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A B S T R A C T

The RNA-to-cDNA conversion step in transcriptomics experiments is widely recognised as inefficient and vari-
able, casting doubt on the ability to do quantitative transcriptomics analyses. Multiple studies have focused on
ways to optimise this process, resulting in contradictory recommendations. Here we explore the problem of
reverse transcription efficiency using digital PCR and the RT method’s impact on subsequent data analysis. Using
synthetic RNA standards, an example experiment is presented, outlining a method to (1) determine relevant
efficiency and variability values and then to (2) incorporate this information into downstream analyses as a way
to improve the accuracy of quantitative transcriptomics experiments.

1. Introduction

As technology has advanced, transcriptomics at the single cell level
has become not only possible but preferable due to greater recognition
of sample heterogeneity. Single cell experiments are becoming in-
creasingly common in the form of RNA sequencing, qPCR, and digital
PCR (dPCR). It is broadly presumed that the measurements are be-
coming more accurate with these new methods but one must be pre-
emptively cautious and take note of the variability and uncertainty in
transcriptomics data.

Transcriptomics measurements almost invariably include a reverse
transcription (RT) step, where RNA transcripts are used as templates to
generate cDNA transcripts for quantification. This significantly com-
plicates data interpretation as techniques are not directly measuring
RNA transcript number, and results are therefore dependent on the
efficiency of the RNA to cDNA conversion. Alternative RT-free meth-
odologies exist and involve direct sequencing of RNA or hybridisation
of probes to individual RNA molecules. However, these methods also
have limitations as they are currently expensive and still struggling
with accuracy and throughput, and poor hybridisation efficiency [1–4].

Problems with the reverse transcription step are many [5–8]. A
multitude of research articles have been published that address the
effects of modifying individual components or steps of the RT reaction,

providing a resource for RT efficiency optimization in experimental
design. These modifiable parameters include but are not limited to
priming strategy [8,9], choice of RT enzyme [6,7,9–12], choice of PCR
priming site [6], target RNA concentration [6,8,9], background RNA
concentration [8–10], and RNA quality [6]. Results reported from such
studies are often inconsistent; one of the few undisputed findings to
come from collating this research is that the effects of changing these
parameters appear to be gene-dependent [5,7,8,11,13].

Strategies to improve reverse transcription have been addressed in
some detail using population-based RT-qPCR experiments, and many
recommendations have been made based on these results. Here, we
explore RT methods a step further by examining this problem in the
context of single cell analyses using absolute quantification by digital
PCR (dPCR). The underlying and consistent experimental and analytical
focus is to investigate the efficiency and variability of RT-dPCR in order
to determine the consequences of the reverse transcription step in this
experimental system.

1.1. The problem of efficiency and variability in reverse transcription

A large proportion of transcriptomics is concerned with relative
differences between samples. In such scenarios, simplifying analysis by
assuming global 100% efficiency may be justified. The relatively recent
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release of dPCR with claims of accurate direct quantification point to-
wards the ability to use this system in instances where absolute num-
bers are important. For example, accurate interpretation of data to at-
tain absolute numbers is both relevant and critical in validating a model
especially if low numbers of factors are present and ratios of different
factors are important. In this situation, it is imperative to understand
the efficiency and variability of the system to properly interpret the
data.

Several published articles have addressed this question by at-
tempting to put a value on RNA-to-cDNA conversion efficiency, yet
results vary widely with different experimental conditions. Some cited
efficiency ranges are 49–114% [14], 50–77% [15], 0–102% [10], and
39–65% [9]. This wide variety effectively illustrates the problem and is
likely a combined outcome of the many parameters that are different
within and between tests, including the specific transcripts measured.

In addition to variable efficiencies across different transcripts, one
must consider the reproducibility of reverse transcription for a single,
particular transcript. In a study of RT efficiency variability, Linden et al
[7] showed that some genes had much more variability in efficiency
than others, and did not correlate with the general transcription effi-
ciency in each reaction. One of these genes was ACTB, a commonly used
reference gene. Similar results have been reported elsewhere [8].

The issue of reproducibility is of particular concern in single cell
studies where there is little scope for replication to help average away
technical differences. Reproducibility is also of great relevance to other
areas dealing in absolute quantification of RNA, such as the increasing
interest in using RT-dPCR for clinical applications (for example the
detection of RNA biomarkers) [14,16]. This highlights the importance
of characterizing assay variability in order to avoid drawing unreliable
conclusions from results [6].

1.2. Sensitivity to variations in reaction conditions

In designing transcriptomics experiments, optimal conditions allow
the best efficiency (closest to 100%) with the lowest variability.
Considering the range of outcomes reported across different studies, it
is clear that the performance of the RT step is greatly influenced by the
context of the experiment, dismissing the possibility of a one-size-fits-
all approach to RT optimization. Therefore, it is important to note that
previous data published in the literature is not always transferrable, and
often certain optimization choices are not compatible with the pro-
posed experiment. Examples of such constraints include avoiding gene-
specific primers when one needs to store cDNA for later, yet-to-be-
decided analysis, or the necessity for random primers when studying
non-adenylated transcripts.

In the case of single-cell digital PCR, there are many caveats and
constraints. For example, with the direct-lysis single-cell RNA pre-
paration method used for the studies presented here, there is no way to
modify or even evaluate some characteristics of the sample, such as
target RNA concentration or RNA quality. Another area of significant
limitation with single cell analysis is replication. Tichopad et al [17]
note that use of sampling replicates can estimate the boundaries of
technical noise, however only a single sample is available with single
cell studies.

Using dPCR, Sanders et al [15] showed that efficiency problems
extend to this method and again, that this effect is gene-dependent.
Consequently, while studies have shown the accuracy of digital PCR for
DNA quantification [18,19], the technique does not negate the issues
identified with reverse transcription. The authors suggest that a cali-
brant sample with defined value could help account for effects of en-
zyme efficiency, inhibitors and molecular dropout, while noting that
due to the differences between targets, only gene-specific calibrators
would be appropriate.

Most efforts in reverse transcription optimization studies up until
now have focused on RT-qPCR. Some previously identified improve-
ments could conceivably affect the dPCR output. Previous qPCR

findings relevant to single cell studies include that the use of back-
ground RNA was shown to exert some of its effect via the qPCR step
[10] and that dilution of the RT reaction greatly influenced subsequent
qPCR, especially in the presence of low background RNA [10]. The
transferability of these effects from qPCR to dPCR is unknown and
exploring such space is constrained by the nature of working with single
cells, given limited sample and limits of detection at the single-cell
scale. It is likely that some variability and reduced efficiency will al-
ways remain, regardless of how well a reverse transcription reaction has
been optimized. Clearly, rather than relying on previous publications
for ‘best-practice’ protocols to allow one to ignore the problem, we
should use prior published data as a baseline from which to work to
better understand and accept the limitations of our own system and
build this into our individual data interpretation.

This study was conducted as an example of how reverse transcrip-
tion efficiency can be taken into consideration when performing a
transcriptomics experiment. First, a non-exhaustive optimization ex-
periment was run using information from the literature to determine
optimal RT conditions in our specific system. Subsequently, a range of
efficiency and variability values corresponding to a number of genes of
interest was determined, which can then be integrated into downstream
analyses of data. Finally, this data is used to guide a brief discussion of
the implications of the efficiency data in the context of higher-
throughput transcriptomics methods.

2. Results and discussion

2.1. Optimization of RT conditions

In this study we explored four genes linked to myeloid haemato-
poiesis and the common reference gene ACTB. Based on previous lit-
erature [9,10], first, a limited optimization experiment was performed,
testing a small number of conditions considered most likely to improve
the reverse transcription efficiency from our standard protocol. The
design included a fully factorial test of three different RT enzymes
(SuperScript III VILO Kit, Life Technologies; Superscript II, Life Tech-
nologies; Protoscript, New England Biolabs), three concentrations of
random hexamer primers (6 uM/as directed; 25 uM; 100 uM), and two
concentrations of background yeast RNA (10 pg; 250 ng). Each condi-
tion was tested with duplicates of two different transcripts at a known
concentration, and measured the efficiency by digital PCR. SSIII VILO
LR, LH represents our standard protocol. Results, displayed in Fig. 1,
indicated that in our system, SuperScript III VILO was the best

Fig. 1. Comparison of efficiency values from RT optimization experiment. SSIII
VILO: SuperScriptIII VILO Kit; SSII: SuperScriptII; LR: low yeast RNA (10 pg);
HR: high yeast RNA (250 ng); LH: low hexamer (6 uM/as directed); MH: mid
hexamer (25 uM); HH: high hexamer (100 uM). Results are presented as mean
of duplicate data points with standard deviation. RT efficiency>100% is
possible given random hexamer primers were used.
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performing enzyme, and the addition of extra random hexamers to
25 uM improved upon the efficiency compared with our standard pro-
tocol. The addition of high concentration of yeast RNA did not improve
efficiency in this case.

These results support previous observations that emphasise the
gene-dependent nature of reverse transcription efficiency, as there was
a doubling in efficiency with one transcript while only minimal im-
provement with the other using the increased hexamer concentration.
This suggests that the determined optimal condition from the tested
conditions above may differ for any other transcripts of interest and
there will not be a condition optimal across all scenarios. This position
underscores the specified goal of identifying best possible conditions
given practical and system-based constraints, and in parallel to identify
associated efficiency and variability values and incorporate them into
the data analysis.

2.2. Identifying variability and efficiency values

Once the ‘optimal’ RT conditions were defined, variability and ef-
ficiency tests with IVRS (in vitro RNA synthesis)-produced transcripts
were run for our five genes of interest. ACTB was included as a com-
parison given its wide use as a reference gene despite having been
shown to exhibit high RT variability [7].

First, 10 RT replicates per transcript were measured using a single
dilution at three concentrations (10 fg, 1 fg and 100 ag/reaction) to
determine inherent variability of the RT step for each transcript. The
coefficient of variation (CV) was less than 12% for all transcripts at the
10 fg and 1 fg level (see Fig. 2A and Table 1). Despite the fact that these
values incorporate both RT and PCR variability, they compare favour-
ably with PCR component-only CV values reported in the literature
[14,16] and are within the guidelines for dPCR equipment specifica-
tions for repeated readings (Bio-Rad specifies QX200 precision
as± 10%). However, at the 100 ag level the CV ranged from 12 to 35%
depending on the transcript, indicating an increased variability at this
concentration. It is uncertain whether this increase is primarily driven
by an inherent increase in RT variability at the lower concentration or
stochasticity associated with small molecule numbers, for example
when pipetting from the master mix, and is likely to be some combi-
nation of the two factors.

Based on these results, RT variability was considered to be minimal
for the majority of the reactions, and RT replicates were not performed
for the following steps. It is important to note for data analysis that
measurements at the 100 ag level (54–130 transcripts/reaction for our
particular genes) carry significant variability and modest differences
between cells should be approached with caution.

Subsequently, to determine efficiency values while keeping in mind

the possibility of pipetting inconsistencies during dilution, five dilution
replicates of each transcript were measured over a range of three con-
centrations, corresponding to a theoretical medium, high and very high
transcript expression level in a single cell [20]. The medium level of
expression was considered to be towards the lower limit of what was
detectable using EvaGreen dPCR with a reasonable signal-to-noise ratio
(unpublished results).

Replicate average efficiency values were similar across concentra-
tions for each transcript (Fig. 2B), although the error is much more
pronounced at low concentration (100 ag/transcript). Similar to results
reported above, CV of all transcripts at 10 fg and 1 fg level is less than
15%, indicating minimal impact from dilution uncertainty when com-
pared with RT replicates and giving confidence in calculated efficiency
values. However, at the 100 ag level the coefficient of variation for
some transcripts was above 60%, showing additional stochasticity in-
troduced with dilution in addition to RT, and casting doubt on the
utility of using standards for measuring transcript levels at this low
concentration.

Significantly, there is a wide range of efficiency values across the
different transcripts, ranging from a combined average of 120% for
EPOR to 55% for GCSFR. This illustrates how important knowledge of
this value is for interpreting data in a quantitative setting. It is clear that
data obtained without adjustment of this discrepancy is inaccurate. This
is especially problematic in a quantitative experiment where the aim is
to enumerate absolute numbers of transcripts rather than relative va-
lues.

2.3. Incorporation into downstream analyses

The specific calculated efficiency values for synthetic transcripts can
be incorporated as a normalisation factor into dPCR experiments per-
formed in an identical manner. To arrive at a corrected absolute tran-
script number, measured transcript numbers from the dPCR experiment
can be divided by the efficiency value for each transcript. For single cell
experiments, the measured transcript numbers are likely to be at the
low end of the concentrations tested where the efficiency values are
highly variable. Therefore, we would recommend using the mean effi-
ciency value for all concentrations tested. Of course, this also indicates
large variability in the single cell reactions, and all data should be
approached with this presumption. With an estimate of the variability
present in the reaction at a defined expression level, the information
can be incorporated into significance calculations and interpretation of
results by both using the variance as bounds on model input variables
and by capturing the effect this may have on the model output. In
measuring higher transcript numbers (i.e. a very highly expressed
transcript at single cell level or an experiment involving more than one

Fig. 2. Variability and efficiency tests for transcripts of interest using EvaGreen dPCR. A) Variability. Ten replicates were performed per concentration for each
transcript (nine for ACTB 100 ag), and coefficient of variation calculated for each. B) Efficiency. Five dilution replicates were performed per concentration for each
transcript (four for ACTB 10 fg, ACTB 1 fg, ACTB 100 ag, CEBPA 1 fg, PU.1 1 fg), and mean efficiency values calculated for each. More information can be found in
Table 1 and values used for calculations are included in the Supplementary Information.
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cell per reaction) it might be preferable to use the efficiency value
determined for the concentration closest to that being measured, as-
suming low variability for that particular concentration.

2.4. Comparison across assays

Digital PCR experiments may be run using two different detection
chemistries, EvaGreen and probes. It is easy to switch between the two
methods as they are performed in a highly similar manner with the
same hardware and procedure. These parallel methods provide a means
to explore the impact of detection chemistry on efficiency and varia-
bility values. To test the applicability of efficiency values as a useful
tool across PCR detection methods, probe-based dPCR assays were run
for three targets (GATA1, PU.1 and CEBPA) using the same dilution
series as the EvaGreen experiment, with the addition of a 10 ag con-
centration to leverage the improved signal-to-noise ratio of the probe
assay. Substantial differences were observed between the efficiency
values obtained from the two experiments, as seen in Fig. 3; data for the
probe experiment is shown in Supplementary Figure S1 and Supple-
mentary Table S1.

While the values for CEBPA are consistent, GATA1 and PU.1 show a

Table 1
Variability and efficiency values for transcripts of interest using EvaGreen dPCR. Data used for graphs in Fig. 2 are shaded.

Fig. 3. Comparison of efficiency values obtained with EvaGreen and probe
assays. Results are presented as mean of replicate data points with standard
deviation. There is a discrepancy in GATA1/PU.1 ratio in the higher con-
centration probe results not evident in the EvaGreen results.
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divergence in efficiency values between the two assays. While the ef-
ficiencies of reverse transcription of the two transcripts are reasonably
similar using the EvaGreen assay, they are markedly different using the
probe-based assay, such that the ratio of GATA1 to PU.1 is highly af-
fected depending on the approach used. Based on these values, adop-
tion of the EvaGreen efficiency value for probe assay data would
overestimate GATA1 concentration by 60% relative to PU.1 con-
centration (ratio of GATA1/PU.1 normalisation factors= 0.86 for
EvaGreen assay, 0.53 for probe assay). This would substantially bias the
outcome of any model where quantitative data is expected. This cal-
culation illustrates the necessity of determining empirically the per-
formance of the assay in each specific situation and negates the possi-
bility of broadly applying efficiency values between platforms. This is
not unexpected given the evidence outlined above regarding the sen-
sitivity of RT reactions to modifications in protocol.

2.5. Implications for high-throughput technologies

As demonstrated here, measurement of reverse transcription effi-
ciency should be incorporated into any experiment involving quanti-
tative RNA assessment. While adopting this recommendation is rela-
tively easy for smaller scale experiments, it becomes unworkable for
more high-throughput approaches such as single cell sequencing. As
single-cell sequencing experiments are becoming more common, there
is increasing discussion about the appropriate method of analysing such
data. Using a well-studied, homogeneous cell line, Marinov et al. [20]
demonstrated a 6-fold range in RNA content between single cells,
leading to the assertion that in such a single-cell setting the often-used
expression unit ‘fragments per kilobase per million mapped reads’
(FKPM) is misleading and absolute transcripts should be counted.
Consequently, this and other studies [21,22] have attempted to calcu-
late absolute transcript numbers from sequencing data using spike-in
standards.

While spike-in RNA standards (such as ERCC spike-ins [23], Sequins
[24], and SIRVs [25]) allow calculation of a global efficiency value
based on a pre-determined subset of synthetic genes for assay perfor-
mance and quality control purposes, the data presented here indicate
this can not be extrapolated to estimate efficiency values for specific
genes of interest in the data. Indeed, it has previously been reported
using bulk RNA sequencing that reproducible transcript-dependent
discrepancies show absolute measurements using RNA-seq are in-
accurate [26].

Therefore, while the addition of spike-ins to calculate global effi-
ciency may allow an improvement on current methods for analysing
single cell gene expression, it still only gives a relative value for com-
paring between samples that cannot be compared across transcripts,
and is not able to give absolute quantitative information about RNA
molecules in a cell. Instead, synthetic standards should be incorporated
to gain efficiency values for subsequent validation tests for significant
findings.

3. Conclusions

The data presented in this publication and other works cited here
reiterate gene-to-gene variability in reverse transcription efficiency and
highlight the necessity of considering RT-efficiency when working with
quantitative data. The wide range of values calculated for the six syn-
thetic RNAs tested may have a significant impact on the quantitative
analysis of the downstream transcriptomics data. Despite the between-
gene variability, efficiency values are sufficiently reproducible at all but
the lowest concentration within the confines of a particular protocol
such that this variability can be mitigated through incorporation of
synthetic standards as controls. Standards specific to each experiment
are necessary as the efficiency values have been shown to be highly
sensitive to alterations of even a single component of the workflow.

Certain assays are limited in throughput (for example dPCR which

allows for low-level multiplexing) and it is reasonable to include con-
trols for all the genes investigated in an assay. We suggest including a
synthetic transcript for each transcript measured across at least 3 bio-
logically relevant concentrations in technical replication to gain a me-
tric for normalisation of data, and find the lower limit for reproduci-
bility and detection of signal above noise. While this is not possible for
higher-throughput technologies such as single-cell sequencing, stan-
dards should be included in targeted follow-up validation assays if
quantitative claims are made.

Measurement of lowly-expressed transcripts using dPCR at the
single cell level is likely to be highly variable, and analysis of technical
variability should be factored in to final conclusions.

4. Materials and methods

4.1. Synthetic RNA standards

4.1.1. Construction of synthetic standards
Synthetic RNA standards were made for the following transcripts:

GATA1, PU.1, CEBPA, GCSFR, EPOR, ACTB. Lengths of RNA transcripts
ranged from 1428 to 3414 nucleotides.

Full-length mRNA has been shown to be the most accurate method
of setting up RNA standards [9]. Therefore, transcripts were amplified
using Phusion High-Fidelity DNA Polymerase (New England Biolabs)
from cDNA isolated from haematopoietic cells with primers designed at
the ends of the mRNA transcript with leeway to ensure acceptable
primer design. Primers used for amplification are outlined in Supple-
mentary Info.

cDNA was cloned into pGem-T Easy plasmid (Promega) and IVRS
performed using linearized plasmid and HiScribe T7 High-Yield RNA
Synthesis Kit (New England Biolabs). In vitro-synthesised RNA was
isolated using Nucleospin RNA II kit (Macherey-Nagel), treated with
TURBO DNase (Ambion), and cleaned up using RNA Clean &
Concentrator Kit (Zymo). Sample quantity and quality were assessed
using Qubit RNA Assay (ThermoFisher Scientific) and RNA Pico
Bioanalyzer chip (Agilent) respectively, and stored in Lo-Bind tubes
(Eppendorf) at -80°C. Stock concentrations were between 100 ng/uL
and 700 ng/uL. All experiments were performed within six months of
RNA generation.

4.1.2. Dilution of synthetic standards
Evagreen and probe dPCR efficiency test: A single dilution series

was performed for each transcript for the 10 fg and 1 fg variability test.
Samples were diluted to ˜10 ng/uL in water and measured again with
Qubit RNA Assay (ThermoFisher Scientific). From this working stock,
aliquots of 1 ng/uL were prepared for all transcripts. A series of 1 in 10
dilutions in a final volume of 20 u L was performed until desired con-
centrations were reached. All dilutions were performed in Lo-Bind
tubes (Eppendorf).

5 dilution replicates: A separate dilution series comprising five re-
plicates per transcript, beginning with five aliquots at 1 ng/uL, was
performed for the EvaGreen and probe efficiency tests as outlined
above. Dilution 1 for each of these transcripts was also used for the
100 ag variability test. Dilutions were prepared on the same day as each
of the studies were conducted.

4.2. cDNA synthesis

4.2.1. cDNA synthesis for RT optimisation
Reverse transcription reactions were set up and run in 96-well Twin-

tec semi-skirted LoBind plates (Eppendorf). Reactions were designed to
measure 100 ag of PU.1 and GATA1 RNA in 5 uL reactions containing
5mg/mL UltraPure BSA (Ambion), 5U SUPERaseIn RNase Inhibitor
(ThermoFisher Scientific), 1X RT Reaction Mix/Buffer, 0.5X RT en-
zyme, variable concentrations of yeast RNA (10 pg and 250 ng;
Ambion), and variable concentrations of random hexamers (6 uM/as
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directed, 25 uM and 100 uM; Integrated DNA Technologies). Primer
concentration in the 1× SSIII VILO Reaction Buffer was not specified
and for the purposes of this experiment was assumed to be 6 uM.
SuperscriptII and Protoscript reactions also required the addition of
500uM dNTP Mix (New England Biolabs) and 10mM DTT
(ThermoFisher Scientific). A denaturation step at 65 °C for 5min was
performed before the addition of RT enzyme. The temperature profile of
the SSIII VILO reaction was 25°C for 10min, 50°C for 30min, 55°C for
25min, 60°C for 5min, and 70°C 15min. Temperature profile of SSII
and Protoscript reactions were 25°C for 10min, 42 °C for 30min, 48°C
for 25min, 50°C for 5min and 70°C for 15min. Upon completion of
each reverse transcription (RT) reaction, 96-well plates were spun to
recover individual reaction volumes and cDNA was stored at−80 °C for
up to two weeks. After thawing on ice, all RT reactions were transferred
to a single new plate for dPCR.

4.2.2. cDNA Synthesis for RT efficiency/variability test
Reverse transcription reactions were set up and run in 96-well Twin-

tec semi-skirted LoBind plates (Eppendorf). Reactions were designed to
measure 10 technical replicates of three concentrations (100 ag, 1 fg,
10 fg) of six target transcripts (PU.1, GATA1, CEBPA, GCSFR, EPOR,
ACTB) in 5 uL reactions containing 5mg/mL UltraPure BSA (Ambion),
5U SUPERaseIn RNase Inhibitor (ThermoFisher Scientific), 1X VILO
Reaction Mix, 0.5× SSIII enzyme, 10 pg yeast RNA (Ambion), and
19 uM additional random hexamers (Integrated DNA Technologies). A
denaturation step at 65 °C for 5min was performed before the addition
of RT enzyme. The temperature profile was 25°C for 10min, 50°C for
30min, 55°C for 25min, 60°C for 5min, and 70°C 15min. Upon com-
pletion of each cDNA synthesis reaction, 96-well plates were spun to
collect volume and cDNA was stored at 4 °C for up to four days.

4.3. Digital PCR

4.3.1. EvaGreen dPCR
Samples were prepared for dPCR in 22 uL reactions containing

cDNA, 1× ddPCR™ EvaGreen Supermix (Bio-Rad), and primers. For
targets PU.1, GATA1, CEBPA, and ACTB primers were designed and
validated in-house and used at 200 nM for each oligo (Integrated DNA
Technologies). For targets GCSFR and EPOR, PrimePCR™ EvaGreen
Assay (Bio-Rad) were used at 1× primer mix. Primer sequences (or
context sequences for commercial assays) are provided in the
Supplementary Information. No template RT controls contained only
yeast RNA and were included for each primer set. No-RT controls were
performed previously for each transcript and confirmed absence of
DNA.

Droplets were created using an Automated Droplet Generator
(BioRad) followed by the recommended PCR thermocycling protocol
using a C1000 Thermal Cycler (Bio-Rad): 95 °C for 10min, followed by
40 cycles of 95 °C for 30 s and 58 °C for 60 s, and a final signal stabi-
lization cycle of 4 °C for 5min and 90 °C for 5min. A QX200™ Droplet
Reader (BioRad) was used for signal detection.

4.3.2. Probe dPCR
Samples were prepared for dPCR in 22 uL reactions containing

cDNA, 1X ddPCR™ Supermix for Probes (No dUTP; Bio-Rad) and 1X
PrimePCR™ ddPCR™ Expression Probe Assay primers/probe mix (Bio-
Rad): FAM-PU.1, HEX-GATA1 and HEX-CEBPA. PU.1 and GATA1 were
run as duplex samples, CEBPA as singleplex. Context sequences are
provided in the Supplementary Information. No template RT controls
contained only yeast RNA and were included for each primer set.

Droplets were created using an Automated Droplet Generator
(BioRad) followed by the recommended PCR thermocycling protocol
using a C1000 Thermal Cycler (Bio-Rad): 95 °C for 10min, followed by
40 cycles of 94 °C for 30 s and 55 °C for 60 s, and a final incubation at
98 °C for 10min. A QX200™ Droplet Reader (BioRad) was used for signal
detection.

4.3.3. dPCR data analysis
QuantaSoft™ Analysis Pro analysis software (Bio-Rad) was used to

determine absolute transcript numbers. A threshold for defining posi-
tive droplets was set manually by comparison with control samples. The
number of positive droplets was used by the software to perform a
Poisson correction to give an absolute number of transcripts per mi-
croliter. These results were multiplied by the total sample reaction
volume of 22 uL for a final absolute quantification of a given target.

4.4. Calculations

4.4.1. Calculation of efficiency values
The exact sequence of each transcript were determined by taking

the plasmid sequence starting at the final G nucleotide of the T7 pro-
moter and continuing through to the final base before cleavage at the
linearization site. Molecular weights of each synthetic RNA standard
was calculated according to transcript sequence using the following
formula:

M.W. of ssRNA transcript (g/mol) = (An * 329.2) + (Un* 306.2) + (Cn
*305.2) + (Gn * 345.2) + 159,

where An, Un, Cn, and Gn are the numbers of A, U, C, and G bases,
respectively, and the additional 159 corresponds to the weight of the 5′
triphosphate group.

This value was used to determine the number of transcripts present
in each tested concentration. The numbers calculated for each tested
concentration can be found in the Supplementary Information.
Numbers of transcripts detected by dPCR for each sample were divided
by the theoretical number in the reaction to arrive at an efficiency
value.

4.4.2. Calculation of variability values
The coefficient of variation for each transcript was calculated by

dividing the standard deviation of the number of transcripts per reac-
tion for 10 replicates by the mean, expressed as a percentage.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.bdq.2018.12.002.
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