
Rao DW et al. Journal of the International AIDS Society 2022, 25:e26021
http://onlinelibrary.wiley.com/doi/10.1002/jia2.26021/full | https://doi.org/10.1002/jia2.26021

RESEARCH ARTICLE

Modelling cervical cancer elimination using single-visit screening
and treatment strategies in the context of high HIV prevalence:
estimates for KwaZulu-Natal, South Africa
Darcy White Rao1,§ , Cara J. Bayer2, Gui Liu3 , Admire Chikandiwa4, Monisha Sharma3 ,
Christine L. Hathaway5, Nicholas Tan6, Nelly Mugo3,7 and Ruanne V. Barnabas5,8

§Corresponding author: Darcy White Rao, Bill & Melinda Gates Foundation, Seattle, Washington 98109, USA.
(darcy.rao@gatesfoundation.org)

Abstract
Introduction: In settings with high HIV prevalence, cervical cancer incidence rates are up to six-fold higher than the global
average of 13.1 cases per 100,000 women-years. To inform strategies for global cervical cancer elimination, we used a
dynamic transmission model to evaluate scalable screening and treatment strategies, accounting for HIV-associated cancer
risks and weighing prevention gains against overtreatment.
Methods: We developed a dynamic model of HIV-HPV co-infection and disease progression, which we calibrated to KwaZulu-
Natal, South Africa. Our baseline scenario reflects the current practice of HPV vaccination with a multi-visit screening and
treatment strategy involving cytology and colposcopy triage. We evaluated 13 comparator scenarios with increased vaccina-
tion coverage and one-time, two-time or repeat HIV-targeted cervical cancer screening with the following single-visit strate-
gies: HPV DNA testing, HPV genotyping, automated visual evaluation (AVE) and HPV DNA with AVE triage. In all scenarios,
HIV antiretroviral therapy, condom use and voluntary male medical circumcision continue at baseline levels. We simulated can-
cer incidence under each scenario from 2020 to 2120 using the 25 best-fitting parameter sets. We present the median and
range of model output from these simulations to account for parameter uncertainty.
Results: We estimate that cervical cancer incidence will decrease by 87% with the continuation of current cervical cancer and
HIV prevention strategies, from an age-standardized rate per 100,000 women of 80.4 (range 58.2, 112.1) in 2020 to 10.7
(4.2, 29.9) in 2120. Scenarios scaling up vaccination and single-visit strategies resulted in near- and long-term gains. With
repeat HIV-targeted screening, incidence rates were projected to be 29–34% lower in 2030 relative to the baseline scenario,
and elimination (incidence <4/100,000) was achieved with HPV DNA testing in 2095 and with AVE in 2114. A strategy of
HPV DNA with AVE triage optimized the tradeoff between cancer cases averted and overtreatment.
Conclusions: Single-visit screening strategies could avert a substantial burden of cervical cancer and accelerate progress
towards elimination in settings with a high burden of HIV. Increasing the screening frequency among women with HIV and
reducing loss-to-follow-up for treatment will be key components of a successful elimination strategy.
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1 INTRODUCT ION

Cervical cancer caused over 300,000 preventable deaths
in 2018, nearly 90% of which occurred in low-and-middle-
income countries (LMICs) [1]. In high-income countries, effec-
tive screening programmes have led to substantial declines
in cancer incidence [2]. Vaccination against high-risk HPV,
the etiologic agent causing cervical cancer, has the poten-

tial to further decrease cancer incidence [3]. With evidence
of the effectiveness of HPV vaccination and screening, the
World Health Organization (WHO) Director-General called
for the global elimination of cervical cancer in 2018 [4]. How-
ever, delivery and uptake of prevention strategies remains
low in many LMICs, due to barriers to healthcare access,
insufficient resources [4, 5], and, recently, the COVID-19
pandemic. Achieving global elimination targets will require
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a scale-up of context-appropriate prevention strategies in
LMICs.

In sub-Saharan Africa, the region with the highest cervical
cancer incidence rates [1], high HIV prevalence contributes to
the burden of cervical cancer. Women with HIV are at ele-
vated risk of HPV acquisition and progression, and they are
more likely to experience treatment failure and recurrence [6],
resulting in cancer incidence six-fold higher than women with-
out HIV [7]. Antiretroviral therapy (ART) mitigates some of
these elevated risks, particularly when started early [8], but
cancer incidence remains high for women on ART [9]. Analy-
ses accounting for HIV-HPV synergies are essential to iden-
tify optimal strategies for cervical cancer elimination in set-
tings with high HIV prevalence.

In this analysis, we project cervical cancer incidence over
the coming century under a range of scenarios using a
dynamic model fitted to KwaZulu-Natal, South Africa, where
HIV prevalence among reproductive-aged women in 2016 was
37% [10]. The standard of care in South Africa is a multi-visit
strategy with cytology and colposcopy triage [11]. However,
the proportion of women successfully treated has been low,
reflecting a high loss-to-follow-up between visits and short-
ages of equipment and trained personnel [12]. We compare
incidence with this status quo strategy to a scenario with
HPV DNA screening, which is recommended as an alterna-
tive to cytology [4, 13]. To account for the potential harms of
overtreatment [14], we also examine the impact of HPV geno-
typing, and we model the use of automated visual evaluation
(AVE) for both primary screening and triage following a posi-
tive HPV diagnosis. AVE is a strategy that uses machine learn-
ing to detect lesions from digital cervical images, and early
data show great promise for performance and scalability [15].
Our results can inform policy decisions to accelerate cervical
cancer elimination in LMICs with high HIV prevalence.

2 METHODS

The Data-driven Recommendations for Interventions against
Viral InfEction (DRIVE) model is a compartmental model of
HIV and HPV co-infection and natural history, adapted from
a previously published model [16]. It simulates an open pop-
ulation of men and women aged 0–79 years, stratified by
sex, 5-year age group, sexual risk group, and HIV- and HPV-
associated health states. HIV health states are stratified by
CD4 cell count and viral load. Oncogenic HPV natural his-
tory is modelled for two independent genotype groups: types
16/18/31/33/54/52/58 (types covered by the nonavalent [9v]
HPV vaccine) and other oncogenic types. The model accounts
for increased risks of HPV acquisition, precancer and cancer
associated with HIV infection [7, 17], which depend on CD4
cell count and ART status. Further details of the model are
provided in the Supplementary Appendix.

HPV and HIV transmission is modelled through sexual con-
tact in heterosexual partnerships. Rates of partnership forma-
tion depend on sex, age and sexual risk group, with assorta-
tive mixing by age and risk group. The model includes cofac-
tors that modify HIV transmission: ART, voluntary male medi-
cal circumcision (VMMC) and condoms. We model the use of
ART only for individuals with full HIV viral suppression. Con-

dom use also reduces HPV transmission, and the risk of HPV
acquisition increases with declining CD4 count among individ-
uals with untreated HIV.

2.1 Model parameterization and calibration

We reviewed the literature to obtain context-specific esti-
mates for model inputs related to demographic dynamics, sex-
ual behaviour, use of HIV and cancer prevention interven-
tions, and transitions between health states. After identifying
parameters for which empirical evidence is limited or uncer-
tain, we used a multi-phased approach to calibrate our model
to historical outcomes. In a preliminary step, we used hand-
calibration to assess the sensitivity of the model to specific
inputs and refine prior ranges. We then used an Approx-
imate Bayesian Computation-Sequential Monte Carlo algo-
rithm [18–20] in two phases to select parameter sets that
provided the best fit to observed targets. Phase 1 sampled
from defined ranges for sexual behaviour and HIV natural his-
tory and evaluated the fit to demographic and HIV preva-
lence data. Phase 2 used the 50 best-fitting parameter sets
from phase 1 to fit HPV natural history parameters to empiri-
cal targets for HPV prevalence, cervical intraepithelial neopla-
sia (CIN) prevalence, cervical cancer incidence and HPV geno-
type distribution. An in-depth description of the methods and
parameter ranges is provided in the Supplementary Appendix
Section III.

2.2 Modelled scenarios

We assessed 14 primary scenarios with varying strategies
and/or coverage of HPV vaccination, screening and precan-
cer treatment (Table S21). Key differences between the sce-
narios include test sensitivity, specificity and loss to follow-up
(Figure 1 and Table S22). Our baseline scenario reflects the
current standard of care in South Africa: cytology, colposcopy
triage and treatment of high-grade lesions using cryotherapy
or large loop excision of the transformation zone (LLETZ) [11].
In this three-visit scenario, we assume one-time screening
between ages 35 and 39 with 48% coverage [10]. Account-
ing for observed challenges with loss-to-follow-up and limited
availability of equipment and supplies [12, 21], 72% of screen-
positive women are assumed to return for colposcopy and
50% return for treatment [22]. Fifty-seven percent of girls
[23] receive two doses of the bivalent HPV vaccine begin-
ning in 2014, with a switch to the nonavalent vaccine (9vHPV)
at ages 9–14 in 2021. In the first comparator scenario, we
increase vaccine coverage to 90% in 2021 without changes to
screening or treatment.

The next set of scenarios model four single-visit screening
and treatment strategies with 90% 9vHPV coverage beginning
in 2021: (1) oncogenic HPV DNA testing; (2) HPV DNA test-
ing with genotyping for HPV types 16, 18, 31, 33, 45, 52 or
58; (3) AVE; and (4) oncogenic HPV DNA testing with AVE
triage. In these scenarios, 48% of individuals aged 35–39 are
screened as in the baseline scenario, but the performance of
the screening strategies differs (Figure 1 and Table S22). Sen-
sitivity is highest with AVE, followed by HPV DNA testing. For
HPV-based strategies, sensitivity is lowest for HIV-uninfected
women and highest for women with untreated HIV, with the
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Figure 1. Screening and treatment cascade for the modelled scenarios by HIV status. For each scenario and group, columns depict the
proportion of screened women with CIN2+ at the time of screening who screen positive (a function of test sensitivity), are treated (a
function of loss to follow-up) and who are successfully treated. Some women who are successfully treated have persistent HPV and
transition to an HPV-infected (but no CIN) state following treatment, while others return to the HPV susceptible state. For HPV geno-
typing, sensitivity is derived from the model based on the prevalence of HPV types 16/18/31/33/45/52/58; this varies over time with
changes in HPV prevalence and type distribution as HPV vaccination is scaled up. This plot reflects the median sensitivity from model
simulations in 2021. Abbreviations: AVE, automated visual evaluation; HPV, human papillomavirus.

reverse pattern for specificity (Table S22). We assume 95% of
screen-positive women eligible for ablation receive immediate
treatment with thermocoagulation [24–26]. Receipt of treat-
ment is lower among women requiring LLETZ [25] (80%).

The final set of scenarios project the impact of repeat
screening, including more frequent screening for women with
HIV. Using the same four strategies outlined above, we model
(1) twice-lifetime screening for all women at ages 35–39
and 45–49 years, reflecting WHO targets [4], and (2) twice-
lifetime screening for women without HIV and screening
every 5 years from ages 25 to 49 years for women with HIV
(HIV-targeted screening). Screening coverage within each age
group is held at 48%, and 90% of girls receive 9vHPV vacci-
nation.

In all scenarios, we use published estimates for diag-
nostic performance and treatment efficacy by HIV status,
with estimates reported for women with HIV conservatively
applied to those without viral suppression. Because diagnos-
tic and treatment performance are associated with CD4 cell
count [27, 28], we assume that estimates for women with
virally suppressed HIV fall between estimates for women with
detectable HIV and women without HIV. All scenarios hold
the proportion of persons with HIV who are virally sup-
pressed and the proportion of men circumcised at levels esti-
mated from the most recent empirical data.

To account for uncertainty in screening parameters, we con-
ducted sensitivity analyses evaluating 14 additional scenar-
ios. The first four isolate the effect of differing performance
characteristics of single-visit strategies by holding retention

for treatment, screening frequency and coverage at baseline
levels. We additionally evaluate moderate retention for treat-
ment with HIV-targeted screening using HPV DNA testing
(70% retention for thermocoagulation and 50% for LLETZ). A
sixth scenario increases screening coverage from 48% to 70%
for the strategy of HIV-targeted HPV DNA testing, aligning
with WHO targets [4]. The remaining eight scenarios explore
variability in the performance of AVE (Table S23).

2.3 Simulation and analyses

Using the 25 best-fitting parameter sets from model calibra-
tion, we simulated HPV and HIV transmission, natural history
and demographic dynamics from 2020 (the year before new
interventions are introduced) to 2120. Outcomes include cer-
vical cancer incidence rates over time, age-standardized to the
2015 World Standard Population and the number of cervi-
cal cancer cases averted under each scenario relative to base-
line. Time to elimination is defined by the years at which esti-
mated cancer incidence crosses the threshold of 4 cases per
100,000 woman-years (elimination as a public health problem)
and a higher threshold of 10 cases per 100,000 [4, 29]. To
account for overtreatment, we report the number of women
treated for precancer per cancer case averted. Outcomes are
summarized as the median and range from the 25 model sim-
ulations.
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Figure 2. Projected cervical cancer incidence under scenarios that differ in HPV vaccination coverage and cervical cancer screening and
treatment frequency, method and loss-to-follow-up. The plotted lines show the median incidence under each scenario across 25 simu-
lations. The colour of the lines defines the screening and vaccination scenario and the line type (solid, dashed or dotted) defines the
frequency of screening. In scenarios with one-time screening, 48% of women are screened between ages 35 and 39. In scenarios with
twice-lifetime screening, screening occurs at ages 35–39 and 45–49, with 48% coverage in each age group. In scenarios with repeat
screening, women without HIV are screened at ages 35–39 and 45–49, and women with HIV and screened on average every 5 years
from ages 25 to 49 years. In each age group, 48% of eligible women are screened. Horizontal dotted and dot-dash lines mark the elim-
ination thresholds of 10/100K and 4/100K cases, respectively. Abbreviations: AVE, automated visual evaluation; HPV, human papillo-
mavirus.

3 RESULTS

The baseline scenario of cytology with colposcopy triage and
57% HPV vaccination resulted in an 87% decrease in cervical
cancer incidence from 80.4 cases per 100,000 in 2020 (range
58.2–112.1) to 10.7 cases per 100,000 in 2120 (4.2–29.9;
Figure 2). This reflects a 35% (25–52%) relative reduction in
HIV prevalence attributable to ART, VMMC and condom use
(Figures S27 and S28). Scaling up 9vHPV vaccination to 90%
coverage further reduces 2120 cancer incidence to 6.3 cases
per 100,000 (3.3–13.6), a 92% reduction from 2020. Owing
largely to reduced loss-to-follow-up for treatment (Figure S24
and Table S32), scenarios implementing single-visit strate-
gies are predicted to accelerate the preventative gains rela-
tive to vaccine scale-up alone but projected 2120 incidence
rates are similar to the vaccine scale-up scenario (Figure 2
and Table 1).

Higher screening frequency is projected to increase near-
term reductions in cervical cancer incidence. Relative to the
scenarios with one-time single-visit screening, median cer-
vical cancer incidence rates are 12–13% lower in 2030
with twice-lifetime screening and 23–28% lower with HIV-
targeted screening. Except for the HPV genotyping strategy,
which wanes in effectiveness over time, scenarios with repeat
screening are also estimated to be more effective over the
long term. Primary HPV DNA testing is expected to be the
most effective strategy, with incidence rates in 2120 declining
to 3.7 per 100,000 (1.8–8.6) with HIV-targeted screening.

Median incidence crosses below the 10 per 100,000
threshold for all scenarios except the baseline (Table 1).
The elimination threshold (4 per 100,000) is only reached
with HIV-targeted screening using HPV DNA testing and
AVE, although at least one of the 25 simulations crosses
this threshold for all scenarios other than the baseline, and
in all scenarios, at least one simulation does not reach this
threshold.

Elimination is achieved earlier and with more strategies for
women without HIV than for women with HIV (Table 1). Over
the 100-year time horizon, incidence per 100,000 among
women without HIV in the baseline scenario decreases from
34.9 (17.7–53.9) in 2020 to 6.3 (2.2–18.9) in 2120. Among
women with HIV, the corresponding incidence rates are 178.0
(115.2–257.3) in 2020 and 24.3 (10.5–74.6) in 2120. Median
incidence among women with HIV drops below the 10 per
100,000 threshold only with HIV-targeted screening and does
not reach the elimination threshold in any modelled scenario.
In sensitivity analyses, increasing screening coverage to 70%
with HIV-targeted HPV DNA testing is predicted to decrease
the time to elimination for the total population by approxi-
mately 13 years and bring the incidence per 100,000 women
with HIV in 2120 to 6.1 (2.2, 14.1; Table S32). With retention
for treatment reduced to 70% with thermocoagulation and
50% with LLETZ, the elimination threshold is reached only for
women without HIV (Table S32).

In addition to differences in time to elimination, the scenar-
ios differ in the cumulative number of cancer cases averted
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Table 1. Projected age-standardized cervical cancer incidence and time to elimination under modelled scenarios for all women,

women living without HIV and women living with HIV

Age-standardizeda cervical cancer incidence (per 100K)

Median (range)b
Year elimination threshold reachedc

Median (range)b

Year 2030

(after 10 years)

Year 2070

(after 50 years)

Year 2120

(after 100 years) <10/100K <4/100K

All women

Three-visit screening and treatment

between ages 35 and 39

Baseline (cytology with

colposcopy triage)

71.3 (50.4, 106.4) 20.5 (10.3, 39.3) 10.7 (4.2, 29.9) X (2071, X) X (X, X)

Baseline with vaccine scale-upd 70.9 (50.1, 105.8) 12.1 (6.2, 21.0) 6.3 (3.3, 13.6) 2076 (2060, X) X (2096, X)

Single-visit interventions between ages

35 and 39

HPV DNA testing 67.2 (47.5, 98.4) 9.9 (5.1, 16.9) 5.3 (2.8, 11.8) 2070 (2056, X) X (2081, X)

HPV DNA genotyping 67.9 (48.0, 99.7) 11.0 (6.0, 19.6) 6.5 (3.4, 14.1) 2073 (2058, X) X (2099, X)

AVE 67.3 (47.6, 98.3) 10.0 (5.2, 17.1) 5.5 (2.9, 11.9) 2070 (2056, X) X (2082, X)

HPV DNA with AVE triage 67.7 (47.9, 99.3) 10.3 (5.3, 17.6) 5.6 (2.9, 12.2) 2071 (2057, X) X (2084, X)

Single-visit interventions at ages 35–39

and 45–59

HPV DNA testing 58.7 (41.9, 84.9) 7.8 (4.1, 13.7) 4.3 (2.4, 10.1) 2064 (2052, X) X (2072, X)

HPV DNA genotyping 60.8 (43.3, 88.2) 9.8 (5.6, 18.3) 6.5 (3.3, 14.1) 2070 (2055, X) X (2096, X)

AVE 58.8 (42.1, 840) 7.9 (4.2, 13.8) 4.6 (2.5, 10.2) 2065 (2052, X) X (2072, X)

HPV DNA with AVE triage 60.1 (42.9, 86.5) 8.4 (4.4, 14.6) 4.8 (2.6, 10.7) 2066 (2053, X) X (2074, X)

Single-visit interventions with

HIV-targeted screeninge

HPV DNA testing 48.9 (35.2, 69.6) 5.5 (3.0, 10.6) 3.7 (1.8, 8.6) 2057 (2047, 2074) 2095 (2061, X)

HPV DNA genotyping 52.7 (37.5, 75.1) 8.8 (5.2, 17.0) 6.5 (3.3, 14.1) 2065 (2051, X) X (2093, X)

AVE 49.3 (35.8, 69.7) 5.7 (3.1, 11.0) 4.0 (2.0, 8.9) 2058 (2047, 2077) 2114 (2062, X)

HPV DNA with AVE triage 51.4 (37.0, 72.3) 6.2 (3.4, 11.8) 4.2 (2.1, 9.4) 2060 (2048, 2085) X (2064, X)

Women without HIV

Three-visit screening and treatment

between ages 35 and 39

Baseline (cytology with

colposcopy triage)

32.8 (15.7, 51.3) 10.9 (4.5, 23.8) 6.3 (2.2, 18.9) 2074 (2046, X) X (2075, X)

Baseline with vaccine scale-upd 32.4 (15.5, 50.9) 6.1 (2.7, 12.3) 4.1 (1.7, 9.3) 2058 (2042, 2085) X (2059, X)

Single-visit interventions between ages

35 and 39

HPV DNA testing 31.1 (14.8, 47.6) 5.1 (2.3, 10.4) 3.5 (1.5, 8.2) 2055 (2040, 2072) 2083 (2056, X)

HPV DNA genotyping 31.4 (14.9, 48.2) 5.7 (2.7, 12.0) 4.3 (1.8, 9.6) 2056 (2040, 2090) X (2057, X)

AVE 31.0 (14.7, 47.4) 5.2 (2.3, 10.5) 3.6 (1.6, 8.2) 2055 (2040, 2073) 2088 (2056, X)

HPV DNA with AVE triage 31.3 (14.9, 48.1) 5.4 (2.4, 10.8) 3.7 (1.6, 8.4) 2056 (2040, 2074) 2092 (2056, X)

Single-visit interventions at ages 35–39

and 45–59

HPV DNA testing 27.8 (13.1, 41.7) 4.0 (1.8, 8.5) 3.1 (1.3, 7.0) 2051 (2037, 2064) 2071 (2051, X)

HPV DNA genotyping 28.5 (13.5, 43.1) 5.5 (2.5, 11.3) 4.3 (1.8, 9.6) 2054 (2038, 2087) X (2055, X)

AVE 27.6 (13.0, 41.0) 4.2 (1.9, 8.5) 3.1 (1.4, 7.1) 2051 (2036, 2064) 2073 (2051, X)

HPV DNA with AVE triage 28.4 (13.4, 42.6) 4.5 (2.0, 9.1) 3.2 (1.4, 7.4) 2052 (2037, 2066) 2075 (2052, X)

(Continued)
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Table 1. (Continued)

Age-standardizeda cervical cancer incidence (per 100K)

Median (range)b
Year elimination threshold reachedc

Median (range)b

Year 2030

(after 10 years)

Year 2070

(after 50 years)

Year 2120

(after 100 years) <10/100K <4/100K

Single-visit interventions with

HIV-targeted screeninge

HPV DNA testing 27.5 (13.0, 41.4) 3.7 (1.7, 8.0) 3.0 (1.2, 6.9) 2050 (2036, 2062) 2068 (2050, X)

HPV DNA genotyping 28.2 (13.4, 42.9) 5.3 (2.5, 11.0) 4.3 (1.8, 9.6) 2053 (2037, 2085) X (2054, X)

AVE 27.4 (12.9, 40.8) 4.0 (1.8, 8.2) 3.1 (1.3, 7.0) 2051 (2036, 2063) 2071 (2050, X)

HPV DNA with AVE triage 28.3 (13.3, 42.4) 4.3 (1.9, 8.7) 3.2 (1.3, 7.3) 2052 (2037, 2065) 2073 (2052, X)

Women with HIV

Three-visit screening and treatment

between ages 35 and 39

Baseline (cytology with

colposcopy triage)

158.1 (116.0, 244.8) 48.1 (24.6, 98.5) 24.3 (10.5, 74.6) X (X, X) X (X, X)

Baseline with vaccine scale-upd 157.1 (115.5, 243.8) 29.3 (15.2, 57.1) 14.9 (8.2, 35.4) X (2092, X) X (X, X)

Single-visit interventions between ages

35 and 39

HPV DNA testing 149.9 (110.3, 229.6) 23.5 (12.4, 45.8) 12.8 (7.0, 30.3) X (2079, X) X (X, X)

HPV DNA genotyping 151.2 (111.3, 232.1) 26.8 (14.3, 52.7) 15.3 (8.4, 36.7) X (2094, X) X (X, X)

AVE 150.4 (110.6, 229.4) 24.5 (12.5, 46.1) 13.2 (7.2, 30.6) X (2080, X) X (X, X)

HPV DNA with AVE triage 151.2 (111.2, 231.1) 25.0 (12.8, 47.4) 13.4 (7.3, 31.2) X (2081, X) X (X, X)

Single-visit interventions at ages 35–39

and 45–59

HPV DNA testing 131.9 (97.1, 197.3) 18.3 (10.0, 36.3) 10.4 (5.9, 25.7) X (2070, X) X (X, X)

HPV DNA genotyping 135.8 (100.2, 205.1) 23.9 (13.3, 48.2) 15.2 (8.4, 36.6) X (2093, X) X (X, X)

AVE 132.2 (96.7, 195.9) 19.3 (10.0, 36.6) 10.8 (6.2, 26.1) X (2071, X) X (X, X)

HPV DNA with AVE triage 134.3 (98.6, 200.6) 20.6 (10.5, 38.5) 11.3 (6.4, 27.0) X (2072, X) X (X, X)

Single-visit interventions with

HIV-targeted screeninge

HPV DNA testing 108.3 (79.0, 156.1) 11.0 (6.2, 22.5) 7.3 (3.7, 18.0) 2076 (2057, X) X (2114, X)

HPV DNA genotyping 115.3 (85.2, 170.3) 20.6 (11.9, 42.5) 15.1 (8.3, 36.6) X (2091, X) X (X, X)

AVE 109.1 (79.5, 156.7) 12.2 (6.7, 24.0) 8.2 (4.2, 19.2) 2077 (2058, X) X (X, X)

HPV DNA with AVE triage 113.7 (82.6, 162.7) 12.9 (7.1, 25.9) 8.5 (4.7, 20.3) 2081 (2060, X) X (X, X)

Abbreviations: AVE, automated visual evaluation; HPV, human papillomavirus; LLETZ, large loop excision of the transformation zone.
aStandardized to the 2015 World Population.
bMedian and range of estimates from simulations using the 25 best-fitting parameter sets.
cX denotes that the elimination threshold was not reached in the simulated time horizon.
dNon-avalent hrHPV vaccination of girls aged 9–14 scaled up from 57% to 90% coverage. Vaccination coverage remains at 90% for all single-
visit scenarios.
eAges 35–39 and 45–49 for women living without HIV and every 5 years from 25 to 49 for women living with HIV.

(Figure 3). Relative to the baseline scenario, which results in
an estimated 152,927 cervical cancer cases over the 100-
year period (89,136–314,863), the percent of cases averted is
greatest with HIV-targeted screening using HPV DNA testing
with low loss-to-follow-up (54%; 49–60%), followed by AVE
(53%; 48–60%) and HPV DNA with AVE triage (50%; 46–
57%). Nearly, a quarter of all cases averted with these strate-
gies are averted within the first 20 years. In comparison, 3%
of cases averted with expanded vaccination alone are averted
within 20 years.

Figure 4 displays the tradeoff between cancer cases
averted and overtreatment. While HIV-targeted HPV DNA
and AVE maximize cases averted, these strategies require
15.3 (8.7, 33.3) and 30.9 (15.5, 51.3) treatments per cancer
case averted, respectively. The use of HPV DNA testing with
AVE triage is projected to prevent slightly fewer cancer cases
but requires only 7.2 treatments per cancer case averted
(4.7, 11.9).

In sensitivity analyses lowering the sensitivity and speci-
ficity of AVE by up to 20%, projected cancer incidence is
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Figure 3. Cumulative (top) and incremental (bottom) cancer cases averted under scenarios that differ in HPV vaccination coverage and
cervical cancer screening and treatment frequency, method and loss-to-follow-up. Cases averted are defined with reference to the base-
line strategy. The top panel shows the cumulative cases averted over time in 20-year increments. The bottom panel shows the incre-
mental cases averted over each 20-year period. The columns show the median estimates from across the 25 simulations and the error
bars show the range of estimates. Scenarios are ordered from lowest to highest in terms of cumulative cases averted. Note the different
scales on the y-axis for the two plots. Abbreviations: AVE, automated visual evaluation; HPV, human papillomavirus.

similar to the primary analysis, but the efficiency of screening
is lower (Figure S26 and Table S32). The number needed to
treat to avert one cancer case reaches 58.7 (27.4, 100.0)
with AVE as primary screening and 9.1 (5.9, 16.9) with AVE
as triage.

4 D ISCUSS ION

Using a dynamic transmission and natural history model that
captures HPV-HIV synergies, we project that cervical cancer
elimination is within reach in KwaZulu-Natal, South Africa. In
our baseline scenario reflecting current practice, we estimate
that age-standardized cervical cancer incidence in KwaZulu-
Natal will decline 87% to an expected rate of 10.7 per
100,000 in 2120. This reduction is primarily attributable to
the effects of moderate 9vHPV vaccine coverage and HIV

prevention interventions. By increasing vaccine coverage to
90%, adopting single-visit screening and treatment strategies,
and providing more frequent services for women with HIV,
tens of thousands of cancer cases could be averted and elimi-
nation achieved before the end of the century.

Our results are consistent with other models that have sim-
ulated the path to elimination. A recent comparative modelling
analysis predicted that most countries in sub-Saharan Africa
would reach the threshold of 10 cancer cases per 100,000
with 90% 9vHPV vaccination and no improvements to screen-
ing [29]. Scale-up of once- or twice-lifetime HPV DNA screen-
ing was necessary to reach the 4 per 100,000 threshold, par-
ticularly in countries starting with an age-standardized inci-
dence >25 per 100,000. However, the models used in this
analysis did not account for HIV–HPV interactions. Using an
HIV-HPV model parameterized to South Africa, van Schalkwyk
et al. [21] estimated a reduction in age-standardized incidence
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Figure 4. Cumulative proportion of cervical cancer cases averted (x-axis) by the number of cases treated for precancer per cancer case
averted (y-axis) under scenarios that differ in HPV vaccination coverage and cervical cancer screening and treatment frequency, method
and loss-to-follow-up. Cancer cases averted are defined as the difference between the cumulative number of incident cancer cases over
the simulated period with the baseline scenario and the cumulative number of cases with each comparator scenario. Here, we show the
proportion of cancer cases with the baseline scenario that are averted. The y-axis shows the ratio of the cumulative number of cases
treated with ≤CIN3 to the number of cancer cases averted. The points show the results from each of the 25 simulations with each
scenario. The shaded regions denote the convex hull of the points for each scenario. Lighter shading and round points indicate scenar-
ios with one-time screening; medium shading and diamond points indicate scenarios with twice-lifetime screening; darker shading and
triangular points indicate scenarios with repeat screening. Abbreviations: AVE, automated visual evaluation; HPV, human papillomavirus.

to 12 per 100,000 in 2100 with current practice. Although
the scenarios and context are not directly comparable to our
model of KwaZulu-Natal province, the findings are similar in
that strategies with higher screening frequency and referral to
treatment yield near-term gains and increase the likelihood of
elimination.

A key objective of our analysis was to evaluate scalable
strategies. While increasing the coverage and frequency of
screening with cytology would also be expected to reduce
cancer incidence, limited availability of equipment, supplies
and qualified personnel has impeded the effectiveness of the
current cytology-based screening programme [5, 12, 21, 30].
For comparison, we explore a range of strategies that could
feasibly be implemented using existing infrastructure and per-
sonnel. South Africa has more than 250 GeneXpert machines
[11], which can be leveraged for HPV DNA testing and geno-
typing to provide rapid, accurate results [4, 30]. Although not
yet available, work is underway to train algorithms for AVE
using smartphone images [31], which could be used in diverse
clinical or community-based settings.

An important determinant of the impact of screening on
cervical cancer incidence is the loss-to-follow-up for treat-
ment. HPV testing and AVE can provide rapid results, thereby
facilitating same-visit treatment and increasing retention [30].
The use of HPV testing in screen-and-treat programmes has
been shown to be feasible and effective for women with and
without HIV [30] and is recommended by the WHO [4]. To
increase capacity for treatment, we assume a switch from
cryotherapy to thermocoagulation, which overcomes some

of the challenges with cryotherapy and can be conducted
with portable battery-operated devices [32, 33]. In our base-
line status quo scenario, 36% of women with abnormal Pap
smears receive colposcopy and treatment [22], higher than
the 26% of women who received indicated follow-up within
18 months of a high-risk Pap result in a study in South Africa
[34]. Lower baseline follow-up for treatment would increase
the expected number of cancer cases averted with single-visit
strategies.

Of note, our primary scenarios assume that screening
coverage in each targeted age group is 48%, below the
WHO goal of 70% [4]. Screening coverage estimates for
South Africa are inconsistent; some suggest the proportion of
women screened and/or screening frequency are higher than
we have assumed [21, 35]. However, the reductions in cancer
incidence that would be expected with higher screening cov-
erage and frequency have not been observed [12, 21], sug-
gesting that uptake is low. Our scenarios examine a critical
first step towards improving screening through the adoption
of new technologies and management algorithms. With these
more scalable single-visit interventions in place, our sensitivity
analysis indicates that efforts to expand coverage would accel-
erate the timeline to elimination. Increasing coverage will be
especially valuable for women with HIV. Given the structure
of our model with 5-year age groups, we approximated the
recommended 3-year screening intervals for women with HIV
[13] with 5-year average intervals. Our results demonstrate
the impact of HIV-targeted screening and support efforts to
improve fidelity to guidelines.
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An important tradeoff to screening and treating more
women is the treatment of individuals whose infections
may clear spontaneously. Cervical treatment may increase
the risk of adverse reproductive outcomes [14], and treat-
ment of women without precancer wastes valuable health-
care resources. We found that overtreatment was highest
with AVE-and-treat, followed by HPV DNA testing. Using HPV
genotyping and AVE to triage HPV-positive results helped
mitigate overtreatment with relatively modest reductions in
cancer cases averted. Several novel biomarkers, including the
E6 oncoprotein and viral methylation [36], also have the
potential to improve screening specificity. With more empiri-
cal data on these new methods, cost-effectiveness and bud-
get impact analyses will be valuable to identify efficient and
affordable strategies.

Strengths of our analysis include the use of a dynamic
model that represents HIV transmission and disease progres-
sion and the associations with the risk of HPV acquisition
and natural history. Our model is calibrated to available data
on demographics, HIV and HPV epidemiology using a multi-
phased Bayesian approach. We defined scenarios for simula-
tion based on the review of the literature and consultation
with South African collaborators to reflect feasible changes
to the screening and treatment programme. Additionally, our
model differs from other models assessing cervical cancer
elimination by estimating overtreatment to compare alterna-
tive strategies more comprehensively.

Our analysis has several limitations. Although we validated
our model to external targets for HIV prevalence and inci-
dence, we did not have an independent data set for the valida-
tion of cervical cancer outcomes. To account for uncertainty in
model parameters, including sexual behaviour and the natural
history of infection, we utilized a Bayesian calibration proce-
dure to fit our model to an extensive set of empirical infection
and disease targets. This reduced the precision of our esti-
mates but provided a more complete portrayal of the range
of likely outcomes. Another source of uncertainty is in our
assumptions about future behaviours and technologies. Sex-
ual and care-seeking behaviours will likely change over time,
limiting the accuracy of long-term predictions. However, this
limitation affects all models simulating future health events.
Importantly, our conclusions regarding the relative impact of
single-visit strategies are consistent, if not stronger, in analy-
ses restricting the time horizon to 10–20 years.

Limited data were available on the clinical performance of
AVE, as it has not yet been widely implemented [15, 37].
We explored a range of assumptions for sensitivity and speci-
ficity, with results suggesting that AVE may be an effective
strategy to triage HPV DNA results even with up to 20%
lower performance than reported by Hu et al. [15]. As this
technology is further tested, updated model-based analyses
and economic evaluations will be warranted. For HPV-based
strategies, we derived estimates of specificity from the simu-
lations as the proportion of all screened women ≤CIN1 who
screen negative. With this approach, the specificity of HPV
DNA testing (Table S22) is higher than published estimates
[38–40]. A potential explanation for this discrepancy is that
our model may simulate a lower prevalence of HPV-infected
states ≤CIN1 than among sampled populations, leading it to
underestimate overtreatment with HPV-based strategies. The

modelled specificity of the HPV genotyping strategy is also
higher and the sensitivity lower than observed in a study that
evaluated testing for HPV types 16/18/31/33/35/45/52/58
[39]. Because our model groups HPV35 with other onco-
genic types not included in the 9vHPV vaccine, we modified
the strategy to target only the other seven types. In prac-
tice, HPV35 would likely be included in genotyping algorithms,
thereby increasing the sensitivity of this strategy.

With our compartmental model structure, we were not able
to simulate differences in screening intervals or surveillance
based on individual screening history [13, 41]. Future analyses
with individual-based models would be valuable to refine rec-
ommendations. Additionally, we made the simplifying assump-
tion that all women with HIV would be similarly likely to
undergo screening. Data suggest that untreated women may
be screened at rates similar to women without HIV [21],
in which case, our model would overestimate the impact of
screening for women with HIV. However, our scenarios make
conservative assumptions regarding screening coverage and
frequency, which may balance this effect. We also did not
model ART discontinuation, which might shift the distribution
of cancer and mortality risks among women with HIV. How-
ever, we fit our model to the proportion of people with HIV
who are virally suppressed, thus representing effective ART
coverage.

5 CONCLUS IONS

Our model provides strong evidence that cervical cancer elim-
ination is achievable in the coming century in settings with
a high dual burden of HIV and cervical cancer. The need for
multiple visits combined with shortages of supplies and equip-
ment has limited the effectiveness of screening programmes
in many LMICs to date. The scenarios we evaluated leverage
effective, scalable single-visit strategies that have the potential
to increase access to screening and reduce barriers to treat-
ment. Our results highlight the importance of more frequent
screening for women with HIV, suggesting that integration of
HIV and cervical cancer services could help to decrease dis-
parities and accelerate reductions in incidence.
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Additional information may be found under the Supporting
Information tab for this article:
Supplementary Appendix: Model inputs and methods.
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