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Abstract

Patients with established atherosclerotic cardiovascular (CV) disease remain at

increased risk of major adverse cardiovascular events even during optimal lipid-

lowering therapy. Recent studies using the methods of Mendelian randomization, as

well as analyses of data from large statin trials, have concluded that elevated triglyc-

eride (TG) levels contribute to that increased risk. Omega-3 polyunsaturated fatty

acids (omega-3 PUFAs) from fish and shellfish (eicosapentaenoic acid [EPA] and

docosahexaenoic acid [DHA]) reduce TG levels when added to the diet in sufficient

amounts, and they have favorable effects on several other markers of CV risk. How-

ever, trials of omega-3 PUFAs have had inconsistent findings regarding CV risk

reduction. Recently, the REDUCE-IT (Reduction of Cardiovascular Events with EPA-

Intervention Trial) trial reported that treatment of such high-risk patients with

icosapent ethyl, a purified and stabilized ethyl ester of EPA, reduced the risk of the tri-

al's primary CV endpoint by 25% (95% confidence intervals [CI], 32%-17%; P < .001).

To appreciate the clinical implications of this result, it is important to understand how

the REDUCE-IT trial differed from previous trials, especially with regard to patient

enrollment criteria and treatment dosing. We discuss these design features relative to

other trials. TG lowering can account for only part of the risk reduction seen with

icosapent ethyl; we also consider other potential contributory mechanisms.
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1 | INTRODUCTION

In November 2018, results of the REDUCE-IT (Reduction of Cardio-

vascular Events with EPA-Intervention Trial) trial were published.1

The trial demonstrated that treatment with a high dose (4 g per day)

of the omega-3 polyunsaturated fatty acid (PUFA) icosapent ethyl sig-

nificantly reduced the risk of ischemic cardiovascular (CV) events and

CV death in patients who (a) were on a stable dose of statin, (b) had

established CV disease or type 2 diabetes mellitus and at least one

additional CV risk factor, and (c) had elevated triglyceride (TG) levels

at baseline (>135 or 150 mg/dL). These results were remarkable

because they followed a series of major TG-lowering trials that had

failed to achieve reductions in CV outcomes in similar groups of

patients.2-6 Why was REDUCE-IT different? Are the results due solely
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to lowering of TG levels? What do the results mean for prevention of

CV events in patients with established CV disease and elevated TG

levels?

2 | RESIDUAL RISK

In recent decades, statins have become the mainstay of lipid-lowering

therapy to reduce risk of CV events in patients with atherosclerotic

cardiovascular disease (ASCVD).5 Statin therapy, which primarily tar-

gets low-density lipoprotein cholesterol (LDL-C), has a firmly

established role in reducing the risk of CV events by 25% to 35% in

such patients.5 The reduction in risk is related to the absolute reduc-

tion in LDL-C levels.7 However, despite successful lowering of LDL-C

levels with statins, patients with ASCVD remain at elevated risk of CV

events.8 PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibi-

tors further reduce LDL-C levels and CV event rates, but excess CV

risk persists (eg, 3-year event rates of approximately 10-13 percent)

even in patients with median LDL-C levels of 30 to 40 mg/dL

achieved with the combination of a statin and a PCSK9 inhibitor.9,10

Although non-lipid-related factors—such as smoking, obesity, and dia-

betes mellitus—account for some of this residual risk,8 elevated TG

levels or low high-density lipoprotein cholesterol (HDL-C) levels have

been suspected, since they have been shown to be markers of resid-

ual risk in analyses of data from several large statin trials.11-15 Other

lipid and lipoprotein fractions—such as non-HDL-C, apolipoprotein B,

and LDL particle number—are also markers of residual risk.16

There is a strong inverse relationship between TG levels and HDL-

C levels; individuals with low HDL-C levels generally have elevated

TG levels and vice versa.17 However, because observational studies

have consistently found a link between low HDL-C and CV risk,18-23

several clinical trials were conducted in an effort to reduce CV risk by

administering treatments intended to increase HDL-C levels.24-28

Although the treatments substantially increased HDL-C levels, only

one trial reported a small decrease in major CV event rates, and that

decrease was consistent with the degree of LDL-C lowering.28 We

now have a better understanding of why efforts to increase HDL-C

levels have had such limited success in reducing CV event rates;

recent studies using the method of Mendelian randomization

(MR) have supported the conclusion that low HDL-C is not causally

associated with increased CV risk.29-31 These studies have revealed

that genetic variants influencing HDL-C levels do not significantly

affect CV risk. Thus, although a low HDL-C level is a marker of

increased CV risk, there is now a strong body of evidence from both

clinical trials and MR studies that a low HDL-C level is not causally

related to an increased risk of CV events.32

During the era just described, TG re-emerged as an independent

CV risk factor. As recently as 2011, a scientific statement from the

American Heart Association concluded that the role of TG as an inde-

pendent causal factor for CV disease was “debatable.”17 Subse-

quently, MR studies provided strong evidence that elevated TG-rich

lipoproteins (TRLs) are causally related to increased risk for CV

events.30,32-36 Furthermore, analyses of statin trials have found that

patients with elevated TG levels after statin therapy are at particularly

high risk for CV events. Thus, even though statins (as well as

ezetimibe and PCSK9 inhibitors) reduce TG levels along with lowering

LDL-C,37 some patients continue to have elevated TG levels, which is

now recognized as a risk factor for CV events. These developments

have re-invigorated research efforts to identify and develop strategies

to reduce TG levels and TRLs.38

Several diet and lifestyle interventions—including weight loss,

physical activity, moderation of alcohol consumption, and

Mediterranean-style diet—are recommended for reducing elevated

TG levels.17 The mainstays of TG-lowering pharmacotherapies had

been fibrates and niacin, despite the fact that these agents had very

little success in lowering CV risk. More recently, attention has turned

to the omega-3 fatty acids eicosapentaenoic acid (EPA) and doco-

sahexaenoic acid (DHA), which are found in high concentrations in

oily fishes and are known to reduce blood TG levels.39,40 Indeed, low

consumption of EPA and DHA has been associated with increased risk

for CV disease in some observational studies.40 Beyond their effects

on TG levels, omega-3 PUFAs have numerous biological effects that

may influence CV risk. Therefore, before discussing clinical trials of

omega-3 PUFAs for CV risk reduction, we will briefly review the biol-

ogy of EPA and DHA.

2.1 | EPA and DHA: TG lowering and beyond

Essential fatty acids are those fats that cannot be synthesized by

humans; they must be consumed. The two essential fatty acids in the

human diet are linoleic acid (LA; an omega-6 FA) and alpha-linolenic

acid (ALA; an omega-3 PUFA).41 LA is the precursor for arachidonic

acid, and ALA is the precursor for EPA (and minimally DHA).42 The

main dietary sources of ALA are plants and plant products (such as

vegetable oils). In theory, humans possess enzymes necessary to syn-

thesize EPA and DHA from plant-based ALA. In reality, the production

of EPA and DHA from ALA is inconsequential. Making matters worse,

omega-6 PUFAs, which are often overly abundant in the western diet,

dampen the conversion of ALA to EPA and DHA.42,43 Thus, many

experts consider EPA and DHA to be essential fatty acids.43

Key dietary sources of EPA and DHA are oily fishes,42 and several

epidemiologic studies have found that groups of people who consume

large amounts of such fish have lower rates of CV events and CV

death compared with other populations (reviewed in Nishizaki

et al.44). Other studies, however, did not find a significant protective

effect from consumption of a diet high in fish or EPA or DHA.45 These

studies varied widely with regard to the amount and types of PUFAs

consumed by the study population. In 2006, a pooled analysis of pro-

spective studies and randomized trials concluded that consumption of

fish or fish oil was associated with a 36% reduction in the relative risk

of death from coronary heart disease.46 Thus, at that time, the preva-

iling medical opinion was that omega-3 PUFAs from fish had a favor-

able effect on CV outcomes.

Further support for a role of EPA and DHA in CV risk reduction

came from biomarker studies. A pooled analysis of cohort studies con-

ducted around the world found that higher levels of plasma or
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phospholipid omega-3 PUFAs (EPA, DHA, docosapentaenoic acid

[DPA], and plant-derived ALA) were associated with a modest

(approximately 10%) but significantly lower risk of fatal CHD.47 When

evaluating both observational and interventional studies of omega-3

PUFAs, it is important, however, to consider whether the investigators

have distinguished ALA, EPA, and, DHA. We now understand that

there are substantial differences in their biological activities.48 Thus,

studies that combine the omega-3 PUFAs may fail to discern impor-

tant health effects that are mostly due to one particular omega-

3 PUFA.

Studies have consistently found that fish-oil consumption, as well

as consumption of purified EPA or DHA, robustly reduce serum TG

levels.49-53 ALA, in contrast, has only small and inconsistent effects on

TG levels.49,50 In most of the studies that found TG-lowering effects

of fish oil (or EPA/DHA), participants received 1 g to >4 g of the

respective fatty acid per day.52 The TG lowering effect is linearly

dose-dependent, and individuals with higher baseline TG levels exhibit

greater declines in absolute TG levels in response to omega-3 PUFA

consumption.40

Reported biological actions of EPA and DHA extend well beyond

TG lowering and include effects expected to be cardi-

oprotective.48,54-57 As summarized by Mozaffarian and Rimm,46 and

shown in Figure 1, fish oil omega-3 PUFAs have been linked with

reduced blood pressure and heart rate, as well as decreased platelet

aggregation.40,58-61 They have also been linked with anti-

inflammatory actions and stabilization of coronary plaque.62-65 Anti-

dysrhythmic actions have been observed in animal or cell models, but

their significance in humans is controversial.40 As shown in Figure 1,

some of the observed cardioprotective effects of omega-3 PUFAs

require comparatively high doses of EPA/DHA; for example, lowering

of diastolic blood pressure seems to require doses of ≥2 g per day,59

and antithrombotic effects appear to require even higher doses.66 It is

plausible that other biological effects of omega-3 PUFAs—such as

contributions to the mediation of inflammation67,68—may contribute

to improvements in CV endpoints, although those relationships need

extensive additional testing.

3 | RANDOMIZED CONTROLLED TRIALS
AND META-ANALYSES

Large-scale, randomized trials have examined three classes of treat-

ments targeting TG levels: fibrates, niacin, and omega-3 PUFAs. These

trials have been thoroughly discussed by other recent

reviews,5,17,44,69 so we will briefly summarize the state of the field up

to 2018. Then we will discuss very recent studies, including three tri-

als of omega-3 PUFAs that were published in 2018.

3.1 | Fibrates and niacin

As noted by prior reviews,5,70 trials of fibrates or niacin added to

statin therapy have failed to show a benefit of the added treatment in

terms of CV event rates.12,25,26,71,72 The ongoing PROMINENT trial,

involving the novel fibrate pemafibrate,73 may provide insight into this

question (NCT03071692).

3.2 | Fish oil omega-3 PUFAs: Background of clinical
studies

A 2011 review analyzed randomized controlled trials, prospective

cohort studies, and meta-analyses conducted up to that time and con-

cluded that consumption of fish or fish oil reduced coronary heart dis-

ease mortality in populations with and without established CV

disease.40 Three meta-analyses of randomized controlled trials of

omega-3 PUFA supplements supported this conclusion.46,74,75 How-

ever, another meta-analysis of randomized controlled trials published

in 2012 concluded that omega-3 PUFA supplementation was not

associated with significant reduction in the risk of all-cause death, car-

diac death, or myocardial infarction.76 That meta-analysis, however,

used an unusually high threshold for statistical significance

(α = 0.0063). It is remarkable, for example, that all 17 of the trials

included in the analysis of all-cause death reported a relative risk

<0.96 favoring omega-3 PUFA, and seven of those trials reported

upper confidence intervals that were < 1.0, yet the meta-analysis
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failed to find a significant benefit of omega-3 PUFAs for all-cause

death. The authors noted that there was extensive heterogeneity

across trials with regard to event rates, baseline CV disease risk, treat-

ment setting (eg, primary prevention vs secondary prevention), co-

administered therapies, baseline intake of omega-3 PUFAs, dose, and

nature of omega-3 PUFA used for the intervention, and treatment

adherence. Thus, heterogeneity was likely so high that a meaningful

conclusion could not be reached. A more recent meta-analysis rev-

ealed the importance of such heterogeneity. That study77 also found

a non-significant reduction in coronary heart disease risk across the

entire study group (summary relative risk estimate [SSRE], 0.94; 95%

CI 0.85-1.05), but it found that high-risk populations obtained signifi-

cant benefits from omega-3 PUFA interventions. Specifically, patients

with elevated baseline TG levels had an SSRE of 0.86 (95% CI

0.76-0.98). The authors also found evidence that higher intakes of

omega-3 PUFAs were associated with significantly greater reductions

in coronary heart disease risk (SSRE, 0.82; 95% CI 0.74-0.92). These

meta-analyses reinforce the importance of trial design; patient sub-

groups should be carefully and prospectively defined and studied in

clinical trials, and doses and compositions of omega-3 PUFAs need to

be precisely constructed and controlled.

3.3 | Fish oil omega-3 PUFAs: Recent trials

In 2018, the results of two major trials (ASCEND and VITAL) of

omega-3 PUFA (1 g per day) for primary prevention of CV disease

were reported.4,78 Neither trial reported a significant reduction in the

risk of a composite cardiovascular endpoint in the omega-3 PUFA

group compared to the placebo group, although the VITAL trial

reported a significantly lower rate of myocardial infarction in the

omega-3 PUFA arm. Both trials excluded patients with established CV

disease, and neither trial required statin therapy or enrolled patients

on the basis of elevated TG levels. As discussed in more detail below,

both trials may have used inadequate doses of omega-3 PUFAs.

Another possibility is that the trial population was at too low risk to

reveal statistically significant benefits of omega-3 PUFAs. A third

major trial reported in 2018 (REDUCE-IT) studied an omega-3 PUFA

in patients with established CV disease or diabetes mellitus and at

least one additional CV risk factor.1 In addition, participants were

required to be on a stable dose of statin and to have an elevated

fasting TG level (150-499 mg/dL). The trial enrolled 8179 patients

(71% of whom had established CV disease) and randomized them to

icosapent ethyl (a purified and stable ethyl ester of EPA; 2 g twice

daily) or placebo. The primary endpoint was a composite of cardiovas-

cular death, MI, stroke, coronary revascularization, or unstable angina.

After a median follow-up of 4.9 years, the icosapent ethyl group had a

significantly lower rate of primary endpoint events (17.2% of patients)

compared to the placebo group (22.0%; HR, 0.75; 95% CI, 0.68-0.83;

P = .001). A similar benefit of icosapent ethyl was found for the sec-

ondary endpoint of CV death, MI, and stroke (HR, 0.74; 95% CI,

0.65-0.83; P < .001). The benefits of icosapent ethyl were observed

across a broad set of patient subgroups based on baseline characteris-

tics, including TG and LDL-C levels and the presence or absence of

diabetes mellitus. It is important to note that all study participants had

elevated TG levels at baseline (most >150 mg/dL).

In the ASCEND and VITAL trials, there were no significant differ-

ences between active treatment groups and the placebo groups with

regard to rates of non-fatal serious adverse events, including bleed-

ing.4,78 In REDUCE-IT, icosapent ethyl was associated with a small but

significant increase in rates of hospitalization for atrial fibrillation or

flutter vs placebo (3.1% vs 2.1%; P = .004) and a trend toward

increased rates of serious bleeding (2.7% vs 2.1%; P = .06).1 However,

prior reviews of bleeding risk associated with pharmacotherapeutic

use of omega-3 PUFAs (at daily doses of 1-6 g) concluded that there

was no effect on the risk of clinically significant bleeding.79,80

4 | WAS REDUCE-IT DIFFERENT?

At first glance, it may seem that the results of REDUCE-IT are at odds

with those from prior trials of omega-3 PUFAs. On closer inspection,

it becomes evident that the results of REDUCE-IT are consistent with

observations from several previous studies. As already discussed, the

most recent meta-analysis of omega-3 PUFA supplements for reduc-

ing the risk of CV events found that high-risk patients, especially

those with elevated TG levels, were more likely to obtain benefit from

omega-3 PUFA treatment.77 Similarly, a previous open-label trial in

Japan (JELIS, Japan EPA Lipid Intervention Study) found that

icosapent ethyl (1.8 g per day) significantly reduced the risk of major

coronary events in hypercholesterolemic patients (HR, 0.81; 95% CI

0.69-0.95). Notably, patients in JELIS with elevated TG (≥150 mg/dL)

and low HDL-C levels (<40 mg/dL) had the highest risk of coronary

events and the greatest reduction in event rates associated with

icosapent ethyl treatment (HR, 0.47; 95% CI, 0.23-0.98; P = .043).

Similar results were found in subgroup analyses of REDUCE-IT:

patients who had the combination of baseline TG ≥150 mg/dL and

baseline HDL-C ≤ 35 mg/dL exhibited a HR for the primary endpoint

of 0.62 (icosapant ethyl group vs placebo group; 95% CI, 0.51-0.77).

The corresponding HR for patients who did not meet those baseline

criteria was 0.79 (95% CI, 0.71-0.88; P = .04 for subgroup-by-

treatment interaction). Independent confirmation of the importance

of those baseline criteria may be needed to fully understand their clin-

ical implications.

Table 1 presents a summary of the characteristics of major CV

prevention trials of omega-3 PUFAs, including the latest, REDUCE-IT.

Of these nine trials, only three—GISSI-P, JELIS, and REDUCE-IT—

demonstrated significantly lower rates of the primary endpoint among

patients in the omega-3 PUFA group vs placebo. Notably, median

baseline TG levels among participants of REDUCE-IT (216 mg/dL)

were substantially higher than in all other omega-3 PUFA trials, with

the other two positive trials having the second- and third-highest

baseline TG levels. REDUCE-IT was the only omega-3 PUFA trial that

specifically required elevated TG levels at baseline. This prerequisite

may be an important aspect of the trial's success. Observations from

these studies suggest that elevated TG levels may be a marker for
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secondary CV prevention patients who are most likely to benefit from

omega-3 PUFA treatment.

Another salient distinction between REDUCE-IT and prior trials

was the dose of omega-3 PUFA administered during the treatment

period (4 g per day vs ≤850 mg per day in other large trials other

than JELIS). The efficacy of high-dose omega-3 PUFA in REDUCE-

IT is understandable in the context of JELIS and a recent meta-anal-

ysis, which found that higher intakes of omega-3 PUFAs were asso-

ciated with greater risk reductions.77 Median plasma levels of EPA

among participants in the REDUCE-IT trial in the icosapent ethyl

arm were 26.1 μg/mL at baseline and 144 μg/mL after 1 year. In

JELIS, EPA levels were substantially higher at baseline

(93-97 μg/mL) and increased to approximately 165 /mL during

icosapent ethyl treatment.81 Furthermore, in JELIS, the hazard ratio

for CV events was inversely related to plasma EPA concentrations,

with notable declines in hazard ratios observed when plasma EPA

concentrations exceeded 100-150 μg/mL. Unfortunately, very few

past trials of omega-3 PUFAs have measured baseline or on-

treatment plasma EPA levels. It is important to recognize that the

baseline levels reported in REDUCE-IT are more likely to represent

a typical Western population than the baseline levels reported in

JELIS, because the Japanese population has a much higher average

dietary intake of oily fish compared to populations consuming a

typical western diet. Together, these considerations suggest that

Western patients may require higher doses of EPA, such as those

used in the REDUCE-IT trial, to achieve meaningful reductions in

CV event rates.

As already discussed, some of the beneficial effects of omega-3

PUFAs, including their TG-lowering effects, require comparatively

high doses. Thus, it is likely that patients in the icosapent ethyl arm of

REDUCE-IT experienced a greater absolute reduction in TG levels

during treatment as compared to other omega-3 PUFA trials. How-

ever, the trial investigators reported that reduction in the primary

endpoint or key secondary endpoint in REDUCE-IT did not depend on

whether patients achieved TG levels below or above 150 mg/dL at

1 year.1 This finding provides further evidence that biological effects

beyond TG lowering contributed to the clinical benefits of icosapent

ethyl in the REDUCE-IT trial. More detailed analyses and perhaps

additional clinical studies may be required to establish the dose-

dependence and biological mechanisms by which icosapent ethyl

reduced the rates of major CV events.

Finally, it must be noted that icosapent ethyl is a pure, esterified

form of EPA, and it was used in two of the three successful trials sum-

marized in Table 1 (JELIS and REDUCE-IT). Most other trials used for-

mulations combining EPA and DHA in various concentrations. It is

unknown to what degree these differences in drug formulation

account for some of the inconsistencies in CV outcomes across trials.

Although EPA and DHA share many biological effects, some differ-

ences have been reported.54,55 The ongoing STRENGTH trial

(NCT02104817), which uses a combination of EPA and DHA, may

help to clarify the roles of omega-3 PUFAs for secondary prevention

of CV events.82T
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5 | MECHANISM OF CLINICAL BENEFIT IN
REDUCE-IT

With several lines of evidence suggesting that elevated TG levels are

a marker of the potential for secondary prevention patients to benefit

from omega-3 PUFAs, and with the now-established role of elevated

TG levels in increased CV risk, it is tempting to assume that the TG-

lowering effect of icosapent ethyl explains its CV benefits. Indeed,

icosapent ethyl is already approved in the United States for reducing

TG levels in patients with very high TG levels (≥500 mg/dL).83,84

REDUCE-IT, however, examined people with minimum baseline TG

levels as low as 135 to 150 mg/dL. And it revealed evidence that TG

lowering may not fully explain CV benefits of icosapent ethyl.1 First,

the hazard ratio for the primary endpoint associated with icosapent

ethyl vs placebo was similar in subgroups defined by baseline TG

levels, regardless of whether the cutoffs were 150 or

200 mg/dL. Second, the benefits of treatment were not influenced by

whether patients achieved TG levels <150 mg/dL during treatment.1

Although more detailed analyses are needed, the currently available

analyses support the conclusion that TG lowering is not the sole

mechanism responsible for lowering CV risk among the patients who

participated in REDUCE-IT. A similar conclusion was found in a post

hoc analysis of the JELIS trial.85

Previous trials of icosapent ethyl in patients with high TG levels

(≥200 mg/dL) found that treatment led to improvements in levels of

several atherogenic lipid particles and biomarkers, including

apolipoprotein B, very low density lipoprotein cholesterol, lipoprotein-

associated phospholipase A2, remnant-like particle cholesterol, and

apolipoprotein C-III.53,86,87 Furthermore, preclinical studies have

described several other beneficial effects of omega-3 PUFAs that

could translate into reductions in rates of clinical events—effects such

as improving endothelial function and nitric oxide availability, reducing

inflammatory cytokines and enzymes, reducing activation of platelets,

and contributing to plaque stabilization (summarized in Ganda et al.5).

6 | CONCLUSION

The REDUCE-IT trial found that icosapent ethyl (4 g per day), a pure

and stable form of the omega-3 PUFA EPA, significantly reduced

residual risk of cardiovascular events in patients with ASCVD and ele-

vated TG levels (≥150 mg/dL) who were receiving a stable dose of

statin at study entry. On superficial examination, the REDUCE-IT trial

appears to be an outlier among trials of omega-3 PUFAs for secondary

prevention of CV events. On closer inspection, however, its design

and outcomes are consistent with lessons learned from previous stud-

ies. Baseline TG levels appear to be a marker of increased likelihood

of benefiting from icosapent ethyl treatment, and treatment signifi-

cantly lowers TG levels. However, currently available analyses suggest

that reduction in TG levels likely do not fully account for the beneficial

effects of treatment. Despite persistent questions regarding its full

mechanism of action, icosapent ethyl significantly ameliorates residual

CV risk in patients with ASCVD receiving statin therapy and has been

associated with minimal adverse effects. It appears, therefore, that

with the results of the REDUCE-IT trial, we have rounded the corner;

we now have in our sights the ability to further reduce the risk of CV

events in appropriately selected patients with residual CV risk on opti-

mal statin therapy.
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