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Abstract

Echocardiography, a simple and noninvasive tool, is the first choice for

screening pulmonary hypertension (PH). However, accurate assessment of

PH, incorporating both the pulmonary artery pressures and additional signs

for PH remained unsatisfied. Thus, this study aimed to develop a machine

learning (ML) model that can automatically evaluate the probability of PH.

This cohort included data from 346 (275 for training set and internal

validation set and 71 for external validation set) patients with suspected PH

patients and receiving right heart catheterization. Echocardiographic images

on parasternal short axis‐papillary muscle level (PSAX‐PML) view from all

patients were collected, labeled, and preprocessed. Local features from each

image were extracted and subsequently integrated to build a ML model. By

adjusting the parameters of the model, the model with the best prediction

effect is finally constructed. We used receiver‐operating characteristic analysis

to evaluate model performance and compared the ML model with the

traditional methods. The accuracy of the ML model for diagnosis of PH was
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significantly higher than the traditional method (0.945 vs. 0.892, p= 0.027

[area under the curve [AUC]]). Similar findings were observed in subgroup

analysis and validated in the external validation set (AUC= 0.950 [95%

CI: 0.897−1.000]). In summary, ML methods could automatically extract

features from traditional PSAX‐PML view and automatically assess the

probability of PH, which were found to outperform traditional echocardio-

graphic assessments.
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INTRODUCTION

Pulmonary hypertension (PH) is a serious disease that
causes pulmonary vasoconstriction and remodeling due to
various causes, causes right heart failure and even death by
increasing pulmonary vascular pressure and resistance. It is
a major global chronic disease that endangers human
health. Growing evidence suggested that even mild
elevations in pulmonary artery pressure estimated with
echocardiography were linked to increased mortality. The
earlier PH was diagnosed, the greater the variety of
treatment options and the greater the benefit to the
patient.1 The gold standard for pulmonary artery pressure
assessment is invasive right heart catheterization (RHC),
which requires hospitalization at a specialized pulmonary
vascular center, and thus limits its widespread use.2

Moreover, it was unrealistic to perform RHC in every
patient. To enable timely diagnosis of PH, widely available
noninvasive tools would be ideal.3

Transthoracic echocardiography had become the main
method for early screening of PH because its advantages of
noninvasiveness and easy popularization.4 The detection
of PH by echocardiography usually relies on tricuspid
regurgitation or pulmonary regurgitation using the
simplified Bernoulli equation.5 However, there have been
a number of earlier studies that indicate that echocardio-
graphic estimates of PA pressure are frequently
inaccurate.6,7 The estimated error ranged from −20 to
+25mmHg compared to data from RHC.8–10 This was
mainly contributed to the morphological variation of
reflux flow and reflux caliber, and right ventricular
volume load and systolic function, intra‐ and interexami-
ner variability, and other factors.11 On the other hand,
using the estimated pressure alone is not sufficient to
diagnose PH. As suggested by the 2022 ESC PH guidelines,
a suspected PH includes estimating the systolic pulmonary
artery pressures (sPAP) and detecting additional signs
suggestive of PH, like signs of RV overload and/or

dysfunction.2 Although additional signs could be obtained
from traditional methods, it highly relies on experienced
investigators and is a time‐consuming process.12

Owing to the development of information technology,
machine learning (ML) and deep learning models have
been widely used to diagnose diseases.9 As reported by
Chih‐Min Liu et al., a deep learning ECG‐trained model
was constructed to diagnose PH, having a high accu-
racy.13 Furthermore, detection and prognostication of
PH could be improved using a deep learning echo-
cardiography model. However, these models have to
integrate multiple aspects of information, not taking the
guideline‐suggested signs for PH into consideration.14 In
addition, they analyzed patients with certain groups of
PH, limiting the generalizability of their findings. Thus,
in the current study, we aimed to construct models to
automatically assess the probability of PH in a more
generalized PH population.

METHOD

Patients

We included patients with suspected PH estimated by
echocardiography in Guangdong Provincial People's
Hospital and Shanghai Pulmonary Hospital from October
2020 to November 2022. Patients whose images were too
poor to train the ML model or whose RHC was performed
more than 24 h beyond the echocardiogram were ex-
cluded. This retrospective study included echocardio-
graphic data collected anonymously from an echo-
cardiography database of the Guangdong Provincial
People's Hospital and Shanghai Pulmonary Hospital. To
overcome the issue of generalizability, a separate external
validation set of 71 patients was gathered who were
performed echocardiography and RHC within 24 h from
other two independent hospitals (The First Affiliated
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Hospital of Guangzhou Medical University and Fuwai
Hospital Chinese Academy of Medical Sciences).

Echocardiography acquisition

A commercially available echocardiography system
(EPIQ 7C Philips or Aloka 880 HITACHI) and 3.5MHz
transducers were used on all patients in the left lateral
decubitus position. To be eligible for inclusion, RHC and
echocardiography had to be performed within 24 h. All
echocardiographic recordings were performed by experi-
enced operators according to the recommendations of the
European Association of Echocardiography.15 We
acquired images of parasternal short axis‐papillary
muscle level (PSAX‐PML) view which required that the
contours of the left and right ventricle (RV) were
included in three cardiac cycles. Patients with poor
image quality and failure to complete RHC within 24 h
would be excluded. We measured tricuspid and pulmo-
nary valve regurgitation, then estimated sPAP and mean
pulmonary artery pressure (mPAP) according to Ber-
noulli's equation.16 In addition, RV fractional area
change (FAC), RV wall thickness (RVWT), tricuspid
annular plane systolic excursion (TAPSE), and tricuspid
annular peak systolic velocity (S') were also measured.

RHC and clinical assessment

Weight and height were routinely measured and
recorded before RHC. RHC was performed in the
catheter laboratory under electrocardiographic supervi-
sion. By placing a 6‐French vascular sheath through the
right femoral vein, a 6‐French MPA 2 catheter (Cordis
Inc.) was inserted into the right heart system. Under
fluoroscopy, the catheter was manipulated to the correct
position and pressures in various parts of the right heart
system were measured. At atmospheric pressure, the
transducers were calibrated to zero before measuring
pressure. Vascular resistance is calculated using the
formula of: “(mPAP‐PCWP)/cardiac output.”17,18 PH was
defined as one in which the mPAP at RHC was more
than 20mmHg.11

Image preprocessing

Figure 1 shows the steps of ML model construction.
Labeling a single section of the left ventricle (LV) and RV
and then using findContours function of openCV to
detect the contour of the tag to train the model detect the
contour of left and RV. Then the drawContours function

is used to draw the contour of the left and RV throughout
the rest of the cardiac cycle, getting labeled timestamps
and unlabeled timestamps. The method is the minimum
bounding rectangle method. Labeled timestamps and
unlabeled timestamps were selected to form new 3D data
set 1 and 3D data set 2, newly formed 3D data set 1 and
3D data set 2 were sliced and then saved as 2D data set 1
and 2D data set 2. A neural network was trained on the
2D data set 1, divided into a training set and a validation
set according to the 8:2 ratio. Reproducibility was
evaluated for the labeled area in 20 randomly selected
subjects. The intraclass correlation coefficient for inter-
observer reproducibility was 0.993 (95% CI: 0.980−0.998),
and the intraclass correlation coefficient for intraobserver
reproducibility was 0.995 (95% CI: 0.981−0.999).

Feature extraction

The long axis and short axis were determined by drawing
the outer rectangle of the two labels, and the two‐
dimensional data of the two labels were obtained. After
that, all timestamps of each patient were traversed. The
long axis, short axis, area, and circumference of LV and
RV and their ratio were calculated for all time of each
patient (Figure 2).

Feature integration and training model

Features obtained from previous steps were preprocessed
and put into the neural network for training. ML per-
formed three methods on the extracted features, such as
the ratio of LV to RV maximal area: Linear regression,
LightGBM, and CatBoost, resulting in three prediction
models.

Model selection and optimization

After comparing the prediction results, ML model by
CatBoost was finally selected as the prediction method,
setting cross‐validation to 50%. To balance the model
efficiency and learning time, we optimized the iterations
from 1000 to 100, the learning rate from 0.03 to 0.05, and
the depth from 6 to 10.

Statistical analysis

We used t‐test analysis to compare continuous variables
between patients with and without PH. Receiver operat-
ing characteristic (ROC) of echocardiography indices was
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used to evaluate their diagnostic power of the traditional
method and ML models. ROC curve analysis results are
presented as area under the curve (AUC). We use paired
comparison method for the comparisons of two ROC
curves.

In addition, considering that the presence of a shunt
may be an additional contributing factor to the echo-
cardiographic image features of PH patients, a subgroup
analysis was performed in patients with and without
congenital heart disease (CHD), including atrial septal
defect, ventricular septal defect, patent ductus arteriosus.

A p‐value < 0.05 was determined to be statistically
significant. All the above‐mentioned statistical were
analyzed by using R (http://www.R-project.org) and

Empower Stats software (http://www.empower.stats.
com, X&Y solutions, Inc.).

RESULTS

Patients

A total of 346 patients with suspected PH were identified
as having both echocardiography and RHC within 24 h
(see Figure 3). The demographics, echocardiography,
RHC data for across patients of training set, and internal
validation set are summarized in Table 1. Among 346
patients, 240 patients were with PH and 106 patients

FIGURE 1 Proposed deep learning
workflow. Manual labeling, preprocessing
steps for short axis single section images,
machining steps visualization of learnt
factors and features, and feature maps.
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were without. In patients with PH, 77 were diagnosed
patients were diagnosed with CHD, 63 with PH
associated with pulmonary artery obstruction, 58 patients
with IPAH, 33 with PH associated with connective tissue

disease, and 7 with PH associated with left heart disease
(Table 2). Among patients without PH, 73 patients had
CHD, 16 had chronic thrombo‐emoblic disease, 8 had
connective tissue disease, 2 had left heart disease, and 7

FIGURE 2 The process of feature extraction and integration of machine learning model. On the left is the feature extraction network,
which is used for feature extraction (obtaining local features and performing image‐level classification) to obtain abstract semantic features.
On the right is the feature fusion network, which uses the encoded abstract features to restore the process of the original image size and get
feature result.

FIGURE 3 Patient flow diagram. PH,
pulmonary hypertension; RHC, right heart
catheterization.
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had severe tricuspid regurgitation. Generally, patients
with PH had higher mean right atrium pressure, mPAP,
sPAP, pulmonary vascular resistance (p< 0.001) than

patients without PH. In addition, patients with PH had
lower TAPSE, S’, FAC, and higher RVWT (all p< 0.001).
The same situation occurred in patients with CHD.

Feasibility

Only 25 patients had insufficient image quality for deep
learning, accounting for 5.9% of the studied patients. The
excluded patients were mainly due to excessive chest fat
or narrow intercostal spaces, causing a poor acoustic
window. In general, the model we built is feasible, and it
is not overly demanding on the quality of the images.

Learnt features

According to each patient's echocardiographic image, all
frames of echocardiographic images of a single patient
were analyzed. Features were extracted from the
segmented images using ML. The extracted features

TABLE 1 Demographics, right heart catheter, and echocardiography

All CHD

No PH (n= 93) PH (n= 182) p No PH(n= 73) PH (n= 77) p

Demographics

Age (years) 40 ± 15 41 ± 15 0.195 40 ± 15 42 ± 15 0.555

Sex female 70 (75%） 138 (76%） 0.919 56 (77%) 56 (73%) 0.575

Echocardiography

LVEF (%) 66 ± 4 67 ± 7 0.169 66 ± 4 66 ± 8 0.632

RVW (mm) 3.8 ± 1.0 6.0 ± 2.2 <0.001 3.8 ± 0.9 6.2 ± 2.4 <0.001

TAPSE (mm) 23.4 ± 6.2 18.2 ± 5.3 <0.001 24.4 ± 5.7 19.8 ± 5.9 <0.001

S' (cm/s) 13.4 ± 3.1 11.2 ± 2.8 <0.001 13.9 ± 3.0 11.9 ± 3.0 <0.001

FAC (%) 42 ± 4 35 ± 9 <0.001 43 ± 4 37 ± 8 <0.001

Echo‐sPAP (mmHg) 35 ± 13 70 ± 29 <0.001 35 ± 14 74 ± 28 <0.001

Echo‐mPAP (mmHg) 18 ± 8 38 ± 18 <0.001 18 ± 8 41 ± 22 <0.001

Right heart catheter

mRAP (mmHg) 3 ± 3 6 ± 4 <0.001 3 ± 3 6 ± 4 <0.001

sPAP (mmHg) 30 ± 7 80 ± 25 <0.001 30 ± 7 81 ± 27 <0.001

mPAP (mmHg) 14 ± 4 45 ± 16 <0.001 14 ± 4 45 ± 17 <0.001

PVR (wood) 1.7 ± 0.8 9.4 ± 6.3 <0.001 1.3 ± 0.7 7.7 ± 5.8 <0.001

PAWP (mmHg) 6 ± 3 9 ± 5 0.001 6 ± 3 8 ± 5 0.041

Note: This table did not contain the external validation set.

Abbreviations: CHD, congenital heart disease; FAC, fractional area change; LVEF, left ventricular ejection fraction; mPAP, echocardiography estimated mean
pulmonary arterial pressure; mRAP, mean right atrium pressure; PAWP, pulmonary arterial wedge pressure; PH, pulmonary hypertension; PVR, pulmonary
vascular resistance; RAP, mean right atrial pressure; RVWT, right ventricular wall; S’, tricuspid valve annulus peak systolic velocity; sPAP, systolic pulmonary
arterial pressure; TAPSE, tricuspid annular plane systolic excursion.

TABLE 2 Detailed diagnostic information of the patient.

All

No PH (n= 106) PH (n= 240)

Diagnosis

CHD 73 77

IPAH ‐ 58

CTD 8 33

LHD 2 7

CTED 16 63

Othera 7 2

Abbreviations: CHD, congenital heart disease; CTD, connective tissue
disease; CTED, chronic thrombo‐embolic disease; IPAH, idiopathic pulmonary
arterial hypertension; LHD, left heart disease; PH, pulmonary hypertension.
aPatients with severe tricuspid regurgitation.
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included the maximum ratio of the long axis to the short
axis of LV, the ratio of the minimum area of the LV to the
minimum area of the RV. Prediction models were then
constructed from the obtained features using different
ML methods.

Diagnostic utility

As presented in Figure 4, the deepmachine learning model
significantly outperformed traditional echocardiographic
measurements (AUC= 0.945, 95% CI: 0.917−0.974 vs.
0.892, 95% CI: 0.852−0.933, p=0.027). The diagnostic
value using ML was similarly excellent in patients with
CHD‐PH or non‐CHD‐PH (AUC=0.929, 95% CI:
0.889−0.969). A separate external validation group of 71
patients included 58 with PH and 13 without PH. The AUC
value for external validation of the deep learning model was
0.950 (95% CI: 0.897−1.000) for differentiation of no PH
from PH.

DISCUSSION

Accurate and timely diagnosis of diseases is the basis for
effective clinical treatment. Choosing a diagnostic
method with high accuracy is an important guarantee
to improve the accuracy of disease diagnosis. Our study
demonstrates the performance of a ML model based on
PSAX‐PML view in assessing the probability of PH and

found that ML models outperformed the traditional
echocardiographic assessments. As reported by Michele
D'Alto et al., maximal tricuspid regurgitation velocity,
LV eccentricity index, pulmonary artery diameter, and so
forth can all be used to predict PH, with the highest
accuracy reaching 90.9%.19 However, one single feature
could easily misclassify the patients since the measure-
ments of these parameters were sometimes subjective
and sonographer‐dependent. A study about lack of
tricuspid regurgitation doppler signal and PH by invasive
measurement showed that invasively confirmed PH was
present in 47% of patients without a reported TRV versus
68% in those with a reported TRV (p< 0.001).20 Thus, the
newest PH guidelines have proposed that a suspected PH
should include the assessment of sPAP and additional
signs suggestive of PH.

With the development of artificial intelligence, more
and more studies suggested that the accuracy from ML or
deep learning model is far superior to conventional
echocardiography. The accuracy and stability of LVEF
automatically measured by the deep learning model was
better than that of junior doctors.21 A deep learning
model by Pandey A could integrates multidimensional
echocardiographic data to characterize the severity of
diastolic dysfunction and identify a specific subgroup of
patients with HFpEF, which was hard for conventional
echocardiography.22

Our study further supported the applications of ML in
PH. The ML model learns about the cardiac chamber
features after left and RV interactions in patients with PH,

FIGURE 4 Receiver operating characteristic curve analysis. ML model and TRV in internal validation (a) and external validation (b) for
diagnosing pulmonary hypertension. AUC, area under the curve; ML, machine learning.
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then quantifies the features and finally combines multiple
learned features.23 Although previous studies have suggested
an improvement in diagnostic performance using ML
models, such as ML algorithms based on Logit Boost can
better identify precapillary PH and post‐capillary PH.24

Studies by Gerhard‐Paul Diller has shown that deep learning
can not only accurately diagnose IPAH, but also predict the
prognosis of patients.14 But they need more echocardio-
graphic information to build the model and were investi-
gated in a more restricted patient groups. On the other hand,
our ML model not only learned about the spatial features of
the left and RVs in PH patients, but also their temporal
features, such as the changes in the size of the two chambers
during systole and diastole. Furthermore, subgroup analysis
across the presence or absence of CHD did not have much
impact on the predictive performance of our ML model.
More importantly, analysis from the external validation data
set yield similar results. This means that our ML models
could be applied to more generalized patient groups with
excellent performance in diagnosing PH.

Notably, some of the extracted features have also
been validated clinically, including the eccentricity index
(the minimum value of the ratio of the long axis to the
short axis of the LV), D‐sign, and so forth.25 However,
using only one learned feature could not obtain a
satisfactory performance in predicting PH. This further
suggested that PH is a complex disease that required
multidimensional assessment. By extracting features
from traditional echocardiographic images (e.g., PSAX‐
PML), the ML model could incorporate the extracted
features and automatically assess the probability of PH,
with an accuracy of 0.895. This method could to some
extent mitigate the subjective assessment of the pulmo-
nary pressures by inexperienced physicians and help
enable large‐scale population screening for PH in higher
accuracy.

However, we do not intend nor recommend the use of
ML‐based models as a replacement for echocardio-
graphic assessment of patients with PH. After all,
echocardiography, as a noninvasive test recommended
by ESC, in addition to diagnosing PH, its ability to assess
the overall function of the patient's heart and the etiology
of pulmonary arterial hypertension is beyond the
coverage of current deep learning models.26

Limitations

The number of patients in this study was relatively small,
although the diagnostic performance of the trained
ML model was very good. The consistency of our model's
predictions would be more satisfactory if the sample size
were larger. In addition, although we included PH

patients with different etiologies, the cases in specific
subgroups were insufficient and further subgroup analyses
in individual subgroups were unavailable. Finally, the
studied patients were all Asian ethnicity, and the
applications of this method to other ethnic groups remains
unknown and warrants further investigations.

In summary, ML methods could automatically extract
features from traditional PSAX‐PML view and automati-
cally assess the probability of PH, which were found to
outperform traditional echocardiographic assessments.
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