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The suboptimality of perceptual decision making
with multiple alternatives
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It is becoming widely appreciated that human perceptual decision making is suboptimal but

the nature and origins of this suboptimality remain poorly understood. Most past research

has employed tasks with two stimulus categories, but such designs cannot fully capture the

limitations inherent in naturalistic perceptual decisions where choices are rarely between only

two alternatives. We conduct four experiments with tasks involving multiple alternatives and

use computational modeling to determine the decision-level representation on which the

perceptual decisions are based. The results from all four experiments point to the existence

of robust suboptimality such that most of the information in the sensory representation is lost

during the transformation to a decision-level representation. These results reveal severe

limits in the quality of decision-level representations for multiple alternatives and have strong

implications about perceptual decision making in naturalistic settings.
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Perception has been conceptualized as a process of infer-
ence for over a century and a half1. According to this
view, the outside world is encoded in a pattern of neural

firing and the brain needs to decide what these patterns signify.
Hundreds of papers have revealed that this inference process
is suboptimal in a number of different ways2. However, these
papers have almost exclusively employed tasks with only two
stimulus categories (though notable exceptions exist3,4).
Experimental designs where decisions are always between
two alternatives cannot fully capture the processes inherent in
naturalistic perceptual decisions where stimuli can belong to
many different categories (e.g., which of all possible local spe-
cies does a particular tree belong to). Therefore, fully under-
standing the mechanisms and limitations of perceptual decision
making requires that we characterize the process of making
decisions with multiple alternatives.

One critical difference between perceptual decisions with two
versus multiple alternatives is the richness of the sensory
information that the decisions are based on. Decisions with two
alternatives can be based on the evidence for each of the two
categories, or even just the difference between these two pieces
of evidence5. For example, traditional theories such as signal
detection theory6 and the drift diffusion model7 postulate that
two-choice tasks are performed by first summarizing the evi-
dence down to a single number—the location on the evidence
axis in signal detection theory and the identity of the boundary
that is crossed in drift diffusion—that is subsequently used for
decision making. Thus, the sensory information relevant for the
decision in such tasks is relatively simple and could potentially
be represented in decision-making circuits without substantial
loss of information. However, the relevant sensory information
in multi-alternative decisions is more complex because it con-
tains the evidence for each of the multiple alternatives available.
Further, this richer sensory information can no longer be
summarized in a simple form in decision-making circuits
without a substantial loss of information (Fig. 1). However, it is
currently unknown whether decision-making circuits can
represent the rich information from sensory circuits in the
context of multi-alternative decisions or whether the decision-
making circuits only represent a crude summary of the sensory
representation.

To uncover the decision-level representation of decisions
with multiple alternatives, we use discrete stimulus categories in
three experiments and stimuli that give rise to a trimodal
sensory distribution in a fourth experiment. All experiments
feature a condition where subjects pick the dominant stimulus
among all of the possible stimulus categories (four different
colors in Experiment 1, six different symbols in Experiments 2
and 3, and three different stimulus direction in Experiment 4).
Based on these responses, we estimate the parameters of a
model describing subjects’ internal distribution of sensory
responses (i.e., the activity levels for each stimulus category).
We then include conditions where subjects are told to pick
between only two alternatives after the offset of the stimulus
(Experiments 1, 2, and 4) or to make a second choice if the first
one is incorrect (Experiment 3). These conditions allow us to
compare different models of how the sensory representation is
transformed into a decision-level representation. To anticipate,
we find robust evidence for suboptimality in that decisions in
our experiments are based on a summary of the sensory
representation thus incurring substantial information loss.
These results indicate that perceptual decision-making circuits
may not have access to the full sensory representation in the
context of multiple alternatives and that significant amount of
simplification is likely to occur before sensory information is
used for deliberate decisions.

Results
Experiment 1. Subjects saw a briefly presented stimulus con-
sisting of 49 colored circles arranged in a 7 × 7 square (Fig. 2).
Each circle was colored in blue, red, green, or white. On each trial,
one color was randomly chosen to be dominant (i.e., more fre-
quently presented than the other colors) and 16 circles were
painted in that color, whereas the remaining three colors were
nondominant and 11 circles were painted in each of those colors.
The task was to indicate the dominant color. The experiment
featured two different conditions. In the four-alternative condi-
tion, subjects picked the dominant color among the four possible
colors. In the two-alternative condition, after the offset of the
stimulus, subjects were asked to choose between the dominant
and one randomly chosen nondominant color. In both condi-
tions, the response screen was displayed with 0-ms delay thus
minimizing short-term memory demands. Note that subjects’
task was always the same (to correctly identify the dominant
color).

Based on the responses in the four-alternative condition, we
estimated the parameters of the sensory distribution representing
the activity level for each color. We then considered the
predictions for the two-alternative condition of two different
models: (1) a population model, according to which perceptual
decisions are based on the whole distribution of activities over the
four colors, and (2) a summary model, according to which
perceptual decisions are based on a summary of the whole
distribution. There are a number of ways to create a summary of
the whole distribution. However, in the context of this task, the
only relevant information is the order of the activation levels from
highest to lowest (this order determines how a subject would pick
different colors as the dominant color in the two-alternative
condition). Other information, such as average activity level, is
irrelevant to the task here. Therefore, we first considered an
extreme summary model that consists of the activity level for the
one color with highest level of activity. Other summary models, in
which decision-making circuits have access to the activity levels of
the n > 1 colors with highest activity levels, are examined later.

The population and summary models could be easily compared
because they make different predictions about performance in the
two-alternative task (for a mathematical derivation, see Supple-
mentary Methods). Indeed, the models make the same prediction
when the dominant color gives rise to the highest activity level
(Fig. 3a) and when the alternative option given to the subject
happens to have the highest activity (Fig. 3b), but diverge when
the highest activity is associated with a color that is not among
the two options with the population model predicting a higher
performance level (Fig. 3c).

The difference between the two models could be seen in the
actual model predictions. Indeed, based on the performance in
the four-alternative condition (average accuracy= 69.2%, chance
level= 25%), the population and summary models predicted an
average accuracy of 84.2% and 79.7% in the two-alternative
condition, respectively. Compared to the actual subject perfor-
mance (average accuracy= 78%), the population model over-
estimated the accuracy in the two-alternative conditions for 29 of
the 32 subjects (average difference= 6.21%; t(31)= 8.19, p=
3.02 × 10−9, 95% CI= [4.7%, 7.8%]). Surprisingly, the summary
model also overestimated the accuracy in the two-alternative
condition but the misprediction was much smaller (average
difference= 1.72%; t(31)= 2.35, p= 0.025, 95% CI= [0.2%,
3.2%]) (Fig. 4a). Indeed, the absolute error of the predictions of
the population model was significantly larger than for the
summary model (average difference= 2.93%; t(31)= 5.65, p=
3.34 × 10−6, 95% CI= [1.9%, 4%]). Overall, the summary model
predicted the accuracy in the two-alternative condition better
than the population model for 26 of the 32 subjects (Fig. 4b).
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We further compared the models’ fits to the whole distribution
of responses. We found that the Akaike Information Criterion
(AIC) favored the summary model by an average of 24.30 points
(Fig. 4c), which corresponds to the summary model being 1.89 ×
105 times more likely than the population model for the average
subject. Across the whole group of 32 subjects, the total AIC
difference was thus 777.63 points, corresponding to the summary

model being 7.26 × 10168 times more likely in the group. Note
that since the population and summary models had the same
number of parameters, the same results would be obtained
regardless of the exact metric employed (e.g., the BIC differences
would be exactly the same; see “Methods” for details).

Finally, we constructed and tested four additional
models. The first two models postulated that decision-making
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Fig. 1 Sensory and decision-level representations for multiple alternatives. a Illustration of decision making with multiple discrete alternatives. In cases
where a subject has to choose between multiple discrete alternatives (e.g., options A, B, and C), a stimulus can be assumed to give rise to a sensory
representation that consists of different amount of sensory activity for each alternative (left panel). A decision-level representation without information
loss would consist of a copy for the sensory representation (middle panel). We refer to this possibility as a population model of decision-level
representation. On the other hand, the decision-level representation may consist of only a summary of the sensory representation thus incurring
information loss. One possible summary representation consists of passing only the highest activity onto decision-making circuits (right panel). We refer to
this type of representation as a summary model of decision-level representation. This summary representation involves information loss that will become
apparent if subjects have to choose between the other alternatives (e.g., alternatives A and C). b Decision making with a continuous but multimodal
sensory representation. Similar to having multiple discrete alternatives, decisions can involve judging a continuous feature (e.g., orientation) but in the
context of a multimodal (e.g., a trimodal) underlying sensory representation (left panel). The decision-level representation can again consist of either a
copy for the sensory representation (middle panel) or a summary of this sensory representation (right panel).
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Fig. 2 Task for Experiment 1. Each trial consisted of a fixation period (500ms), stimulus presentation (500ms), and untimed response period. The
stimulus comprised of 49 circles each colored in one of four different colors (red, green, blue, and white). One of the colors (white in this example) was
presented more frequently (16 circles; dominant color) than the other colors (11 circles each; nondominant colors). The task was to indicate the dominant
color. Two conditions were presented in different blocks. In the four-alternative condition, subjects chose between all four colors. In a separate two-
alternative condition, on each trial subjects were given a choice between the dominant and one randomly chosen nondominant color.
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circuits have access to the two or three highest activations
of the sensory distribution (two-highest and three-highest
models, respectively). These models could thus be seen as
intermediate options between the summary and population
models. Two other models postulated that subjects choose
either two or three stimulus categories to attend to and then

make their decisions based on a full probability distribution
over the activity levels of the attended categories (two-attention
and three-attention models; see Supplementary Methods for
details). We found that all of these models were outperformed
by the summary model (Supplementary Notes and Supplemen-
tary Figs. 1, 6a–d).
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Fig. 3 Predictions of the two models for choices in the two-alternative condition. The population model (left panels) assumes that decision-making
circuits have access to the activity levels associated with each of the four colors (four gray bars), whereas the summary model (right panels) assumes that
decision-making circuits only have access to the highest activity level (single gray bar). In all examples, the dominant circle is white, and subjects are given
a choice between white and green. a When the highest activity happens to be at the dominant color, both models predict that the subject would correctly
choose the dominant color. b When the highest activity happens to be at the alternative color, both models predict that the subject would incorrectly
choose the alternative color. c The predictions of the two models diverge when the highest activity is associated with a color other than the two presented
alternatives. In such cases, the activation for the dominant color is likely to be higher than for the alternative color, so according to the population model,
subjects would ignore the color with the highest activity (blue color in the example here) and correctly pick the dominant color in the majority of the trials.
However, according to the summary model, subjects have no information about the activation levels for the dominant and the alternative colors and would
thus correctly pick the dominant color on only 50% of such trials.
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Experiment 2. The results from Experiment 1 strongly suggest
that within the context of our experiment, decision-making cir-
cuits do not represent the whole sensory distribution but only a
summary of it. We sought to confirm and generalize these findings
in two additional, preregistered experiments ([osf.io/dr89k/]). For
Experiment 2, we made several modifications: (1) we changed the
colored circles to symbols, (2) we raised the number of stimulus
categories from four to six, and (3) we significantly increased the
number of trials per subject in order to obtain stronger results at
the individual-subject level. Specifically, we presented the six
symbols (?, #, $, %, +, and >) such that the dominant symbol was
presented 14 times and each nondominant symbol was presented
7 times (Fig. 5a). The 49 total symbols were again arranged in a
7 × 7 grid. Each subject completed a total of 3000 trials that
included equal number of trials of a six-alternative condition and a
two-alternative condition that were equivalent to the four- and
two-alternative conditions in Experiment 1.

Just as in Experiment 1, we computed the parameters of the
sensory representation using the trials from the six-alternative
condition (average accuracy= 50.5%, chance level= 16.7%) and
used these parameters to compare the predictions of the population
and summary models for the two-alternative condition. We found
that the average accuracy in the two-alternative condition (71.6%)
was slightly underestimated by the summary model (predicted
accuracy= 70.1%; t(9)=−2.76, p= 0.022, 95% CI: [−2.7%,
−0.3%]) but was again significantly overestimated by the
population model (predicted accuracy= 77.5%; t(9)= 9.41, p=
5.92 × 10−6, 95% CI [4.5%, 7.3%]) (Fig. 5b). Individually, the
summary model provided better prediction of the accuracy in the
two-alternative condition for nine out of the ten subjects (Fig. 5c).

Further, we compared the population and summary models’
fits to the whole distribution of responses. We found that the
summary model was preferred by nine of our ten subjects and the
difference in AIC values in all these nine subjects was larger than
25 points (Fig. 5d). The AIC values of the one subject for whom
the population model was favored over the summary model
differed by only 7.9 points. On average, the summary model had
an AIC value that was 57.79 points lower than the population
model corresponding to the summary model being 3.55 × 1012

times more likely for the average subject. Across the whole group
of ten subjects, the total AIC difference was thus 577.94 points,
corresponding to the summary model being 3.14 × 10125 times
more likely in the group. Finally, we found that the additional
four models were again outperformed by the summary model
(Supplementary Notes and Supplementary Figs. 2, 6e–h).

Experiment 3. Taken together, Experiments 1 and 2 suggest that
in the context of multi-alternative decisions, the system for
deliberate decision making may not have access to the whole
sensory representation. This conclusion is based on experiments
that differed in the nature of the stimulus, the number of stimulus
categories, and the amount of trials that subjects performed.
Nevertheless, both Experiments 1 and 2 relied on the same design
of comparing four- (or six-) and two-alternative conditions.
Therefore, to further establish the generality of our results, in
Experiment 3 we employed a different experimental design. We
used the same stimulus as in Experiment 2 and presented all six
alternatives on every trial, but additionally gave subjects the
opportunity to provide a second answer on about 40% of error
trials (Fig. 6a). Using the performance on the first answer, we
compared the predictions of the population and summary models
for the second answers.

The population model makes a clear prediction about the
second answer—subjects should choose the stimulus category
with the highest activation from among the remaining five
options. The second answer will thus have relatively high
accuracy because the presented stimulus category is likely to
produce one of the highest activity levels (Supplementary Fig. 3a).
On the other hand, the summary model only features information
about the stimulus category with the highest activity. Once that
stimulus category is chosen as the first answer, the model
postulates that the subject does not have access to the activations
associated with the other stimulus categories. Given this
representation, subjects could adopt at least two different
response strategies. One possible strategy is for the subject to
make their second answer at random, which would result in
chance level (20%) performance. We call this the Summary &
Random Choice model (Supplementary Fig. 3b). However,
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Fig. 4 Comparisons between the population and summary models in Experiment 1. a Mean accuracy in the two-alternative condition observed in the
actual data (white bar), and predicted by the population (light gray bar) and summary (dark gray bar) models. The predictions for both models were
derived based on the data in the four-alternative condition. All p values are derived from two-sided paired t tests. Error bars represent SEM, n= 32.
b Individual subjects’ differences in the accuracy in the two-alternative condition between the two models and the observed data. c Difference in Akaike
Information Criterion (AIC) between the population and the summary models. Positive AIC values indicate that the summary model provides a better fit to
the data. Each dot represents one subject. The gray horizontal lines at ±3 and ±10 indicate common thresholds for suggestive and strong evidence for one
model over another. The red triangle indicates the average AIC difference. The summary model provided a better fit than the population model for 30 of
the 32 subjects.
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another possibility is for the subject to make the second answer
strategically. One available strategy is for the subject to pick the
stimulus category of a randomly recalled symbol from the 7 × 7
grid. Given that subjects inspected the stimuli for 500 ms, they
could easily remember one location with a symbol other than the
one they picked for their first answer. We call this the Summary
& Strategic Choice model (Supplementary Fig. 3c). According to
this model, the second answer will be correct on
14 ð# locations of the dominant symbolÞ

42 ðtotal#of remaining locationsÞ ¼ 1
3 or 33.3% of the time. Conver-

sely, each of the four remaining incorrect categories will be
chosen on 7 ð# locations of each nondominant symbolÞ

42 ðtotal#of remaining locationsÞ ¼ 1
6 or 16.7% of the

time (Supplementary Fig. 4).
To adjudicate between these three models, we first examined

subjects’ accuracy on the first answer. Subjects responded
correctly in their first answer on 50.7% of the trials (chance
level= 16.7%). Using this performance, we computed the
parameters of the sensory representation as in Experiments 1
and 2 in order to generate the model predictions for the second
answer. We found that task accuracy for the second answers was
29.6%. This value was greatly overestimated by the population
model, which predicted accuracy of 40.9% (t(9)= 7.04, p=

6.09 × 10−5, 95% CI= [7.7%, 15%]) (Fig. 6b). On the other hand,
the Summary & Random Choice model greatly underestimated
the observed accuracy (predicted accuracy= 20%; t(9)=−5.55,
p= 3.55 × 10−4, 95% CI= [−13.5%, −5.7%]). Finally, the
Summary & Strategic Choice model produced the most accurate
prediction (predicted accuracy= 33.3%; t(9)= 2.18, p= 0.057,
95% CI= [−0.1%, 7.7%]). On an individual subject level, the
population model overestimated the accuracy of the second
answer for all ten subjects, the Summary & Random Choice
model underestimated the accuracy of the second answer for all
of the ten subjects, whereas the Summary & Strategic Choice
model was best calibrated overestimating the accuracy of the
second answer for seven subjects and underestimating it for the
remaining three subjects (Fig. 6c).

Formal comparisons of the model fits to the full distribution
of responses for the second answers demonstrated that the
population model provided the worst overall fit (Fig. 6d).
Indeed, the population model resulted in AIC values that were
higher than the Summary & Random Choice model by an
average of 18.05 points (corresponding to 8.29 × 103-fold
difference in likelihood in the average subject) and a total of
180.46 points (corresponding to 1.53 × 1039-fold difference in
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likelihood in the group). The population model underper-
formed the Summary & Strategic Choice model even more
severely (average AIC difference= 37.29 points, corresponding
to 1.25 × 108-fold difference in likelihood in the average subject;
total AIC difference= 372.93 points, corresponding to 9.57 ×
1080-fold difference in likelihood in the group). Lastly, the
Summary & Strategic Choice model also outperformed all of the
additional models (Supplementary Results and Supplementary
Fig. 6i–l). Thus, just as Experiments 1 and 2, Experiment 3
provides strong evidence that in the context of multi-alternative
decisions, decision-making circuits only contain a summary of
the sensory representation.

Experiment 4. To adjudicate between the population and sum-
mary models, Experiments 1–3 employed discrete stimulus
categories (Fig. 1a). However, it remains possible that the results
of these experiments would not generalize to stimuli represented
on a continuous scale. To address this issue, we performed a
fourth experiment that employed a feature (dot motion) repre-
sented on a continuous scale (degree orientation). We adapted the
design of Treue et al.8 in which groups of dots slid transparently
across one another. Specifically, we presented moving dot stimuli
where three sets of dots moved in three different directions. As
Treue et al. noted, these stimuli produce the subjective experience
of seeing three distinct surfaces sliding across each other and
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Fig. 6 Task and results for Experiment 3. a The same stimuli as in Experiment 2 were used in Experiment 3 but the task was slightly different. Subjects
always reported the dominant symbol among all six alternatives. However, on 40% of the trials in which they gave a wrong answer, subjects were given the
opportunity to make a second guess. b Mean accuracy for the second answer observed in the actual data (white bar), predicted by the population model
(light gray bar), predicted by the Summary & Random Choice model (dark gray bar), and predicted by the Summary & Strategic Choice model (black bar).
The predictions of the three models were derived based on subjects’ first answers. All p values are derived from two-sided paired t tests. Error bars
represent SEM, n= 10. c Individual subjects’ differences in the accuracy of the second answer between each model’s prediction and the observed data.
d AIC difference between the population and the two summary models. Positive AIC values indicate that the summary model provides a better fit to the
data. Each dot represents one subject. The red triangle indicates the average AIC difference.
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therefore give rise to a trimodal internal sensory distribution of
motion direction. In each trial, one of the motion directions was
represented by more dots (i.e., the dominant direction) than the
other two (i.e., the nondominant directions). Subjects had to
indicate the dominant direction of motion, which corresponds to
the location of the tallest peak in the trimodal sensory distribu-
tion (Fig. 1b).

We used a similar modeling approach as in the previous
three experiments (see “Methods”) where we fitted a model of
the sensory representation to the three-alternative condition
(average accuracy= 77.4%, chance level= 33.3%), and com-
pared the predicted accuracy of the two-alternative condition
between the population and summary models. As in the
previous experiments, we observed that the population model
consistently overestimated the accuracy in the two-alternative
condition (observed accuracy= 83.7%; predicted accuracy=
85.9%, t(10)= 4.31, p= 0.002, 95% CI [1.1%, 3.3%]), whereas
the summary model predicted the observed accuracy well
(predicted accuracy= 83.1%, t(10)=−1.37, p= 0.2, 95% CI=
[−1.7%, 0.4%]) (Fig. 7b). In a direct comparison between the
two models, the summary model predicted the observed task
accuracy better for nine out of 11 subjects (Fig. 7c).

Finally, we compared the population and summary models’ fits
to the whole distribution of responses. On average, the AIC value
of the summary model was lower by 5.47 points than the
population model corresponding to the summary model being
15.40 times more likely for the average subject (Fig. 7d). The total

AIC difference across all subjects was 60.15 points lower for the
summary model, corresponding to the summary model being
1.15 × 1013 times more likely than the population model.

Discussion
We investigated whether the decision-level representation in
decisions with multiple alternatives consists of a copy of the
sensory representation or only a summary of it. We performed
four experiments with either discrete stimulus categories or
continuous stimuli producing multimodal distributions. The
results across all experiments showed that the population model
that assumes no loss of information from sensory to decision-
making circuits did not provide a good fit to the data. Instead, the
summary model, which assumes that decision-making circuits
represent a reduced form of the sensory distribution, consistently
provided a substantially better fit. These results strongly suggest
that deliberate decision making for multiple alternatives only has
access to a summary form of the sensory representation.

To the best of our knowledge, the current experiments are the
first to address the question of whether complex sensory codes for
a single stimulus can be accurately represented in decision-
making circuits. Prior studies have convincingly demonstrated
that humans can form complex, non-Gaussian9 and even bimo-
dal10 priors over repeated exposures to a given stimulus. How-
ever, it should be emphasized that this previous research has
focused on the ability to learn a prior over many trials and did not
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examine the ability to use the sensory representation produced by
a single stimulus on a single trial.

Why is it that decision-making circuits do not maintain a copy
of the full sensory representation? While our study does not
directly address the origins of this suboptimality, it is likely that
the reason for the suboptimality lies in decision-making circuits
having markedly smaller capacity than sensory circuits. One
potential reason for the smaller capacity is that decision-making
circuits have to be able to represent many different features (e.g.,
orientation, color, shape, object identity, etc.) each of which is
processed in dedicated sensory regions. According to this line of
reasoning, the generality inherent in decision-level representa-
tions necessitates that detail present in sensory cortex is lost.
A related reason for the information loss in decision-making
circuits is that the representations in such circuits often need to
be maintained over a few seconds and therefore are subject to the
well-known short-term memory decay11–14. For example, even
though all conditions in our task were shown with a 0-ms delay,
information may need to be passed serially from sensory to
decision-making circuits thus inherently inducing short-term
memory demands. According to this line of reasoning, even
if decision-making circuits can represent a full copy of the
information in sensory cortex, that copy will decay as soon as it
begins to be assembled and thus information loss with necessarily
accrue before the representation can be used for subsequent
computations. Therefore, both the necessary generality of
decision-level representations and the inherent limitations of
short-term memory likely contribute to the sparse representations
in decision-making circuits.

If decision-making circuits indeed only have access to a sum-
mary form of the sensory representation, does that mean that
absolutely no computations can be based on the complete sensory
representations? There is evidence that decisions can take into
account the full sensory representation both in simple situations
where only two alternatives are present and in cases of automatic
multisensory integration3,15–19. In general, automated computa-
tions performed directly on the sensory representations may use
the whole sensory representation19. Therefore, certain types of
decision making can be performed via mechanisms that do
indeed take advantage of the entire sensory representation with
either no or minimal loss of information. However, it is likely that
such computations are restricted to either very simple decisions
or processes that are already automated. On the other hand, the
last stage of decision-making supporting nonautomatic, flexible,
and deliberate decisions (which require short-term memory
maintenance) only has access to a summary of the sensory
representation.

Our findings can be misinterpreted as suggesting that complex
visual displays are represented as a point estimate: that is,
the decision-level representation features only the best guess of
the system (e.g., 60° orientation, red color, or the plus symbol).
The possibility of a decision-level representation consisting of
a single point estimate has been thoroughly debunked20–24. For
example, a point estimate does not allow us to rate how confident
we are in our decision because we lack a sense of how uncertain
our point estimate is. Given that humans and animals can use
confidence ratings to judge the likely accuracy of their deci-
sions25–27, decision-making circuits must have access to more
than a point estimate of the stimulus.

It should therefore be clarified that our summary model does
not imply that decision making operates on point estimates.
Indeed, as conceptualized in Fig. 1, the summary model assumes
that subjects have access to both the identity of the most likely
stimulus category (e.g., the color white) and the level of activity
associated with that stimulus category. The level of activity can
then be used as a measure of uncertainty, and confidence levels

can be based on this level. Such confidence ratings will be less
informative than the perceptual decision, which is exactly what
has been observed in a number of studies2,28,29. In addition, this
type of confidence generation may explain findings that con-
fidence tends to be biased towards the level of the evidence for the
chosen stimulus category and tends to ignore the level of evidence
against the chosen category30–35. Thus, a summary model, con-
sisting of the identity of the most likely stimulus and the level of
activity associated with this stimulus, appears to be broadly
consistent with findings related to how people compute uncer-
tainty and is qualitatively different than a decision-level repre-
sentation consisting only of a point estimate.

Another important question concerns whether any additional
information is extracted from the sensory representation beyond
what is assumed by the summary model. It is well known that
humans can quickly and accurately extract the gist of a scene36–38,
as well as the statistical structure of an image39. Therefore, it
appears that rich information is extracted during the time when the
stimulus is being viewed. In fact, this information often goes
beyond the extraction of just the identity of the most likely sti-
mulus and the level of activity associated with this stimulus
assumed by our summary model. For example, our moving dots
stimulus in Experiment 4 resulted in the perception of three sur-
faces sliding on top of each other. This means that what was
extracted in that experiment was the approximate location of each
of the three peaks of the trimodal sensory distribution. Similarly,
the subjects in our Experiment 1 were certainly aware that four
different colors were presented in each display and would have
noticed if we ever presented additional colors. Subjects, therefore,
had access to the identity of the different colors presented even
though they did not have information about the activity level
associated with each color. Thus, our summary model is likely to
be an oversimplification of the actual representation used for
decision-making. This point is further underscored by the fact that
when predicting the accuracy in the two-alternative condition, the
summary model showed a slight but systematic overprediction in
Experiment 1 but underprediction in Experiment 2 (though it was
better calibrated in Experiment 4).

Thus, we do not claim that rich information about the visual
scene cannot be quickly and efficiently extracted (it can). What
our results do suggest, however, is that decision-making circuits
do not create a copy of the detailed sensory representation that
can be used after the disappearance of the stimulus. This con-
clusion is reminiscent of the way deep convolutional neural
networks (CNNs) operate: the decisions of these networks are
based on compressed representations in the later layers rather
than the detailed representations in the early layers40,41. In other
words, even though CNNs extract complex representations in
their early layers, the networks do not perform decision making
based directly on these sensory-like representations in their early
layers.

In conclusion, we found evidence from one exploratory
(Experiment 1) and two preregistered (Experiments 2 and 3)
studies that deliberate decision making for discrete stimulus
categories is performed based on a summary of, rather than the
whole, sensory representation. A final study (Experiment 4)
extended these results to stimuli that give rise to continuous
multimodal distributions. Our findings demonstrate that flexible
computations may not be performed using the sensory activity
itself but only a summary form of that activity.

Methods
Subjects. A total of 63 subjects participated in the four experiments. Experiment 1
had 32 subjects (15 females, mean age= 20.13, SD= 2.21, range= 18–29),
Experiment 2 had 10 subjects (7 females, mean age= 20.5, SD= 3.06, range=
18–28), Experiment 3 had 10 subjects (5 females, mean age= 20.8, SD= 3.55,
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range= 18–28), and Experiment 4 had 11 subjects (6 females, mean age= 21.45,
SD= 2.5, range= 20–28). Each subject participated in only one experiment. All
subjects provided informed consent and had normal or corrected-to-normal vision.
The study was approved by the Georgia Tech Institutional Review Board (H15308).

Apparatus and experiment environment. The experiments stimuli were pre-
sented on a 21.5-inch iMac monitor in a dark room. The distance between the
monitor and the subjects was 60 cm. The stimuli were created in MATLAB, using
Psychtoolbox 342.

Experiment 1. The stimulus consisted of 49 circles colored in four different colors
—red, blue, green, and white—presented in a 7 × 7 grid on black background. The
diameter of each colored circle was 0.24° and the distance between the centers of
two adjacent circles was 0.6°. The grid was located at the center of the screen. On
each trial, one of the four colors was dominant—it was featured in 16 different
locations—whereas the other three colors were nondominant and were featured in
11 locations each. The exact locations of each color were pseudo-randomly chosen
so that each color was presented the desired number of times.

A trial began with a 500-ms fixation followed by 500-ms stimulus presentation.
Subjects then indicated the dominant color in the display and provided a
confidence rating without time pressure.

There were three different conditions in the experiment. In the first condition,
subjects could choose any of the four colors (four-alternative condition). In the
second condition, after the stimulus offset subjects were asked to choose between
only two options that were not announced in advance—one was always the correct
dominant color and the other was a randomly selected nondominant color (two-
alternative condition). Finally, in the third condition, subjects were told in advance
which two colors will be queried at the end of the trial (advance warning
condition). For the purposes of the current analyses, we only analyzed the four-
and two-alternative conditions. The advanced warning condition and the
confidence ratings were not analyzed.

Subjects completed six runs, each consisting of three 35-trial blocks (for a total
of 630 trials). The three conditions used in the experiment were blocked such that
one block in each run consisted entirely of trials from one condition and each run
included one block from each condition. Subjects were given 15-s breaks between
blocks and untimed breaks between runs. Before the start of the main experiment,
subjects completed a training session where they completed 15 trials per condition
with trial-to-trial feedback, and another 15 trials per condition without trial-to-trial
feedback. No explicit feedback was provided during the main experiment in any of
Experiments 1–4 though the presence of second answers in Experiment 3 served as
a form of feedback that those specific trials were wrong. We did not hypothesize
that the presence or absence of feedback would alter the results in a systematic way
and therefore chose to withhold feedback as in our previous experiments43,44.

Experiment 2. Following our exploratory analyses on the data from Experiment 1,
we preregistered two additional experiments (Experiments 2 and 3) ([osf.io/dr89k/]).
These experiments were designed to generalize the results from Experiment 1 and to
obtain stronger evidence for our model comparison results on the individual subject
level. Consequently, we had fewer number of subjects in Experiments 2 and 3 but
each subject completed many more trials. We ended up making three deviations
from the preregistration: (1) we included a different number of locations for non-
dominant items (the preregistration wrongly indicated a number that is impossible
given the number of categories and total number of characters), (2) we used a dot for
the fixation even though the preregistration indicated that we would use a cross-
hairline, and (3) we tested additional models (the preregistration only included the
population and summary models from Experiment 1).

The stimulus in Experiments 2 and 3 consisted of 49 characters from among six
possible symbols (i.e.,?, #, $, %, +, and >) presented in a 7 × 7 grid. The symbols
were chosen to be maximally different from each other. The symbols’ width was
0.382° on average and height was 0.66° on average. The distance between two
centers of adjacent symbols was 1.1°. The symbols were presented in white on black
background. On each trial, one of the six symbols was dominant—it was featured
in 14 different locations—whereas the other five were nondominant and were
featured in 7 locations each. The exact locations in the 7 × 7 grid where each
symbol was displayed were pseudo-randomly chosen so that each symbol was
presented the desired number of times.

Each trial began with a 500-ms fixation, followed by a 500-ms stimulus
presentation. The stimuli were then masked for 100 ms with a 7 × 7 grid of
ellipsoid-shaped images consisting of uniformly distributed noise pixels. Each
ellipsoid had a width of 0.54° and height of 0.95°, ensuring that it entirely covered
each symbol. After the offset of the mask, subjects indicated the dominant symbol
in the display without time pressure. No confidence ratings were obtained. The
experiment had two conditions equivalent to the first two conditions in Experiment
1. In the first condition, subjects had to choose the dominant symbol among all six
alternatives (six-alternative condition). In the second condition, subjects had to
choose between two alternatives that were not announced in advance: the correct
dominant symbol and a randomly selected nondominant symbol (two-alternative
condition).

To obtain clear individual-level results, we collected data from each subject over
the course of three different days. On each day, subjects completed 5 runs, each
consisting of 4 blocks of 50 trials (for a total of 3000 trials per subject). We note
that this very large number of trials makes it unlikely that any of our results in this
or the subsequent experiments (which featured the same total number of trials) are
due to insufficient training. The six- and two-alternative condition blocks were
presented alternately, so that there were two blocks of each condition in a run.
Subjects were given 15-s breaks between blocks and untimed breaks between runs.
Before the start of the main experiment, subjects were given a short training on
each day of the experiment.

Experiment 3. Experiment 3 used the same stimuli as in Experiment 2. Similar to
Experiment 2, we presented a 500-ms fixation, a 500-ms stimulus, a 100-ms mask,
and finally a response screen. Experiment 3 consisted of a single condition—
subjects always chose the dominant symbol among all six alternatives. However, on
40% of trials in which subjects gave a wrong answer, they were asked to provide a
second answer by choosing among the remaining five symbols. Subjects could take
as much time as they wanted for both responses. Subjects again completed 3000
trials over the course of three different days in a manner equivalent to
Experiment 2.

Experiment 4. Experiment 4 employed a modified version of moving dots stimulus
adapted from Treue et al.8. Three groups of dots moved in three different directions
separated by 120°. Unlike most other experiments with moving dots, here all dots
moved coherently in one of the three directions. The dots (density: 7.74/degree2;
speed: 4°/s) were white and were presented inside a black circle (3° radius) posi-
tioned at the center of the screen on gray background. Each dot moved in one of
the three directions and was redrawn to a random position if it went outside the
black circle. In each trial, a dominant direction was randomly selected, and the two
nondominant directions were fixed to ±120° from it. The dominant direction had a
larger proportion of dots moving in that direction. This proportion was indivi-
dually thresholded for each subject before the main experiment and was always
greater than the proportions of dots moving in each nondominant direction (which
were equal to each other).

Each trial began with a white fixation cross presented for 1 s. The moving dots
stimulus was then presented for 500 ms, followed immediately by the response
screen which randomly assigned the numbers 1, 2, and 3 to the three directions of
motion (see Fig. 7a). Subjects’ task was to press the keyboard number
corresponding to the dominant motion direction. Similar to Experiments 1 and 2,
there were two conditions: subjects chose the dominant direction of motion among
all three directions (three-alternative condition) or between the dominant and one
randomly chosen nondominant direction (two-alternative condition). In the two-
alternative condition, the two available options were colored in white and the
unavailable option was colored in black.

Each subject completed three sessions of the experiment on different days. Each
session started with a short training session. On the first day, subjects completed six
blocks of 40 trials with the three-alternative condition. The proportion of dots
moving in the dominant direction was initially set to 60%. After each block, we
updated the proportion of dots moving in the dominant direction such that the
proportion of dots for the dominant direction increased by 10% if accuracy was
lower than 60% or decreased by 10% if accuracy was greater than 80%. Once the
task accuracy fell in the 60–80% range, the proportion of dots moving in the
dominant direction was adjusted by half of a previous proportion change. After the
six blocks, subjects’ performance was reviewed by an experimenter who could
further adjust the proportion of dots moving in the dominant direction. Once
selected, the proportion of dots moving in the dominant direction was fixed for all
sessions. Each session had 5 runs, each consisting of 4 blocks of 50 trials (for a total
of 3000 trials per subject). The three- and two-alternative conditions were
presented in alternate blocks with the condition presented first counterbalanced
between subjects.

Model development for Experiments 1–3. We developed and compared two
main models of the decision-level representation. According to the population
model, decision-making circuits have access to the whole sensory representation.
On the other hand, according to the summary model, decision-making circuits
only have the access to a summary of the sensory representation but not to the
whole sensory distribution.

In order to compare the population and summary models, we first had to
develop a model of the sensory representation. We created this model using the
four- and six-alternative conditions in Experiments 1 and 2, and the first answer in
Experiment 3. The population and summary models were then used to make
predictions about the two-alternative condition in Experiments 1 and 2, and the
second answer in Experiment 3. These predictions were made without the use of
any extra parameters.

We created a model of the sensory representation for Experiment 1 as follows.
We assumed that each of the four types of stimuli (red, blue, green, or white being
the dominant color) produced variable across-trial activity corresponding to each
of the four colors. We modeled this activity as Gaussian distributions whose mean
(μ) is a free parameter and variance is set to one. However, in our experiments, the
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perceptual decisions only depended on the relative values of the activity levels and
not on their absolute values. In other words, adding a constant to all four μs for a
given dominant stimulus would result in equivalent decisions. Therefore, without
loss of generality, we set the mean for the activity corresponding to each dominant
color as 0. This procedure resulted in 12 different free parameters such that for
each of the 4 possible dominant colors there were 3 μs corresponding to each of the
nondominant colors. Finally, we included an additional parameter that models the
lapse rate. Note that the inclusion of a lapse rate parameter has a greater influence
on percent correct in the two-alternative compared to the four-alternative
condition because overall performance is higher in the two-alternative condition.
Therefore, introducing a lapse rate parameter favors the population model by
leading to predictions of lower performance in the two-alternative condition
(which helps the population model since it consistently predicts higher
performance than what was empirically observed).

The sensory representation was modeled in a similar fashion in Experiments 2
and 3. In both cases, the model was created based on subjects choosing between all
available options (i.e., the six-alternative condition in Experiment 2 and the first
answer in Experiment 3). The model of the sensory representation in Experiments
2 and 3 thus had 30 free parameters related to the sensory activations (for each of
the six possible dominant symbols there were five μs corresponding to each of the
nondominant symbols) and an additional free parameter for the lapse rate.

We modeled the activations produced by each stimulus type separately to
capture potential relationships between different colors or symbols (e.g., some color
pairs may be perceptually more similar than others). However, we re-did all
analyses using the simplifying assumption that when a color is nondominant, that
color has the same μ regardless of which the dominant color is. This assumption
allowed us to significantly reduce the number of parameters in our model of the
sensory representation. In this alternative model of the sensory representation, the
mean activity for each color/symbol was determined only based on whether that
color/symbol was dominant or not. Therefore, we included two free parameters for
each color/symbol. However, because of the issue described above (adding a
constant to all μs in a given experiment would result in identical decisions), we
fixed one of the μs to 0. This modeling approach reduced the total number of free
parameters to eight in Experiment 1 (seven μs and a lapse rate) and 12 free
parameters in Experiments 2 and 3 (11 μs and a lapse rate). This modeling
approach produced virtually the same results (Supplementary Fig. 5).

Lastly, we considered two different instantiations of the summary model for
Experiment 3. In the first instantiation, which we refer to as the Summary &
Random Choice model, it is assumed that when the first answer is wrong, then
the subject would randomly pick a second answer among the remaining options.
In the second instantiation, which we refer to as the Summary & Strategic
Choice model, it is assumed that when the first answer is wrong, then the subject
would pick the stimulus category of a randomly recalled symbol from the
original 7 × 7 grid that is different from the stimulus category chosen with the
first answer. According to this model, the subject would pick the second answer
correctly 33.3% of the time and each incorrect symbol will be chosen 16.7% of
the time (Supplementary Fig. 4).

Model development for Experiment 4. Experiment 4 employed moving dots and
required subjects to indicate the dominant direction of motion. Therefore, unlike
the tasks in Experiments 1–3 that were based on discrete categories of stimuli, the
task in Experiment 4 featured a continuous variable (direction of motion, varying
from 0° to 360°). However, despite the continuous nature of the stimulus, the three
directions of motion could be easily identified implying that the stimulus resulted
in a trimodal sensory distribution8. This allowed us to use the same modeling
approach from Experiments 1–3 by essentially treating the three motion directions
as discrete stimuli. We again developed a model of the sensory representation that
was fit to the three-alternative condition. Unlike Experiments 1–3 where the
categories of stimuli were fixed, here the dominant direction of motion was chosen
randomly (from 0° to 360°) on every trial. Therefore, the model only had para-
meters for the heights of the nondominant and dominant directions of motion.
Because, just as in the previous experiments, adding a constant to all both para-
meters would result in identical decisions, the parameters for the nondominant
direction was fixed thus leaving us with a single free parameter. Once the model
was fit to the data from the three-alternative condition, the population and sum-
mary models had no free parameters when applied to the data from the two-
alternative condition.

Model fitting and model comparison. For all four experiments, we fit the models
to the data as previously45–48 using a maximum likelihood estimation approach.
The models were fit to the full distribution of probabilities of each response type
contingent on each stimulus type:

Log likelihood ¼
X

i;j

logðpijÞ ´ nij; ð1Þ

where pij is the predicted probability of giving a response i when stimulus j is
presented, whereas nij is the observed number of trials where a response i was given
when stimulus j was presented. We give formulas for computing pij in a simplified
model without a lapse rate in the Supplementary Methods. Because the analytical
expressions to obtain pij are difficult to compute, we derived the model behavior for

every set of parameters by numerically simulating 100,000 individual trials with
that parameter set. Model fitting was done by finding the maximum-likelihood
parameter values using simulated annealing49. Fitting was conducted separately for
each subject.

Based on the parameters of the model describing the sensory representation, we
generated predictions for the two-alternative condition (Experiments 1, 2, and 4)
and the second answer (Experiment 3) for both the population and summary
models. These predictions contained no free parameters. To compare the models,
we computed AIC based on the log-likelihood ðlogðLÞÞ for each model using the
formula:

AIC ¼ �2 ´ logðLÞ þ 2 ´ k; ð2Þ
where k is the number of parameters of a model. Because both the population and
summary models had no free parameters, this formula simplifies to
AIC ¼ �2 ´ logðLÞ. Note other measures, such as the AIC corrected for small
sample sizes (AICc) given by the formula:

AICc ¼ �2 ´ logðLÞ þ 2 ´ kþ 2ðk2 þ kÞ
n� k� 1

; ð3Þ

where n is the total number of observations, and the Bayesian Information
Criterion (BIC) given by the formula:

BIC ¼ �2 ´ logðLÞ þ k ´ logðnÞ ð4Þ
would result in the exact same values as AIC for k= 0. We chose to report AIC
values instead of the raw logðLÞ values because of their wider usage and larger
familiarity but all conclusions would remain the same if the raw logðLÞ values are
considered. Note that lower AIC values correspond to better model fits.

Statistical tests. All statistical tests reported are two-sided paired t tests.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Model fitting data and results of the four experiments are available at the OSF repository
(https://osf.io/d2b9v)50. In addition, the data from Experiment 1 were made available on
the Confidence Database (https://osf.io/s46pr/)51. A reporting summary for this article is
available as a Supplementary Information file. Source data are provided with this paper.

Code availability
The analysis codes for all four experiments are available at the OSF repository (https://
osf.io/d2b9v)50.
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