, 15 0, 0 18, 22 16,17 9, 17 18, -

SBWP 17, 22 18, 22 18, 22 17, 20 18, 22 18, 22 18, 22 18,22 0, 0 18,20 18,20 16, -

GraP 15, 22 16, 22 16, 20 10, 9 15, 16 17, 22 17, 21 16, 17 18, 20 0, 0 16,20 18, -

GenL 16, 19 16, 19 14, 21 13, 19 10, 19 17, 21 14, 17 9, 17 18, 20 16,20 0, 0 17, -

MSS* 18, - 18, - 18, - 18, - 17, - 18, - 18, - 18, - 16, - 18, - 17, - 0, -

Table 2. Free-sorting distance matrix data. (Session 1, Session 2). Note: Layout shows sessions (1, 2.) e.g. 
LSCnf1 and LSCnf2 (5, 8) implies 5 for session 1 and 8 for session 2. MSS* (-) implies no sensory data for 
session 2. Product Codes: Du Maurier Original (DMO), General Loose (GenL), General Portion (GenP), Granit 
Loose (GraL), Granit Portion (GraP), Lucky Strike Original (LSOP), Lucky Strike Control (LSCnt), Marlboro 
Spice (MSS), Pall Mall Original Portion (PMOP), Pall Mall White Portion (PMWP), Skoal Bandits Wintergreen 
(SBWP).

Average 
S1,S2 LSCnf2 LSCnf1 PMWP GraL GenP DMO PMOP LSOP SBWP GraP GenL MSS

LSCnf2 0 6.5 13.5 18.5 17.5 16 13 18 19.5 18.5 17.5 18

LSCnf1 6.5 0 15.5 18.5 17.5 18.5 14.5 18 20 19 17.5 18

PMWP 13.5 15.5 0 18 15 13 13 14 20 18 17.5 18

GraL 18.5 18.5 18 0 15.5 19 18 16 18.5 9.5 16 18

GenP 17.5 17.5 15 15.5 0 17 17.5 11.5 20 15.5 14.5 17

DMO 16 18.5 13 19 17 0 17 17.5 20 19.5 19 18

PMOP 13 14.5 13 18 17.5 17 0 14.5 20 19 15.5 18

LSOP 18 18 14 16 11.5 17.5 14.5 0 20 16.5 13 18

SBWP 19.5 20 20 18.5 20 20 20 20 0 19 19 16

GraP 18.5 19 18 9.5 15.5 19.5 19 16.5 19 0 18 18

GenL 17.5 17.5 17.5 16 14.5 19 15.5 13 19 18 0 17

MSS 18 18 18 18 17 18 18 18 16 18 17 0

Table 3. Averaged free-sorting distance matrix from sensory panels in Sessions 1, 2. Product Codes: Du 
Maurier Original (DMO), General Loose (GenL), General Portion (GenP), Granit Loose (GraL), Granit Portion 
(GraP), Lucky Strike Original (LSOP), Lucky Strike Control (LSCnt), Marlboro Spice (MSS), Pall Mall Original 
Portion (PMOP), Pall Mall White Portion (PMWP), Skoal Bandits Wintergreen (SBWP).

https://doi.org/10.1038/s41598-020-64491-6


8Scientific RepoRtS |         (2020) 10:7773  | https://doi.org/10.1038/s41598-020-64491-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

by examining the clusters at similarity levels at 0.22 and 0.12 on the x-axis in Figure 5 indicated by arrows. At 
about 0.22 similarity level, three clusters were clearly identifiable and at 0.12 four clusters were found.

The USA moist snuff sample SBWP, was found to be very different from the rest of the samples even in a 
two-cluster configuration. The difference between SBWP and the rest of the samples reflects the unique chemical 
profile of this product, as described below. With the three-cluster configuration (cut-off 0.22 units) the prod-
ucts were grouped as G1 = SBWP, G2 = the Swedish snus products (GraP, GraL, GenP, LSOP, GenL), G3 = the 
non-Swedish snus, unflavoured snus, blank sample and the USA MS product (MSS, PMOP, PMWP, LSCnf, DMO 
and Blk). A four-cluster configuration (cutoff 0.12 units) broke the Swedish snus products G2 of the three-cluster 
analysis into (GraP, GraL, GenP) and (LSOP, Gen L). Only by moving to a lower Euclidean distance could a 5th 
group be identified, in which the moist snuff product MSS was distinguished from the non-Swedish snus prod-
ucts, unflavoured snus, and blank.

Figure 6 shows a 3D spatial classification of the same headspace data used to generate Figure 5. The plot was 
based on the first two principal components (>80% variance) as input for the cluster analysis with a 4-cluster 
configuration based on groupings identified in Figure 5. The total numbers of samples (n) in each group (G) 
for the plot are shown in the figure legend. The groupings in Figure 6 are G1 = one set of Swedish snus samples: 
GenL(1,2), LSOP(1,2,3). G2 = a second set of Swedish snus samples: GenP(1,2), GraL(1,2), GraP(1,2). G3 = all 
other STPs except SBWP: i.e. PMOP, PMWP, MSS(1,2), LSCnf(1,2), DMO(1,2,3), Blk(1,2) and G4 = SBWP(1,2). 
The shaded area shows the approximate scope of each cluster from the center to the furthest sample in the 
cluster. The inserted ellipse shows the possibility of merging G1 and G2 (all of the Swedish snus samples) after 
visualisation.

Examination of the two graphs in Figures 5 and 6 shows that the visualization methods (i.e. Hierarchical 
Dendrogram and 3D-scatter-PCA plots) produced similar groupings for either 3 or 4 cluster models. The iden-
tified clusters are summarized in Table 5. The grouping of known replicated headspace analysis in each cluster 
confirms the consistency in the GC-MS data set. The results also show the flexibility of adopting one or both data 
treatment and visualization techniques for classification of this type of data. The results in Figures 5 and 6 shows 
at least 3 consistent clusters distinguished in Table 5 (note the use of bold, normal and italics fonts to distin-
guish groups) ‘bold’ (DMO, MSS, PMOP, PMWP, LSCnf), ‘normal’ (LSOP, GenL GraP, GraL,GenP) and ‘italic’ 
(SBWP), fonts. Note that MSS was bold as well as italic in some cases and reflects some uncertainty in placing it 
in either the bold or italic group.

It can be observed that in both representations the two SBWP samples showed distinct attributes in compari-
son to the rest of the samples. They were correctly grouped together by the headspace analysis in the two graphical 
representations. The US Marlboro Spice (MSS) Snus Pouch was found to exhibit a distinct sub-cluster within the 
‘bold’ group of samples. It was noted that apart from the MSS sample, all the samples in bold are non-Swedish 
snus products from Canada, USA, and Norway. It was noted that the normal font group is the commercial snus 

Figure 3. Hierarchical dendrogram plot from first two principal components for the averaged sensory data 
for sessions 1 and 2. Arrow shows similarity cutoff level at 0.36 units for three clusters. [MSS*, SBWP], [DMO, 
PMOP, PMWP, LSCnf(1,2)] and [GenL, LSOP, GenP, GraP, GraL]. Product Codes: Du Maurier Original 
(DMO), General Loose (GenL), General Portion (GenP), Granit Loose (GraL), Granit Portion (GraP), Lucky 
Strike Original (LSOP), Lucky Strike Control (LSCnt), Marlboro Spice (MSS), Pall Mall Original Portion 
(PMOP), Pall Mall White Portion (PMWP), Skoal Bandits Wintergreen (SBWP).
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products from Sweden. It was further noted that the flavoured Lucky Strike Original and unflavoured Lucky 
Strike Control from Sweden were clustered in different groups and this reflects the strong determinants of fla-
vours in the grouping.

The results show that a clear grouping based on headspace data has been achieved. Distinctions between 
product groups was slightly less of a precise match to the general product styles than found with the sensory 
analysis, particularly in respect of the headspace grouping of the moist snuff product MSS with the non-Swedish 
snus products. This may reflect the influence of non-sensorially relevant headspace compounds in the chemical 
analysis that differed between samples without offering distinctive contributions to the headspace aroma.

Specific chemical profiling. Although it was very useful to group the samples based on the headspace vol-
atiles, there is no specific chemical information in the results presented so far. An insight into the core chemical 
constituents should provide a further understanding of the sample characteristics. It is however a challenging task 
to visually examine all 22 chromatograms and accurately determine the constituents that characterizes unique-
ness of a sample. The core chemical entities are to be selected from 205 rows of chromatographic data points. The 
multivariate Target Factor Analysis (TFA) approach described earlier was used to analyse the data. Figures 7–9 
show results for the multivariate TFA output. The bar graphs on the left of each figure (representing transformed 
PCA loadings) show the samples identified and their associated components are shown on the right of each figure 
(representing transformed PCA scores). The y-axis of the graphs on the right shows the index number for the 205 
compounds found in the headspace mass spectral profiles across all the samples analyzed. The intensities of the 
score for the chemical components were normalized to between 0–100. Where the relative concentration is below 
a set minimum percentage, the composition score was set to 0 to enable clarity of visualisation. Components 
identified above the set minimum threshold are labelled with the sample names in the bar graph on the right. 
Six principal components were used to model the TFA model. The profiles for three of the six TFA groupings are 
presented in Figures 7–9.

In Figure 7, the two Marlboro Spice (MSS) replicate analyses in the left-hand graph show that these two 
chemical profiles are indeed similar and distinct from the rest of the samples. No other product registered a 
presence at greater than 25% relative loadings threshold limit in the left-hand bar graph. This result shows that 
the rest of the samples do not share this unique chemical profile shown in the right-hand bar graph. Some of 
the components identified that could influence the perceived headspace aroma of MSS include alpha and beta 
pinene, propylene glycol, nicotine, methanol, eugenol, cymene, limonene and terpinolene. These components are 
marked C1a,b, C2, C3, C4, C5, C6 and C8 respectively in the right-hand graph. The common aroma character-
istics of the key compounds are provided in the Supplemental Information. Of these compounds alpha and beta 
pinene, eugenol, cymene and limonene are recognized commonly used flavor compounds, and they contribute 
pine-like, wood-green, spicy clove and citrus notes to the headspace. In contrast, propylene glycol, nicotine and 
methanol offer less obvious contributions to the overall headspace aroma. This reflects a general weakness of 
chemical analysis approaches in relation to sensory analyses, wherein GC-MS analyses compounds of low sensory 
contribution are registered with equal weighting as those with high sensory impact. Several other trace chemical 
entities are also visible in Figure 7, and they clearly highlight the complex nature of the headspace components 
for this product.

Figure 4. 3D spatial classification from PCA and similarity grouping for averaged sensory sessions based 
on first two principal components (variance > 60%). The legend key shows four groups (G) and the number 
of products in each cluster. (G1 = LSCnf(1,2), G2 = PMOP, PMWP, DMO, G3 = GenP, GraL, GraP, GenL, 
LSOP. G4 = MSS, SBWP). Inserted circle shows the possibility of groups merging. Product Codes: Du Maurier 
Original (DMO), General Loose (GenL), General Portion (GenP), Granit Loose (GraL), Granit Portion (GraP), 
Lucky Strike Original (LSOP), Lucky Strike Control (LSCnt), Marlboro Spice (MSS), Pall Mall Original Portion 
(PMOP), Pall Mall White Portion (PMWP), Skoal Bandits Wintergreen (SBWP).

https://doi.org/10.1038/s41598-020-64491-6


1 0Scientific RepoRtS |         (2020) 10:7773  | https://doi.org/10.1038/s41598-020-64491-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 8 shows a group of samples consisting of the Swedish commercial snus products LSOP, GraL, GraP, 
GenP and GenL that share common headspace characteristics. The heights of the bars in the left-hand bar 
graphs indicate the degree of significance for each sample relative to the identified chemical components in the 
right-hand bar plot. The highest response samples in the group were identified as GenP1 and GenP2 followed by 
GraP1 and GraP2. They all share the volatile profiles in the right-hand graph with varying intensities. Some of the 
constituents contributing to this group include limonene (the highest contribution, C3), methyl salicylate (C2) 
and terpinolene (C1). Aroma characteristics of these compounds are provided in the Supplemental Information. 
The three compounds provide herbal, wintergreen and citrus elements to the headspace. Again, several other 
components are identifiable but only in trace levels and they include linalool acetate and geranyl acetate. Figure 9 
shows the moist snuff SBWP profile. This product is dominated by methyl salicylate (C1) and menthol (C2); the 
aroma characteristics of which are summarised in the Supplemental Information. The predominant aroma char-
acter is a wintergreen peppermint character. Traces of methanol, beta-pinene and trimethylpentane were also 
found to be minor contributors. The chemical composition complexity shown in Figure 7 clearly contrasts that 
shown in Figures 8 and 9 and highlights the effectiveness of using multivariate chemometric approach to analyze 
and determine the components that may be influencing the observed groupings.

Relating sensory analysis to chemical profiles. Human olfactory responses may not necessarily cor-
relate directly with the presence and quantity of chemical species in a sample as this is a complex phenomenon. 
Detailed study of olfactory responses to aroma may be found in the literature41. Aroma intensity is related to 
molecular structure, physicochemical properties and combinations of chemical mixtures. The relative intensities 

Peak R.T.(min) Compound Area Ratio to IS

1 3.16 Methanol 28322038 4.595

2 5.47 Toluene-d8 6164192 1.000

3 9.37 Limonene 564223 0.092

4 11.37 Cymene 28645 0.005

5 13.23 Methylheptenone 85526 0.014

6 14.43 Ethylhexylacetate 28358 0.005

7 16.41 Menthone + Acetic acid 112255 0.018

8 17.14 Ethylhexanol 104342 0.017

9 18.05 Benzaldehyde 581547 0.094

10 18.59 Linalool 52191 0.008

11 18.82 Linalylbutyrate 44665 0.007

12 19.14 Octadienone 25391 0.004

13 19.25 Acetoxypropanol 333179 0.054

14 19.68 Propylene glycol 1113860 0.181

15 20.28 Propanediol acetate 172959 0.028

16 22.28 Methylbenzyl acetate 102625 0.017

17 22.90 benzylacetate + β-Pinene? 281694 0.046

18 24.98 Acetylpyridine 46544 0.008

19 25.03 Anethole 33341 0.005

20 25.39 Benzaldehyde propylene glycol acetal 123223 0.020

21 25.49 Hexanoic acid 51022 0.008

22 25.66 Nicotine 16411055 2.662

23 26.09 Benzyl alcohol 10528049 1.708

24 26.79 Phenethyl alcohol 44658 0.007

25 26.96 Neophytadiene 563955 0.091

26 27.85 Cyclododecane 46868 0.008

27 31.74 ? 28240 0.005

28 32.18 Myosmine 20582 0.003

29 32.32 Megastigmatrienone 44521 0.007

30 32.96 Piperonal 149511 0.024

31 33.43 γ-Decalactone 24609 0.004

32 34.10 Megastigmatrienone 26596 0.004

33 34.56 Nicotyrine 510219 0.083

34 34.87 Dihydroactinidiolide 38031 0.006

35 37.04 Dipyridyl 43698 0.007

36 37.67 Heliotropine propylene glycol acetal 164813 0.027

37 38.20 Isobutylphthalate 81474 0.013

Table 4. Peaks identified in the headspace of du Maurier Original (DMO) snus sample.
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of components identified in this study and linked to each sample will therefore need further investigation. From 
sensory perspectives, compounds with strong aroma may be present in lower relative concentrations and may be 
missed in the headspace data analysis. Therefore, the headspace chemical classifications presented so far do not 
automatically suggest that the identified chemical compounds are the only entities that may be influencing the 
human sensory perception. In addition, as described above, some compounds differentiating the detailed head-
space chemical profiles of these samples are of low sensory impact, and these can bear strongly upon groupings 
and differentiation between products. It is therefore important to examine the general headspace profiles and 
to deduce correlation with data from the panel of sensory judges. This type of correlation should provide some 
initial insight relating to chemistry and aroma of the products studied.

To enable direct comparison between headspace and sensory data, the averaged sensory data from both ses-
sions (Table 3) and the HS-SPME/GC-MS data were subjected to the same hierarchical and spatial cluster analy-
sis. Visual examination of the results shows that generally, headspace cluster plots have tighter groupings than the 
sensory clusters. This is an indication of confidence or level of uncertainty in the sensory data. To enable direct 
comparison between the HS-SPME/GC-MS and the sensory results, Table 5 provides a direct comparison of both 
dendrograms and 3D-scatter-PCA plot analyses.

The dendogram comparison in Table 5 shows clusters at 0.22 and 0.12 for the headspace and 0.36 and 0.36* 
similarity levels (x-axis) for the sensory results respectively. These similarity levels generated 3 and 4 clusters. 
In the tables, ‘X*’ indicates visual relocation of clusters for the similarity level at ‘X’ and the relocated sample(s) 
are in square bracket ‘[]’. Note that | |X | | indicates that X could be relocated after visual examination. The tables 
were evaluated by comparing similar cluster groups. For example, in the dendrogram analysis, the groups in the 
column heading “Similarity Level = 0.2263”, (Dendrogram Cluster 3, Figure 5) for headspace SPME-GC-MS 
results were compared with column heading “Similarity Level = 0.36” (Dendrogram Cluster 3, Figure 3) for 
sensory results. Table 5 shows the comparison between the “HS-3D-scatter, 3 Clusters” and “Sensory-3D-scatter, 
3 Clusters” for headspace and sensory respectively.

The tabulated results show at least three distinct groups. The different groups are assigned different fonts; 
“bold”, “normal” and “italics”. They consist of (DMO, MSS, PMOP, PMWP, LSCnf), (LSOP, GenL GraP, 
GraL,GenP) and (SWPB). The same three main groups were observed for both sensory and headspace results in 
the dendrogram and 3D-scatter-PCA plots. These consistent results are important and suggest that the analytical 
approach in this study has the capability to discriminate accurately between the sample based on headspace vol-
atiles or sensory classifications. The results also show that headspace volatiles could be correlated with sensory 
data depending on the types of samples. Within the three main groups identified, sub-clusters were noted in the 
sensory as well as the headspace data. For example, in Table 5, the 3-cluster configuration isolated SBWP from 
the rest of the samples in the headspace analysis but in the sensory analysis SBWP was linked to MSS. In the 
4-cluster configuration the ‘normal’ font group was split into [LSOP, GenL] and [GraP, GraL GenP] but there was 

Figure 5. Hierarchical HS-SPME/GC-MS chemical classification profile based on first two principal 
components. The numbers behind the sample names indicate number of duplicate runs for each sample. Arrows 
show similarity cutoff levels around 0.12 and 0.22 units for 4 and 3 cluster analysis respectively. Product Codes: 
Du Maurier Original (DMO), General Loose (GenL), General Portion (GenP), Granit Loose (GraL), Granit 
Portion (GraP), Lucky Strike Original (LSOP), Lucky Strike Control (LSCnt), Marlboro Spice (MSS), Pall Mall 
Original Portion (PMOP), Pall Mall White Portion (PMWP), Skoal Bandits Wintergreen (SBWP).
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Figure 6. 3D spatial classification from first two principal component analysis (>80% variance) and similarity 
grouping for HS-SPME-GC-MS. G1-G4 are the number of sample (n) in each group. The shaded zone 
highlights each cluster and scope. (G1 = GenL(1,2), LSOP(1,2,3). G2 = GenP(1,2), GraL(1,2), GraP(1,2). 
G3 = PMOP, PMWP, LSCnf(1,2), DMO(1,2,3), Blk(1,2), G4 = SBWP(1,2). Inserted circle shows the possibility 
of groups G1 and G2 merging. Product Codes: Du Maurier Original (DMO), General Loose (GenL), General 
Portion (GenP), Granit Loose (GraL), Granit Portion (GraP), Lucky Strike Original (LSOP), Lucky Strike 
Control (LSCnt), Marlboro Spice (MSS), Pall Mall Original Portion (PMOP), Pall Mall White Portion (PMWP), 
Skoal Bandits Wintergreen (SBWP).

Headspace SPME-GC-MS dendogram groupings based on Figure 5.

Similarity Level=0.2263 (3 Clusters) Similarity Level=0.1215 (4 Clusters)

LSOP, GenL, GraP, GraL, GenP [LSOP], [GenL]

[GraP], [GraL], [GenP]

SBWP SBWP

DMO, MSS, PMOP, PMWP, LSCnf DMO, MSS, PMOP, PMWP, LSCnf

Sensory Dendrogram groupings based on Fig. 3.

Similarity Level=0.36 (3 Clusters) Similarity Level=0.36* (4 Clusters)

LSOP, GenL, GraP, GraL, GenP LSOP, GenL, GraP, GraL, GenP

[MSS]

MSS, SBWP [SBWP]

DMO, PMOP, PMWP, LSCnf DMO, PMOP, PMWP, LSCnf

Headspace SPME-GC-MS 3D-scatter-PCA grouping based on Fig. 6.

3 Clusters 4 Clusters

LSOP, GenL GraP, GraL, GenP [LSOP], [GenL]

[GraP], [GraL], [GenP]

SBWP SBWP

DMO, MSS, PMOP,PMWP, LSCnf DMO, MSS, PMOP, PMWP, LSCnf,

Sensory 3D-scatter-PCA grouping based on Fig. 4.

3 Clusters 4 Clusters

LSOP, GenL, GraP, GraL, GenP LSOP, GenL, GraP, GraL, GenP

MSS, SBWP MSS, SBWP

[LSCnf]

DMO, PMOP, PMWP, LSCnf ||DMO | | , [PMOP], [PMWP],

Table 5. Comparison of product groupings identified from sensory and headspace SPME-GC-MS dendogram 
and 3D-scatter-PCA analysis approaches. Note: X* indicates visual regrouping at the same similarity level. [X] 
indicates samples separated from original clusters in the smaller cluster analysis; ||X | | indicates possibility of 
relocating X from the current cluster. Identified clusters are distinguished by ‘bold’, ‘normal’ and ‘italic’ fonts. 
Product Codes: Du Maurier Original (DMO), General Loose (GenL), General Portion (GenP), Granit Loose 
(GraL), Granit Portion (GraP), Lucky Strike Original (LSOP), Lucky Strike Control (LSCnt), Marlboro Spice 
(MSS), Pall Mall Original Portion (PMOP), Pall Mall White Portion (PMWP), Skoal Bandits Wintergreen 
(SBWP).
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no splitting in the sensory analysis. The sub-clusters in the headspace showed discriminatory ability in this data. 
In the 4-cluster configuration however, for the dendrogram, sensory analysis discriminated between MSS and 
SBWP but not in headspace analysis.

Summary of Results and Discussion
The observed analytical agreement between the two classification configurations (i.e. 3 and 4 clusters) in the den-
drogram and the 3D-scatter-PCA plots show that the two techniques complement each other. It is not possible 
by these results alone to suggest that the dendrogram visualization approach is better than the 3D-scatter-PCA 
plots in this study. It is however worth noting that the 3D-scatter-PCA plots have the option for the analyst to 
interact with the results by rotating clusters to see various perspectives of groups and this could be advantageous. 
The chemometric TFA approach enabled the determination of core chemical components associated with each 
sample. The identified components could be major contributors to the observed classifications by human panelist. 
For example, in Figure 8, the dominating chemical entities that linked the group of products together in the ‘nor-
mal’ font group are easily identified (Supplementary Figure S1). There appears to be a small contribution in the 
analysis of chemical headspace profiles from non-sensorily relevant compounds, and the impact of these species 
on the relationship with sensorial profiling is a topic that merits future exploration.

consistency of the method. During the study some assessment was made of the method repeatability. 
Short-term consistency assessment is of value in identifying the potential for errors in links between chemical 
and sensory testing. Reproducibility is viewed as being of lesser relevance for this technique, as the two primary 
applications of the approach (identification of sensorily relevant flavour compounds, and replacement of sen-
sory panels with inherently less resource-intensive analytical techniques) are not repeated measures approaches 
requiring repetitive testing in multiple locations. Two main aspects of repeatability were considered, analytical 
and sensory, while product consistency was also briefly considered.

 (a) Analytical repeatability:
During the analytical method validation a repeatability exercise was conducted to establish the level of 
consistency between replicate analyses (as measured by the relative standard deviation). The same op-
erator, product mix and testing equipment was used for this exercise. A Swedish snus product test-piece 
was prepared by loading an unflavoured snus tobacco base with a model mixture of 10 product-relevant 
flavours. Samples were run through the analytical method ten times, and peak areas compared. The data 
is shown in Supplementary Table S1. The coefficients of variation (C of V) for all of the flavours, and the 

Figure 7. Multivariate target factor analysis output for HS-SPME/GC-MS data showing one of the factors based 
on six principal component model. The bar graphs on the left show the samples (MSS) identified and associated 
core components on the right. Some of the main chemical entities are highlighted; C1 = pinene, C2 = propylene 
glycol, C3 = nicotine, C4 methanol, C5 = eugenol and C6 = cymene.
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internal standard, were below 10%. The C of V for nicotine (arising from the tobacco blend) was slightly 
higher at 11.6%. This latter value may provide some indication of the variability of the tobacco blend in the 
snus test-piece. However, the low levels of variability in the data were viewed as offering acceptable levels of 
performance for the application.

 (b) Repeatability of the sensory panel.
During the sensory assessment exercise panel members assessed the products twice, in separate sessions 
separated by a short time interval. To gain insights into repeatability of the free-scoring technique we 
compared the magnitude of the scores from both sessions (Table 2) for each product comparison. The 
analysis showed (Supplementary Figure S2) that the scores from the two sessions were strongly correlated 
(p < 0.001). There were, however, suggestions of a bias towards higher scores in the second session. The 
levels of variance between the two sessions were greater than seen in the analytical technique, confirming 
that sensory assessments are intrinsically more open to variation than controlled instrumental methods.

 (c) Product Variability:
The impact of product variability on links between analytical and sensory approaches was not assessed 
in this study, as it was not relevant to the intended applications. However, it should be noted that modern 
smokeless tobacco product manufacturing methods are designed to provide consistent products over time, 
particularly with respect to flavour character. The combination of quality measures in the flavour supply 
chain, use of synthetic flavours, modern dosing equipment, QC testing and statistical process control have 
reduced product and batch-to-batch variability significantly in recent years.

conclusions
The results obtained have shown that complex data from headspace GC-MS and sensory evaluations of smokeless 
tobaccos can be combined and analyzed using chemometrics to derive insights into the flavour characteristics 
of STPs. Little is currently understood about the chemical profiles of smokeless products headspace aromas. 
However, the results obtained in this work demonstrate that paired free-sorting sensory evaluation approaches 
combined with analytical techniques such as HS-SPME/GC-MS and chemometric techniques can be applied in a 
coherent manner to conduct detailed investigations of smokeless tobacco products. The results obtained provide 
valuable information with respect to chemistry and sensory differences. In particular, similarities and differences 
observed in the product classifications have provided a means of identifying sensorily relevant chemical species 

Figure 8. Multivariate target factor analysis output for HS-SPME/GC-MS data showing one of the factors based 
on six principal component model. The bar graphs on the left showing a combination of samples identified 
(LSOP, GraL, GraP, GenP and GenL) and associated core components on the right. Some of the main chemical 
entities are highlighted; C1 = terpinolene, C2 = methyl salicylate, C3 = limonene. Product Codes: Du Maurier 
Original (DMO), General Loose (GenL), General Portion (GenP), Granit Loose (GraL), Granit Portion (GraP), 
Lucky Strike Original (LSOP), Lucky Strike Control (LSCnt), Marlboro Spice (MSS), Pall Mall Original Portion 
(PMOP), Pall Mall White Portion (PMWP), Skoal Bandits Wintergreen (SBWP).
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in these tobacco products. This information is of great interest to scientists seeking to understand the appeal and 
attractiveness of smokeless tobacco products.

The results also show that HS-SPME/GC-MS may be used as a screening protocol where fast chemical and 
sensory classification is required, such as in product development exercises, product shelf-life studies and, flavour 
substitution exercises. This approach can help to minimize or avoid unnecessary human involvement particularly 
at early screening stages of product surveys. Depending upon the scale of the product differences under investiga-
tion further work may be required to establish necessary levels of resolving power between similar product types.

The results further demonstrate the value of multivariate chemometric data processing for data of this kind. 
Without the use of multivariate chemometric techniques such as TFA, the identification of core chemical com-
ponents from the complex chromatograms generated from the headspace analysis would be very cumbersome 
and challenging. For example, the core chemical constituents identified out of 42 peaks that correlated with the 
sensory classification for Marlboro Spice (MSS) are alpha and beta-pinene, propylene glycol, nicotine, methanol, 
eugenol and cymene. For Skoal Bandits Wintergreen (SBWP) the identified core components out of 71 are methyl 
salicylate, and menthol, trimethylpentane and beta-pinene. The analytical process presented in this report is 
generic and can be applied to other areas requiring similar insights.
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