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Although the global response to COVID-19 has not been entirely unified, the
opportunity arises to assess the impact of regional public health interventions
and to classify strategies according to their outcome. Analysis of genetic se-
quence data gathered over the course of the pandemic allows us to link the
dynamics associated with networks of connected individuals with specific in-
terventions. In this study, clusters of transmission were inferred from a phylo-
genetic tree representing the relationships of patient sequences sampled from
December 30, 2019 to April 17, 2020. Metadata comprising sampling time and
location were used to define the global behavior of transmission over this ear-
lier sampling period, but also the involvement of individual regions in trans-
mission cluster dynamics. Results demonstrate a positive impact of interna-

tional travel restrictions and nationwide lockdowns on global cluster dynam-
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ics. However, residual, localized clusters displayed a wide range of estimated
initial secondary infection rates, for which uniform public health interventions
are unlikely to have sustainable effects. Our findings highlight the presence
of so-called '"super-spreaders'', with the propensity to infect a larger-than-
average number of people, in countries, such as the USA, for which additional
mitigation efforts targeting events surrounding this type of spread are urgently

needed to curb further dissemination of SARS-CoV-2.

Since its emergence from Wuhan, Hubei Province, China, in 2019 and its established human-
to-human transmission, government and local bodies have been working to control the spread
of coronavirus disease (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the pathogen responsible for this disease, is a single-stranded RNA virus that likely
emerged through recombination events within animal reservoirs infected by different strains
(1, 2). Since December 2019, its rapid spread throughout the world has already resulted in
more than ten million cases and hundreds of thousands deaths, with no vaccine or specialized
medication currently available.

Prior to COVID-19, the most recent global pandemic that presented a serious public health
emergency was caused by influenza A HIN1 strain in 2009. HIN1’s threat exposed vulnerable
public health capacities at the global, national and local levels, which we are facing once again,
such as limitations of scientific knowledge, dilemmas in decision making, and communication
among experts, policymakers and the public (3). The failure of preventive measures can lead to
outbreaks crossing borders and exceeding national capacities (4). The likelihood of worldwide
spread for pathogens characterized by human-to-human transmission, such as HIN1 and SARS-
CoV-2, is extremely high with today’s globalized economy and ease of international travel and
requires additional, concerted efforts of governments and public health institutions to prevent or

contain outbreaks. As individual nations have responded in various ways, and at varying times
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throughout the pandemic, understanding the impact of these efforts on the global and regional
transmission dynamics of the virus are imperative in defining a strategy to assess the current
situation and prevent similar scenarios in the future.

Genomic data sampled from viral epidemics offer a unique opportunity to evaluate not only
the evolution of the virus over time but also the changing viral population dynamics imprinted
in the evolutionary history. These population dynamics, though often reflective of the neutral
processes of evolution (5), can at times be traced to significant ecological and epidemiological
events (6). Sample collection dates are critical in these connections, as when combined with the
assumption of relatively stable mutation rates over time, allow for genetic differences to be re-
scaled as differences in time. The timing of population changes, inferred from genetic changes,
can then be compared with external, contextual data (e.g., (7)) to investigate potential links
between public health interventions (or other relevant events) and viral population growth and
spread. Global analyses of viral spread using genomic data can reveal important information
regarding the emergence of a novel virus, such as the phylogenetic analysis of HIN1 (8), which
informed the community of the adaptive process of HIN1 from its original host (swine) to
humans and its subsequent challenges in escape from the human immune system. Since then,
large projects aimed at facilitating and optimizing the sharing of data and results for real-time
projections of viral spread have helped in tracking SARS-CoV-2 global dissemination (e.g.,
(9, 10)). Yet, given that viruses evolve at a relatively rapid rate, considering separate isolated
geographic areas as separate epidemics may also be warranted when attempting to understand
how regional efforts drive viral evolutionary and population dynamic patterns. A virus from
country X that seeds infection in country Y (founder event) becomes, over time, genetically
distinct from the strains circulating in the country of origin, even in the absence of selection, due
to genetic drift. On the other hand, in the era of globalization, analyses on regional epidemics

limited to regional data can miss out on critical travel-mediated variables, such as separate,
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independent introductions of the virus (/7).

Viral genetic data are not only useful in reconstructing the evolutionary and demographic
history of a viral epidemic but also in identifying putative direct transmission events when a
priori knowledge, or estimates, of the maximum genetic distance that separates linked individ-
uals exists (e.g., (/2)). Transmission clusters are of interest to public health, as they represent
groups of individuals related by a common denominator, or risk factor, such as locality, social
network structure, or other behavior (e.g., (13)); the connectedness of these individuals is re-
flected in closely related genetic sequences. With advanced efforts in SARS-CoV-2 genomic
sequencing, phylogenetic tools can help to identify and characterize clusters of transmission, as
well as regions involved in those clusters. Using such transmission cluster data, we propose that
patterns in cluster formation, growth, and connectedness among otherwise separate geographi-
cal regions offer insight not only into global components of the public health response, but can
also help in identifying clusters and regions for which a more specific strategy to control local

spread is required.

Results

Cluster size and composition Using a large genomic dataset collected from the Global Ini-
tiative on Sharing All Influenza Data (GISAID) aggregation of SARS-CoV-2 data, we hypoth-
esized the existence of a relationship between international travel restrictions and overall trans-
mission cluster dynamics, as well as sufficient variability among clusters in both space and time
that would reveal the impact of varied local public health interventions. Based on the CDC
definition of molecular transmission clusters for HIV, well-supported clades of viral sequences
(one sequence per patient) comprised of at least 5 individuals with similar genetic distances
were considered in this study to qualify as putative transmission clusters (also used in (/4) for

SARS-CoV-2). The criterion for similar genetic distances within these clades was a median
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patristic distance (branch length separating sequences within the tree) of <0.009% (see Sup-
plementary Materials) in a maximum likelihood (ML) phylogenetic tree inferred from 11,069
SARS-CoV-2 genomic sequences. This distance, representing the median genetic difference
between two sampled individuals is less than the median difference observed within a single in-
dividual (0.014%) in the study by Shen et al. (2020) (/5) on patients admitted with COVID-19
pneumonia. By only considering individuals that share a genetic distance less than would be
expected during the evolution of the virus within a single host, we have greater confidence in in-
fections separated by a short amount of time and thus an epidemiological linkage or connection;
increasing genetic distance leads to increased uncertainty as to the relationship of individuals
within a cluster and a greater likelihood of the inclusion of multiple risk factors. The majority
of clusters identified using this method included < 25 individuals, with one large outlier cluster
of 185 individuals (184 from the USA and 1 from Denmark) (Figure 1A). In terms of coun-
try representation within transmission clusters, the majority of the identified clusters included
viral sequences isolated from patients in 1 — 5 countries, with the majority country in clusters
comprised of only two countries representing 50-99% of the sequences (Figure 1B). Clusters
including 6-10 countries were more evenly distributed, while the majority country represented
70% of the sequences in the only cluster with strains from 11 countries. The results collectively
indicate a significant role for travel in connecting several countries through putative direct trans-
mission events, rather than isolated epidemics seeded by single introductions, consistent with
previous studies (16, 17).

As with conventional epidemiological analyses, sampling bias can impact results and in-
terpretation and has been inherent to SARS-CoV-2 sample collection throughout the pandemic
(18). In our analysis, the number of clusters involving each of the countries with available se-
quence data as of April 24, 2020, were distributed similarly to the number of available genomes

indicating, unsurprisingly, that the number of clusters detected for a particular country is limited
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by the number of available samples from that locale (Figure 2A). Hence, no direct comparison
could be made regarding the number of clusters involving different countries. This was not the
case, however, for the average size (number of persons) of clusters associated with each country,
since large clusters were not always detected in countries with more samples available, such as
the United Kingdom (UK) and United States of America (USA) (Figure 2B). In other words,
despite potential lack of information from countries with reduced datasets, a global perspective
on transmission cluster patterns related to cluster size might nevertheless be investigated. It is
important to keep in mind that low sequence presence is not necessarily an indicator of low
infection rates, as the fraction of total infected individuals that were sampled may, in fact, be
high for these countries, resulting in a different type of regional sampling bias. For example, al-
though as of April 24, over 3,000 sequences were submitted for the UK, this comprised < 25%
of total infections, whereas Hong Kong reportedly submitted at least one genome for every con-
firmed case (Figure 2C). Given that individuals linked through transmission in a small amount
of time share a small genetic difference, on which phylogenetic cluster inference relies, missed
sampling can prevent the inclusion of individuals within a cluster. Hence, we anticipated that
sampled individuals from countries with sequencing more representative of the infected popula-
tion (i.e., genome per confirmed case value closer to 1) would be more likely to cluster, resulting
in a larger fraction of clustered individuals. However, there was no clear relationship (linear re-
gression R? < 0.0084) between the percentage of individuals within a country that are included
in clusters and the number of retrieved genomes per confirmed cases (Figure 2C). This finding
indicates that country-specific contributions to clustering were not biased toward countries with
larger fractions of sampled individuals from the infected population. Therefore, sub-sampling
as an effort to mitigate the effects of sampling bias at the country level, though often performed
for phylogenetic analyses of viral geographical spread (/9), was not deemed necessary for our

study. On the other hand, it is important to notice that due to the lack of information on sam-


https://doi.org/10.1101/2020.11.06.370999
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.06.370999; this version posted November 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

pling strategies used to gather available sequence data, we could not rule out possible effects
of selection bias (i.e., preferential sampling). For example, in certain countries for which rep-
resentative sequencing was low but clustering rate was high, we cannot exclude that sampling

efforts were focused on presumed contact networks in order to locate and quarantine infections.

Cluster origin and epidemiology In order to derive epidemiological information for each de-
tected cluster, branch lengths within the tree were scaled in time by enforcing a molecular clock,
which assumes the accumulation of substitutions has occurred at a constant rate over time. The
time to the most recent common ancestor (TMRCA) of all sequence data was estimated to be
December 6 [25 Nov - 10 Dec] 2019 (Figure S1, consistent with previous demographic model-
based estimate by Andersen et al. (2020) (20). The result was a good indication that date
estimates for remaining internal nodes within the tree were also reliable.

For the majority of the transmission clusters detected in the tree, TMRCAs (i.e., a cluster’s
temporal origin) dated back prior to Feb 20, 2020, with a peak observed between the first week
of February until the first week of March (Figure 3A). These results were robust to genetic
distance thresholds of 0.006% and 0.013% (Figure S2), the latter value representing the 2.5th
percentile of tree-wide distances and maximum diversity observed in Shen et al. (2020) (/5),
as described above. Following this time, a sharp decline in number of newly formed clusters
was evident. Furthermore, despite differing patterns in the number and size of clusters across
individual countries, the global peak in clusters size coincided with the peak in number of new
clusters, around the end of February, as did the number of countries represented in each cluster
(Figure 3A). The overlapping peaks in cluster number and size, as well as number of coun-
tries/cluster in time, suggest a common underlying factor responsible for the decrease in the
rate of cluster formation, growth, and connectivity at the global level. Thus, it appeared reason-

able to hypothesize that efforts to reduce international travel at the beginning of the epidemic
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played a role.

Data on reported travel restrictions (Tables S1 and S2) were obtained from various sources
(see Supplementary Materials), and the cumulative number of reports involving all international
travel, as well as those specifically involving China, were plotted over time to provide context
into travel-related events that would potentially result in the global cluster behavior described
above. The early, elevated rate of accumulation of travel bans, largely comprised of restriction
on immigration from China began to slow on February 15 (slowed accumulation for China-
specific bans on the 6th) (Figure 3B). Accumulation in the number of restrictions remained low
until the onset of nationwide lockdowns (first reported March 08), at which time the steep de-
cline in overall cluster TMRCA, size, and geographical range began. These results strongly
suggest that reduced international travel slowed the formation, growth, and connectivity of
transmission clusters, whereas more local interventions were necessary, and more effective,
in preventing local virus spread.

The median lifespan, or duration, of a transmission cluster was estimated to be approxi-
mately 2 weeks, with the largest cluster extending for over six weeks (Figure 4A). Such a short
duration time (on the order of the longer end of the incubation period (27)), combined with
average cluster sizes of up to 25 sampled individuals, is indicative of SARS-CoV-2 rapid trans-
mission (22). The expected number of secondary cases directly generated by a primary case
in the population, otherwise known as the basic reproductive number ([7;), was calculated as a
function of early changes in the estimated viral effective population size (23) and a normally
distributed infectious period of approximately 2—8 days). R, for the entire pandemic was es-
timated at 5.65 [95% credible interval (CI): 4.37—6.68], consistent with previously reported
Rys by Shen et al. (2020) (/5) and Tang et al. (2020) (24), as well as other published (but
not peer-reviewed) estimates reviewed in Liu et al. (2020) (22). However, in contrast to pre-

vious epidemiological studies, we utilized phylogenetic methods at an increased resolution to
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estimate the transmission potential for individual clusters, which we have already shown can
vary in size and composition over time. In the majority of clusters, Ry ranged from < 1¢02.32,
though Ry values of up to 12 were reported (Figure 4B), indicative of clusters formed through
"super-spreading” events (SSEs), or cases of larger-than-average transmissibility (25). While it
is important to note that accuracy of Iz, estimation is reduced for outbreaks characterized by
true Ry > 5 (23), clusters representing increased secondary infection rates as compared to the
majority population are of importance in the control of infection. As Ry > 1 is indicative of sus-
tainable transmission and vice versa, we investigated the timing and duration of both low(< 1)-
and high(> 1)- Ry clusters. High- R, clusters were more frequently observed between February
and early March (Figure 4C), consistent with the temporal peak in global cluster size. There
was no relationship between Ry and duration (R* < 3.69F — 06), suggesting clusters with
Ry < 1 were still sustained for various lengths of time. Although seemingly counter-intuitive,
this finding can be explained by dynamic transmission patterns, such as a change in the contact
network, or even a later introduction of unsampled super-spreaders. As the R, calculation is
derived from early estimates of the viral effective population size, this value does not depict the
full transmission potential of the group of individuals within the cluster.

Our results point to a drastic reduction in cluster formation, growth, and connectivity fol-
lowing the first week of March. Yet, clusters with Ry, > 2 (earlier estimates of SARS-CoV-2
Ry) were observed during this time (Figure 4C). We next sought to investigate which countries
were involved in the few, albeit seemingly rapidly spreading, clusters that formed following the
onset of lockdown measures (e.g., social distancing). 7y values across clusters for each country
were averaged after being scaled based on the percentage of sequences belonging to that coun-
try, resulting in a weighted mean R, (Figure 5A). Belgium, Luxembourg, and the UK and USA
(alphabetical order only) were estimated to have a weighted mean 2y > 2 in March, whereas

Australia, Iceland, and the Netherlands were approximately 1 or less (R, <1.1, 1.2, and 1,
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respectively) (Figure 5A). In line with global reduction in connectivity, clusters formed after
March 08 consisted of 2 countries or less Figure 5B. The USA formed two clusters comprised
of only US individuals, both with Ry > 2, one of which was estimated as the highest 17y value
(> 10, CI: 7.57-11.94) of all clusters at this time. The three clusters following in ranking com-
prised either Belgium alone (2) or Belgium and neighboring Luxembourg (2), with R0 > 4. All
of these clusters exhibited evidence of sustained transmission, with a duration of greater than
2 weeks, though it is important to note that the addition of more up-to-date sequences may ex-
tend duration times for clusters initiated during this time period. The UK formed three separate
clusters - one isolated, one with primarily UK individuals, and one with primarily Australian
individuals. The two clusters comprised of majority UK sequences were both estimated to have
R0 > 2, whereas the cluster with primarily Australian sequences was characterized as R0 < 1.
Similarly, the second Australian cluster (Australian sequences only) was also characterized as
having a relatively low Ry of < 1.3 (CI:1.20-1.32). Results suggest that the virus was already
spreading rapidly in the USA, Belgium and Luxembourg, and the UK at the time of implemen-
tation of regional mobility restriction efforts and that, despite efforts to restrict international
travel, the UK and Australia maintained travel sufficient to sustain inter-regional transmission.

Recent evidence implicating a mutation in residue 614 of the spike protein of SARS-CoV-2
in increased infectivity (26) and higher mortality (27) offered a possible explanation for in-
creased transmission potential of certain clusters identified in this study. However, despite the
clear advantages at the cellular level of glycine in place of aspartic acid at this site, there was
no relationship between prevalence of glycine (% of individual sequences) within individual
transmission clusters and R, (linear regression R? < 0.00011) or cluster size (R? < 0.0083)

(Figure S3), though generation time was not explored.
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Discussion

Unlike conventional epidemiological surveillance data, viral genetic data can be used to link
infected individuals involved in direct transmission events even when the contact structure is
unknown. Identification of these putative transmission clusters, coupled with phylogenetic in-
ference of cluster dynamics and relevant epidemiological parameters, has provided evidence
of a global pattern in cluster formation, growth, connectivity, as well as transmission potential
over time. The slow rise and subsequent rapid fall in the number and size of forming clusters
over the period of December 30 to April 20, 2020, may have been the results of a change in
global transmission patterns and/or a rate of sampling that did not adequately capture, as re-
cently reported (28), the increased rate in the number of infected individuals. According to the
latter scenario, missed sampling of individuals involved in a transmission cluster can prevent
the detection of links via genetic data, or even conventional surveillance data. However, the
similar temporal pattern observed for the number of countries connected by individual clusters
also suggests a relationship between cluster formation, growth, and connectivity and that an out-
side force was responsible for changing global transmission patterns, rather than problematic
sampling over time.

When placed in the context of the timing and accumulation of public health interventions,
the data provide evidence supporting the benefits of both global and regional response efforts.
Given an incubation period extending to up to 18 days within an individual (29), it is plausible
that specific restriction on international travel involving China, peaking on February 06, could
have resulted in the slowed rate of cluster activity beginning the first week of February. It is
also possible that the rapid increase in overall international travel restrictions, peaking around
February 15, was partially, if not equally, responsible. Whereas additional modeling using

recorded travel data would be highly beneficial in teasing apart the effects of international and
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China-specific travel restrictions on transmission characteristics, the drastic halt in cluster ac-
tivity beginning the first week of March directly coincides with the date of onset of nationwide
lockdowns. This particular finding speaks to the effectiveness of additional non-pharmaceutical
measures taken at the regional level to curb the spread of infection, consistent with previous
reports (30, 31).

Whereas a global reduction in cluster activity in response to efforts to reduce mobility might
be expected given the known role of travel in pathogen spread (32), we anticipated cluster- and
region-specific variation in transmission characteristics, consistent with known difficulties in
controlling regional epidemics. Using viral sequence data and the phylogenetic relationships
among sampled individuals, particularly for an exponentially growing epidemic of limited data
availability (23), we can model relevant epidemiological parameters of interest used in deter-
mining the transmission potential for clusters involving individual countries. It is important to
keep in mind that the results of any phylogenetic study that are dependent on a single tree as-
sume that that a tree best describes the underlying phylogenetic relationships. While it is often
best to summarize results across a sample of similarly plausible trees using Bayesian meth-
ods (33, 34), Bayesian tree reconstruction methods are highly parametric and have difficulty
converging on a reliable distribution of trees and related evolutionary parameters for datasets
as large as that of SARS-CoV-2. For this reason, we only focused this study on portions of the
maximum likelihood tree that were considered to be well supported. Similarly, invaluable meth-
ods exist for the detection and epidemiological characterization of transmission clusters within
the Bayesian framework, such as the multi-state birth death model (bdmm) (35); however, even
the bdmm is limited to less than 1000 sequences (unpublished work by Scire et al. ((36)). While
sub-sampling strategies used to reduce dataset size and potential sampling biases are widely ap-
preciated in the field of phylogenetic epidemiology (e.g, (19)), they inherently result in loss of

smaller clusters, which play an important role in assessing the effect of social distancing in-
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terventions. As our study is based on hypotheses regarding not only cluster characteristics but
also cluster size distribution, a skew towards detection of larger clusters as a result of this loss
of information was undesirable. Post hoc transmission characterization of individual clusters
using a Bayesian framework for population dynamics estimates that has demonstrated accuracy
for low-signal sequence data (i.e., small clusters) (23) was thus ideal for an in-depth investiga-
tion of transmission cluster dynamics at the global and regional scales. Using this method, four
countries (the USA, Belgium and neighboring Luxembourg, and the UK) were identified as
harboring isolated clusters with elevated transmission potential following the global initiation
of nationwide lockdowns, potentially fostered by super-spreaders. Federal policies regarding
lockdowns were put into place for Belgium, Luxembourg, and the UK beginning mid-March,
which were likely necessary in absolving highly active clusters such as those observed in this
study; though federal guidelines were issued at a similar time in the USA (March 16th), manda-
tory US policy regarding lockdowns was not put into motion, allowing individual states to adopt
their own policies at different times. Depending on the location of transmission clusters within
the USA, delayed lockdowns could have resulted in continued rapid transmission of the virus.
It is also important to keep in mind that at the time of this study, a dramatic rebound was be-
ing observed in the number of detected daily cases in the USA, whereas the UK, Belgium and
Luxembourg were demonstrating a consistent decline with occasional peaks (9). Moreover, the
epidemic at the time was exponentially spreading in Brazil and India, as well as steadily in
Russia - all countries that were not captured by our analysis based on sequence data up to the
last week in April, 2020. In this context, our results emphasize the importance of additional
country-specific transmission cluster analysis for data collected more recently than April 20.

It would be reasonable to suspect that the identification of the USA, Belgium, Luxembourg,
and the UK as problematic countries was aided by the availability of sequence data from these

locations (i.e., attributed to a sufficient number of individuals and genetic diversity to classify
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and characterize corresponding clusters), which at first points to a potential problem with sam-
pling bias. Although these countries were indeed at the high end of the spectrum in terms of
available sequence data, our analyses relied on averaged values across clusters, which we show
is unrelated to genome availability, unlike number of clusters per country. These countries
exhibited a wide range of clustering frequency (20-60% of individuals) with no relation to sam-
pling representation (fraction of the infected population sampled), which varied from 1-30%,
indicating with a high degree of confidence, that they were not identified as a result of sam-
pling bias. Moreover, countries (Iceland, Australia, and the Netherlands) identified as having
low transmission potential after March 08 (R less than or approximately 1) had a comparable
number of available genomes within the distribution, lending support to the conclusion. This is
not to say that selection bias, a form of sampling bias, may not be associated with the results.
For example, Iceland’s low R, during this time may not be surprising, given that the coun-
try’s genetic powerhouse, deCODE, began screening high-risk (symptomatic) individuals and
those returning, or in contact with an individual, from high-risk countries as early as January
31 (37). Therefore, while in our study, concerns for the sampling representation of the overall
infected population is negligible, more sophisticated quantitative measures to assess the impact
of sampling biases, specifically selection bias, will be necessary in future investigations.

In summary, we propose that phylogenetic identification and characterization of transmis-
sion clusters using the vast resources of viral genomic data currently available can provide both
global and regional perspectives on viral spread. When collected early in the course of an epi-
demic, as was the the case for the SARS-CoV-2, this approach may help to pinpoint locations for
which increased efforts at the level of local government might be necessary to mitigate growth
on a pandemic scale. At the time of the submission of these results, relaxation of these efforts
was on the rise, particularly in the USA. The detection of isolated transmission clusters with

elevated transmission potential in March, despite the rapid decline in global patterns of clus-
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ter activity, points to an important role played by super-spreaders in the current pandemic that
likely pose a threat to relaxation (38) unless measures are taken to quickly recognize and pre-
dict these events. A better understanding of the underlying risk factors associated with related
super-spreading events, including host, environmental, and behavioral factors (39), is neces-
sary for targeting efforts aimed in avoiding recurrent rebounds in epidemic waves. Given the
increased efforts in testing and sampling in the USA, as well as other countries, transmission
cluster dynamic inference can help to identify these events and underlying risk networks for

more precise intervention strategies.
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Figure 2: Transmission cluster characteristics for each country involved. Number of clusters (A), mean
cluster size (B), and percentage of individuals that 2Rister (C) are plotted for each country, as well as the
number of available genomes (A) and genomes per confirmed case reports (C) for comparison.
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