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The collection of expression quantitative trait loci (eQTLs) is an important resource to study
complex traits through understandingwhere and how transcriptional regulations are controlled
by genetic variations in the non-coding regions of the genome. Previous studies have focused
on associating eQTLs with traits to identify the roles of trait-related eQTLs and their
corresponding target genes involved in trait determination. Since most genes function as a
part of pathways in a systematic manner, it is crucial to explore the pathways’ involvements in
complex traits to test potentially novel hypotheses and to reveal underlying mechanisms of
disease pathogenesis. In this study, we expanded and applied loci2path software to perform
large-scale eQTLs enrichment [i.e., eQTLs’ target genes (eGenes) enrichment] analysis at
pathway level to identify the tissue-specific enriched pathways within trait-related genomic
intervals. By utilizing 13,791,909 eQTLs cataloged in the Genotype-Tissue Expression (GTEx)
V8 data for 49 tissue types, 2,893 pathway sets reported from MSigDB, and query regions
derived from the Phenotype-Genotype Integrator (PheGenI) catalog, we identified intriguing
biological pathways that are likely to be involved in ten traits [Alzheimer’s disease (AD), body
mass index, Parkinson’s disease (PD), schizophrenia, amyotrophic lateral sclerosis, non-small
cell lung cancer (NSCLC), stroke, blood pressure, autism spectrum disorder, and myocardial
infarction]. Furthermore, we extracted the most significant pathways for AD, such as BioCarta
D4-GDI pathway and WikiPathways sulfation biotransformation reaction and viral acute
myocarditis pathways, to study specific genes within pathways. Our data presented new
hypotheses in AD pathogenesis supported by previous studies, like the increased level of
caspase-3 in the amygdala that cleaves GDP dissociation inhibitor and binds to beta-amyloid,
leading to increased apoptosis and neuronal loss. Our findings also revealed potential
pathogenesis mechanisms for PD, schizophrenia, NSCLC, blood pressure, autism
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spectrum disorder, and myocardial infarction, which were consistent with past studies. Our
results indicated that loci2path′s eQTLs enrichment test was valuable in unveiling novel
biological mechanisms of complex traits. The discovered mechanisms of disease
pathogenesis and traits require further in-depth analysis and experimental validation.

Keywords: eQTLs, gene pathway sets, gene set enrichment analyses, tissue-pathway association, complex traits

1 INTRODUCTION

Expression quantitative trait loci (eQTLs) have been one of the major
focuses in determining the genetic variants that affect gene expressions
locating in non-coding regions of the genome. eQTLs’ nature of
influencing expression levels of their target genes (eGenes) makes
them powerful at studying transcription regulation (Li et al., 2010).
The traditional usage of genomic physical proximity to connect
genetic loci with their corresponding eGenes has been proven
somewhat ineffective since it has been demonstrated that only
about 25% of eQTLs have their physically closest genes to be their
eGenes (Zhu et al., 2016; Xu et al., 2020). Further, eQTLs have become
an increasingly popular tool for researchers to identify specific genes
for diseases and traits.

Researchers often use eQTLs associations to link expression traits
to genotypes of genetic variants located in genomic intervals.
Multiple studies have been conducted on connecting eQTLs and
various traits including Alzheimer’s disease (AD) to determine the
roles trait-related eQTLs and their corresponding eGenes play in
pathogenesis (Hormozdiari et al., 2016; Zhao et al., 2019; Sieberts
et al., 2020). Though many interesting findings have been discussed,
the observed eQTLs patterns in cerebral and cerebellar brain regions
require further investigations with respect to their potential
functions, but so far, to our knowledge, no systematic in-depth
studies have been performed to explore the roles of such eQTLs in
etiologies of neurodegenerative diseases such as AD (Zhao et al.,
2019; Sieberts et al., 2020). Another common practice is to use
eQTLs mapping to link an expression trait to genetic variants in
certain genomic regions, which holds promise in elucidating gene
regulations and predicting gene networks associated with complex
phenotypes (Li et al., 2010). By using eQTLs mapping methods, we
can generate a comprehensive connection map of eQTLs and their
eGenes’ enriched pathways to help us develop a more thorough
understanding of eQTLs’ involvement in gene regulation, thus
providing insights in discovering hidden biological mechanisms
(Gilad et al., 2008). In addition, eQTLs studies can also help
reveal the architecture of gene regulation, which in combination
with results fromprevious genetic association studies of human traits
may help predict regulatory roles for genetic variants previously
associated with particular human phenotypes (Gilad et al., 2008).
Therefore, it is crucial to explore the associations between eQTLs and
genes at the pathway level in complex traits to develop a systematic
review of such associations and infer mechanisms of pathogenesis.

The objective of this study was to perform large-scale eQTLs
enrichment tests at the pathway level and determine the tissue-specific
enriched pathways for trait-related genomic intervals based on the
Bioconductor package loci2path (Xu et al., 2020). There are two key
advantages of using loci2path than other existingmethods: first, we do
not depend on physical proximity to provide a link between an eQTL

and its target gene, which could be unreliable; second, eQTLs enable us
to produce the regulatory annotation for specific tissue types (Xu et al.,
2020). For a specific genomic interval containing multiple eQTLs, if
eQTLs enrichment analysis indicates that their corresponding eGenes
are participating in the same biological pathway, this could imply a
potential relationship between that specific pathway and the genomic
interval of interest. The tissue-specific eQTLs sets also can
demonstrate in what specific tissues would such enrichment be
observed, which could help us generate new hypotheses on the
biological mechanisms of disease pathogenesis.

In this study, we used the computer program loci2path to perform
eQTLs enrichment analysis for genomic regions of ten traits [AD,
body mass index, Parkinson’s disease (PD), schizophrenia,
amyotrophic lateral sclerosis, non-small cell lung cancer (NSCLC),
stroke, blood pressure, autism spectrum disorder, and myocardial
infarction]. We have updated the loci2path to utilize the most current
data sets of query regions, eQTLs sets, and pathway sets. We used the
entire multi-tissue eQTLs data from the GTEx V8 data release that
contains 13,791,909 eQTLs with 32,958 unique eGenes for 49 tissue
types. In addition to BioCarta and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway sets that were included in the original
loci2path (Xu et al., 2020), we have added pathway sets from three new
pathway databases, i.e., Pathway Interaction Database (PID),
Reactome, and WikiPathways to generate more comprehensive
results.

2 MATERIALS AND METHODS

2.1 Extension of the loci2path
In this study, we extended the Bioconductor package loci2path
(Xu et al., 2020) that runs on an R-based platform, and then
applied the extended loci2path to perform eQTLs enrichment
analyses at pathway level based on different pathway databases to
identify enriched pathways for genomic intervals of multiple
traits. The advantage of loci2path is that this computer
program uses eQTLs information to directly link to their
eGenes, rather than using genome proximity, because an
eQTL and its corresponding eGene are not always located
near each other. For each gene set, the loci2path will first
identify eGenes based on the eQTLs set in the given genomic
intervals and then evaluate the significance of these eGenes’
enrichment within a gene set. The eQTLs enrichment program
really refers to their corresponding eGenes’ enrichment because
multiple eQTLs could target the same eGenes due to linkage
disequilibrium. p-values calculated using Fisher’s exact test for an
eQTLs set could be computed for each pathway to evaluate the
enrichment significance, and those pathways with greater
enrichments were indicated by smaller p-values. The results

Frontiers in Big Data | www.frontiersin.org November 2021 | Volume 4 | Article 7197372

Wang et al. Tissue-Pathway Associations of Complex Traits

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


were filtered with a p-value of 10−4, which was chosen after
multiple trials to balance the number of most significant tissue-
pathway combinations and specificity, and used to construct
heatmaps for further analysis. We have tried other p-values
and obtained similar outcomes.

2.2 Datasets
2.2.1 GTEx eQTLs
For this study, we used the full set of multi-tissue QTL data from
the GTEx V8 data release as the input data of eQTLs sets,
consisting of 49 tissue types (GTEx Consortium, 2020). The
data were downloaded from GTEx through this link: https://
storage.googleapis.com/gtex_analysis_v8/multi_tissue_qtl_data/
GTEx_Analysis_v8.metasoft.txt.gz. eQTLs sets for each tissue
were filtered with a p-value threshold of 10−4. Each gene’s
entrez ID and gene name were obtained by using the given
gene’s ensemble gene ID and the Bioconductor package biomaRt.

2.2.2 MSigDB Pathways
A total of 2,893 pathways from BioCarta, KEGG, PID, Reactome,
andWikiPathways gene sets were used in this study as the input data
of gene sets. The data were downloaded from the MSigDB website:
http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp.

2.2.3 Phenotype-Genotype Integrator Query Regions
The list of known trait-associated variants was obtained from
National Center for Biotechnology Information (NCBI) via
PheGenI website: https://www.ncbi.nlm.nih.gov/gap/phegeni.
For a given genetic variant, the genomic region is defined as a
flanking 50 kb on each of left and right sides of that variant, which
spans 100 kb. Overlapped regions were merged. A total of 9,894
genomic intervals were used in this study, and the numbers of
genomic regions for each trait are demonstrated in Table 1.

3 RESULTS

3.1 Overview
The objectives of this study were to identify significantly enriched
pathways for eQTLs sets of specific tissues at trait-related genomic
intervals to generate potentially novel hypotheses of trait
determination. A workflow of the study is presented in Figure 1,

showing that the input data were query regions, and the internal
process involved usages of eQTLs sets and gene pathway sets, and the
output results were enriched pathways and the corresponding tissues
sorted by multiplicity-adjusted enrichment p-values. We used
loci2path to conduct eQTLs enrichment analyses by computing the
p-values of Fisher’s exact test adjusted by Benjamini & Hochberg
correction method (Benjamini & Hochberg, 1995), and then
converting such results into a heatmap. The heatmap was
displayed where each row represents a tissue type, and each
column represents a gene pathway. The strong significant
enrichments were indicated by red cells, and the weak insignificant
enrichments were indicated by blue cells. Other data including eQTLs
in pathways, eQTLs in tissues, and hit genes generated by loci2path
were used to construct tables. Various adjusted p-values of genes
through Fisher’s exact test were used as thresholds to filter out the
most significant pathway-tissue combinations for each trait. Specific
genes that pathways hit in the eQTLs sets were extracted for further
analysis. Additional heatmaps and result tables for traits can be found
in Supplementary Figures. The results of three of the ten traits,
i.e., body mass index, amyotrophic lateral sclerosis, and stroke were
not presented, because the outputs obtained from eQTLs enrichment
tests at the pathway level for these traits were insignificant, and no
further analyses could be performed on them.

3.2 Adding PID, Reactome, and
WikiPathways to loci2path
We have extended the loci2path (Xu et al., 2020) by adding gene
pathway sets of PID, Reactome, and WikiPathways to loci2path′s

TABLE 1 | The numbers of genomic intervals selected that contain known GWAS
variants for each of the ten complex traits.

Trait Number
of genomic intervals

Alzheimer’s Disease 319
Body Mass Index 2,052
Parkinson’s Disease 199
Schizophrenia 1,296
Amyotrophic Lateral Sclerosis 342
Non-Small Cell Lung Cancer 120
Stroke 939
Blood Pressure 3,123
Autism Spectrum Disorder 570
Myocardial Infarction 934

FIGURE 1 | A diagram depicting our study’s analysis pipeline, including
input data, internal processes, and output results.
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pathway collection. The data of pathway links and NCBI entrez
gene IDs were retrieved from the MSigDB website: http://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp. The data were
separated into two text documents with one containing gene
links and the other containing the pathway’s gene entrez IDs
using a self-written R program (Supplementary Data Sheet S1).
The documents were added into the loci2path Bioconductor
package at loci2path-master/inst/extdata/geneSet, which could
be called by the loci2path-running program to match significant
eQTLs at the new gene pathway sets.

3.3 Alzheimer’s Disease
Currently, there are three major pathology divisions for AD:
protein accumulation, neuron loss, and reactive process
(Duyckaerts et al., 2009). Past studies have shown that the
extracellular accumulation and deposition of amyloid-beta
(Aβ) protein induce the appearance of senile plaques and

create an abnormal neuron environment, which causes
cognitive disabilities (Sadigh-Eteghad et al., 2015; Cheignon
et al., 2018). Such accumulation of Aβ not only enhances the
interaction between amyloid-forming protein and neuronal
membrane and increases membrane permeability through
hypothetical mechanisms like amyloid-forming protein’s
channel-like conductance, but also contributes to the increase
in the reactive oxygen species production and thus the disruption
of neuronal membrane integrity (Butterfield and Lashuel, 2010;
Cheignon et al., 2018).

Figure 2A demonstrated the eQTLs enrichment of AD-related
genomic intervals in the BioCarta pathway set. There was a
distinct significant enrichment of the D4-GDI pathway in the
brain amygdala (Figure 2A). Significant eQTLs enrichment
results from the amygdala tissue were extracted for further
analysis. The table has demonstrated that most pathways’ gene
hit in brain amygdala tissue was Rho GDP dissociation inhibitor

FIGURE 2 | Heatmap of Alzheimer’s disease’s eQTLs enrichment results in (A) BioCarta and (B) WikiPathways pathway sets, respectively.
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beta (ARHGDIB) gene (Table 2). The D4-GDI pathway had the
lowest p-value of genes, which was consistent with the data in
Figure 2A where the D4-GDI pathway was only enriched in
amygdala tissue (Table 2; Figure 2A). D4-GDI represents the
negative regulator of Ras-related Rho GTPases, and its removal is
crucial to induce apoptosis since Rho GTPases increase the
cytoskeletal and membrane modification related to apoptosis
(Coleman and Olson, 2002). As an enzyme that cleaves D4-
GDI, caspase-3 was found to be positively correlated with mild
cognitive deficiency in early AD pathology (Gastard et al., 2003).
Clinical research suggested that Aβ could sequester caspase-3 via
direct interaction and induce neuronal apoptosis via caspase-3
activation, thus strengthening AD development (Chang et al.,
2016). One possible hypothesis was that an increased level of
caspase-3 in the amygdala leads to increased apoptosis and
neuronal loss and thus contributes to the memory loss
symptom of AD.

Similarly, Figure 2B showed significant enrichment of sulfation
biotransformation reaction and viral acute myocarditis pathways in
brain cortex, IL2 and IL5 signaling pathways in brain cerebellum, and
development and heterogeneity of the innate lymphoid cell (ILC)
pathway in brain hippocampus for theWikiPathways set (Figure 2B).
The significant enrichment of viral acute myocarditis pathway in the
brain cortex suggested that the correlation observed between heart
failure and AD was due to not only the majority of patients’ age, but
also genetic factors (Figure 2B) (Li et al., 2006). Such findings were
consistent with a previous study where the viral myocarditis pathway
from other pathway sets was identified to be significantly associated
with AD (Liu et al., 2014). One population study also found a higher
than 80% risk of developing AD for patients with heart failures when
major confounders like vascular comorbidities were controlled (Qiu
et al., 2006). The significant enrichment in the sulfation
biotransformation reaction pathway could also be explained by
previous findings (Figure 2B). One research suggested an
increased frequency of reduced metabolism and impaired sulfation
of xenobiotics among AD patients (McFadden, 1996). A clinical study
showed that sulfated curcumin can bind to copper and iron ions that
are enriched in the brain cortex of AD patients and induce Aβ peptide
formation, thus indicating that impaired sulfation ability would
increase risk of AD (Baum and Ng, 2004). One possible
connection between acute viral myocarditis and AD is kynurenine
3-monooxygenase (KMO), which is a key regulatory enzyme in the

kynurenine metabolism pathway that converts kynurenine to 3-
hydroxykynurenine (Kubo et al., 2017). Studies have shown that
the absence of KMO increased the production of kynurenine pathway
metabolite, which lowered the synthesis of chemokine and thus
resulted in the decrease of mortality of viral acute myocarditis by
encephalomyocarditis virus in mice (Kubo et al., 2017). Interestingly,
another study pointed out that JM6, a KMO inhibitor, was found to be
able to prevent memory deficiency and synaptic loss in AD mouse
models through the increase of the neuroprotective kynurenine
metabolite kynurenic acid (Zwilling et al., 2011). Such interaction
may imply a hidden mechanism in AD’s pathogenesis that increases
KMO production and thus decreases levels of neuroprotective
kynurenine metabolite and enhances AD symptoms, which
explains AD’s connection to acute viral myocarditis.

3.4 Parkinson’s Disease
One key sign of PD is the accumulation of α-synuclein and the
formation of Lewy bodies in brainstem, limbic system, and cortical
areas (Alecu and Bennett, 2019). Pathological hallmarks also include
the loss of dopaminergic neurons from the substantia nigra and
Lewy bodies in surviving cells of affected brains, which leads to
reduced voluntary movements (Gegg et al., 2012).

As demonstrated in the Supplementary Figure S1A, the
enrichment of the KEGG sphingolipid metabolism pathway was
observed to be highly and uniquely significant in amygdala tissue,
which indicates a correlation between sphingolipid metabolism and
PD. This is consistent with previous studies since the metabolism of
sphingolipid glucosylceramide catalyzed by glucocerebrosidase
(GCase) was found to be deficient in PD patients (Gegg et al.,
2012). The deficiency of GCase that catalyzes sphingolipid
metabolism has reached up to 40% at amygdala for PD patients
compared to normal patients, which is likely to cause α-synuclein
accumulation as GCase mRNA level decreased in cells with
exogenous α-synuclein (Gegg et al., 2012). One possible
explanation for the decreasing GCase could be a mutation at
glucosylceramidase-beta gene that encodes this lysosomal enzyme.
Similarly, the lysosomal-associated membrane protein 2A and heat
shock cognate 70 from lysosome had significantly lower expression
levels in amygdala of brains with PD compared to brains with AD or
normal brains (Alvarez-Erviti et al., 2010). The chaperone-mediated
autophagy strongly depends on these two proteins, and the
downregulation of lysosomal-associated membrane protein 2A
has increased the mean half-life of α-synuclein from 46.5 to 65 h,
suggesting a direct link between this protein and PD (Alvarez-Erviti
et al., 2010). Since wild-type α-synuclein was mostly degraded by
chaperone-mediated autophagy, it is valid to hypothesize that
impaired lysosomal functions could initiate the accumulation of
α-synuclein and thus lead to PD.

3.5 Schizophrenia
As demonstrated, most significantly enriched pathways in all 49
tissues were immune-related pathways including allograft rejection,
graft vs. host disease, and antigen processing and presentation
pathways (Table 3). The significantly enriched KEGG allograft
rejection pathway in different tissues shared the major
histocompatibility complex, Class I, C (HLA-C) gene (Figure 3A;
Table 3). HLA-C has been shown to be strongly associated with

TABLE 2 | P-values Obtained from Fisher’s Exact Test of Significant eQTLs
Enrichment for Alzheimer’s Disease in BioCarta Pathway Set for Brain
Amygdala Tissue

Pathway Gene hit Genomic location Fisher’s
exact test p-valuea

D4-GDI ARHGDIB 12p12.3 0.020
Blymphocyte CR1 1q32.3 0.023
ARF POLR1A 2p11.2 0.028
Caspase ARHGDIB 12p12.3 0.037
TNFR1 ARHGDIB 12p12.3 0.048
FAS ARHGDIB 12p12.3 0.050
HIVNEF ARHGDIB 12p12.3 0.091

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway
using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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schizophrenia by multiple past studies. HLA-C*01:02 was positively
associated with schizophrenia, while HLA-C*07:01 was negatively
associated with schizophrenia (Andreassen et al., 2015; Corvin,
2012). One study suggested that in the absence of glutamic acid
at the 74th position of the mature protein encoded by the major
histocompatibility complex, Class II, DR Beta 1(HLA-DRB1) gene,
the amino acid methionine at the 99th position of HLA-C may
contribute to individuals’ susceptibility to schizophrenia, in which
the glutamic acid inHLA-DRB1 has a protective function against the
disease (Seshasubramanian et al., 2020). Interestingly, HLA-DRB1
was hit by the majority of tissues enriched with the KEGG allograft
rejection pathway (Table 3). Similarly, the major histocompatibility
complex, Class II, DQ Beta 1 (HLA-DQB1) gene was also shared by
most tissues with such a pathway, a molecule that presents peptides
derived from extracellular proteins and is expressed in antigen
expression cells (Table 3). DQB1*05:01:01 was also positively
associated with schizophrenia and the predominant haplotype
in the schizophrenia population, while decreased frequency of
DQB1*02:01 was found among schizophrenia patients (Katrinli
et al., 2019; Seshasubramanian et al., 2020). No studies have been
conducted on specific mechanisms of HLA-C, HLA-DRB1, and
HLA-DQB1’s interventions in schizophrenia pathogenesis, but
their interaction is much likely to contribute to the disease.

In the PID pathway set, the FOXO pathway was significantly
enriched in the eQTLs set of thyroid tissue, which suggested a
potential correlation between the forehead box transcription

factor O family and schizophrenia at thyroid (Figure 3B). The
mRNA expression level of FOXO pathway genes including
FOXO1 and FOXO3A were significantly lower in patients with
acute schizophrenia (Gu et al., 2021).

3.6 Non-Small Cell Lung Cancer
The BioCarta IL1R pathway was shown to be significantly
enriched in the testis tissue for NSCLC (Supplementary
Figure S2). The IL1R pathway involves signal transduction
through interleukin-1. One study found that interleukin-17
(IL-17) was involved in angiogenesis in a variety of
inflammatory associated cancers, although it still remains
unclear how IL-17 contributes to the process (Pan et al.,
2015). It is also known that interleukin-37 (IL-37), a new
member of the interleukin-1 family, plays an
immunosuppressive role in a variety of inflammatory
disorders. A study recently found that IL-37 demonstrates a
protective role in cancer development possibly through tumor
angiogenesis and that it could serve as a promising therapeutic
target for NSCLC (Ge et al., 2016).

In Supplementary Figure S2, the PCG1A pathway was
enriched in the kidney. The PCG1A pathway involves the
regulation of peroxisome proliferator-activated receptor
gamma coactivator-1 alpha (PGC-1a), which is a tissue-
specific coactivator that enhances the activity of many nuclear
receptors and coordinates transcriptional programs

TABLE 3 | Adjusted p-values of the Ten Most Significant eQTLs for Schizophrenia from 49 tissues.

Tissue Pathway Gene hits Genomic locations Fisher’s
exact test
p-valuea

Breast Mammary Tissue KEGG allograft rejection CD80;HLA-E;HLA-G;HLA-C;HLA-DQB1;HLA-DRB5;HLA-
DOB;HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-DRA;HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

2.59E-12

KEGG graft versus host
disease

CD80;HLA-E;HLA-G;HLA-C;HLA-DQB1;HLA-DRB5;HLA-
DOB;HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-DRA;HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

1.05E-11

KEGG type I diabetes
mellitus

CD80;HLA-E;HLA-G;HLA-C;HLA-DQB1;HLA-DRB5;HLA-
DOB;HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-DRA;HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

1.99E-11

Esophagus
Gastroesphageal Junction

KEGG type I diabetes
mellitus

CD80;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;HLA-
B;LTA

3q13.33, 6p22.1,
6p21.33, 6p21.32

1.59E-14

KEGG allograft rejection CD80;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

6.37E-14

KEGG graft versus host
disease

CD80;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

3.00E-13

KEGG antigen processing
and presentation

CTSS;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;
TAP2;TAPBP;HLA-B;LTA

6p22.1, 6p21.33,
6p21.32, 1q21.3

2.52E-12

KEGG autoimmune thyroid
disease

CD80;HLA-E;HLA-G;HLA-A;HLA-C;HLA-DQB1;HLA-DRB5;
HLA-DQA2;HLA-DMA;HLA-DRA;HLA-DRB1;HLA-DQA1;
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

9.45E-12

Muscle Skeletal KEGG allograft rejection CD80;HLA-E;HLA-C;HLA-G;HLA-DQB1;HLA-DRB5;HLA-
DMA;HLA-DRA; HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-A,
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

5.14E-12

KEGG graft versus host
disease

CD80;HLA-E;HLA-C;HLA-G;HLA-DQB1;HLA-DRB5;HLA-
DMA;HLA-DRA; HLA-DQA2;HLA-DRB1;HLA-DQA1;HLA-A,
HLA-B

3q13.33, 6p22.1,
6p21.33, 6p21.32

2.37E-11

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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important for energy metabolism and homeostasis. In NSCLC
patients, there are a variety of cases where the cells show
therapeutic resistance. As a result, a plethora of studies

focus on drug resistance mechanisms, but not many have
focused on the metabolic flexibility of drug-resistant NSCLC.
In one study, it was found that during the development

FIGURE 3 | Heatmap of schizophrenia’s eQTLs enrichment results in (A) KEGG and (B) PID pathway sets.
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of resistance for tyrosine kinase inhibitors, NSCLC cells switched
from glycolysis to oxidative phosphorylation through increasing
activity of the mitochondria. Cells were treated with the MCT-1
inhibitor AZD3965 and there was a resulting significant decrease
in cell proliferation and motility in TK1-sensitive and TK-
resistant cells. A study recently found that IL-37 demonstrates
a protective role in cancer development possibly through tumor
angiogenesis and that it could serve as a promising therapeutic
target for NSCLC (Huang et al., 2020).

3.7 Blood Pressure
For blood pressure, the majority of the pathways most significantly
enriched in tissues were immune-related, and the atrial appendages
tissue contained the most pathways with the most significant
p-values (Table 4). The role of the immune system in the
pathogenesis of hypertension has been firmly established by
many laboratories. The KEGG viral myocarditis pathway and the
tissue heart atrial appendage had one of themost significant p-values
at 3.08E-14, the KEGG type I diabetes mellitus pathway was also
significantly enriched at the atrial appendage tissue (Table 4).

Myocarditis is a cardiac disease associated with inflammation
and injury of the myocardium. It results from various etiologies,
but coxsackievirus is considered the dominant etiological agent.
Infiltrating macrophages have been proven as a pivotal
pathological inflammatory cell subset in coxsackievirus
induced viral myocarditis, however, the mechanisms involving
initiation and promotion are still unknown (Zhang et al., 2017).

Type 1 diabetes is the autoimmune destruction of the insulin
producing beta-cells. High blood pressure is a common symptom
of diabetes because the high levels of glucose in the blood damage

the blood vessels and lead to hypertension. One study found that
the left atrium mechanical functions were impaired in patients
with type 1 diabetes (Acar et al., 2009).

3.8 Autism Spectrum Disorder
Few significant pathways were uniquely enriched in one or two
tissues for autism spectrum disorder as shown in Supplementary
Figures S3–S7. KEGG pathways of drug metabolism by
cytochrome p450 and metabolism of xenobiotics by
cytochrome p450 were found to be enriched in various tissues
and most significantly in the liver tissue (Supplementary Figure S4;
Table 5). Out of 29 most significant pathway-tissue combinations
passing the p-value threshold of 10−4, genes GSTM3 and GSTM5
were hit 24 times, followed by genes GSTM1, GSTP1, GSTM4, and
GSTM2 (Supplementary Table S1). The two most significantly
enriched pathways, Reactome phase II conjugation of compounds
and KEGGmetabolism of xenobiotics by cytochrome p45 pathways,
were in liver tissues, and they have both hit genes GSTM2, GSTM3,
GSTM4, and GSTM5, which encode for multiple proteins from the
glutathione S-transferase mu class (Table 5). The two pathways
cover proteins functioning in pharmacological inactivation of
chemicals and detoxification, and the mu class enzymes are
known for their functions in detoxification of electrophilic
compounds by conjugation with glutathione (Cheng et al., 2020).
Therefore, such highly significant adjusted p-values suggested a key
role glutathione S-transferase mu enzymes play in autism spectrum
disorder (Table 5). Studies have shown that when exposed to
chronic heavy metal and chemical xenobiotic pollution, patients
with autism spectrum disorder demonstrated significantly higher
total glutathione and oxidized glutathione in red blood cells (Faber

TABLE 4 | Adjusted p-values of Five Most Significant eQTLs for Blood Pressure in KEGG and WikiPathways Sets for Heart Atrial Appendage Tissue.

Pathway Gene hits Genomic locations Fisher’s
exact test
p-valuea

WikiPathways Ebola virus
pathway on host

MERTK;KPNA1;RFC1;ITGA2;HLA-G;HLA-A;HLA-C;HLA-
B;HLA-E;HLA-DOA;HLA-DRB5;HLA-DQB2;HLA-DMA;
HLA-DPA1;HLA-DRB1;HLA-DPB1;HLA-DQA2;HLA-F;
HLA-DQB1;HLA-DOB;HLA-DQA1;HLA-DRA;RAC1;SCIN;
CAV2;CAV1;CTSB;ITGB1;TPCN2;MFGE8;IQGAP1;NPC1;
VPS16

6p22.1, 6p21.33, 6p21.32, 2q13, 3q21.1, 4p14, 5q11.2,
7p22.1, 7p21.3, 7q31.2, 8p23.1, 10p11.22, 11q13.3,
15q26.1, 18q11.2, 20p13

3.64E-13

WikiPathways allograft
rejection

CASP9;CD55;CD86;CSCL8;PDGFRA;BHMT2;HLA-G;
HLA-A; HLA-C;HLA-B;C4A;HLA-E;MICA;HLA-DOA;HLA-
DRB5;HLA-DMA;HLA-DPA1;HLA-DRB1;HLA-DPB1; HLA-
DQA2;HLA-F;HLA-DQB1;HLA-DOB;C4B;HLA-DQA1;
HLA-DRA;LRRK2

6p22.1, 6p21.33, 6p21.32, 1p36.21, 1q32.2, 3q13.33,
4q12, 5q14.1, 12q12

1.03E-12

KEGG allograft rejection CD86;HLA-G;HLA-A;HLA-C;HLA-B;HLA-E;HLA-DOA;
HLA-DRB5;HLA-DMA;HLA-DPA1;HLA-DRB1;HLA-DPB1;
HLA-DQA2;HLA-F;HLA-DQB1;HLA-DOB;HLA-DQA1;
HLA-DRA

6p22.1, 6p21.33, 6p21.32, 3q13.33 1.03E-12

KEGG viral myocarditis CASP9;CD55;CD86;HLA-G;HLA-A;HLA-C;HLA-B;HLA-E;
HLA-DOA;HLA-DRB5;HLA-DMA;HLA-DPA1;HLA-DRB1;
HLA-DPB1;HLA-DQA2;HLA-F;HLA-DQB1;HLA-DOB;HLA-
DQA1;HLA-DRA;RAC1;CAV1;RAC3

6p22.1, 6p21.33, 6p21.32, 7p22.1, 7q31.2, 1p36.21,
1q32.2, 3q13.33, 17q25.3

5.70E-12

KEGG graft versus host
disease

CD86;HLA-G;HLA-A;HLA-C;HLA-B;HLA-E;HLA-DOA;
HLA-DRB5;HLA-DMA;HLA-DPA1;HLA-DRB1;HLA-DPB1;
HLA-DQA2;HLA-F;HLA-DQB1;HLA-DOB;HLA-DQA1;
HLA-DRA

6p22.1, 6p21.33, 6p21.32, 3q13.33 9.82E-12

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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et al., 2019). The study also believed that the elevated glutathione was
a compensatory mechanism to the exposure of a high xenobiotic
environment (Faber et al., 2019). However, such a mechanism could
not deal with oxidative stress as the reduced to oxidized glutathione
ratio was lower in autistic patients, which indicates a crucial role
glutathione plays in the xenobiotic detoxification among patients
with autism spectrum disorder (Faber et al., 2019; Bjørklund et al.,
2020).

3.9 Myocardial Infarction
Supplementary Figure S8 demonstrated the eQTLs enrichment
in BioCarta and Reactome pathway sets of myocardial infarction-
related genomic intervals. The AT1R pathway from the BioCarta
pathway set was significantly enriched in brain cortex tissue
(Supplementary Figure S8A), and the cell cycle pathway from
the Reactome pathway set was enriched in whole blood tissue
(Supplementary Figure S8B), respectively. RAC1 gene was hit by
the BioCarta AT1R pathway at the brain cortex tissue, and
PPP2R5A gene was hit by the Reactome cell cycle pathway at
the whole blood tissue (Table 6). In myocardial infarction, the
RAC1 protein in the brain cortex tissue paired with the BioCarta
AT1R pathway was enriched. The RAC1 protein belongs to the
RAS superfamily of small GTP-binding proteins. Members of this
superfamily appear to regulate a diverse array of cellular events,
including the control of cell growth, cytoskeletal reorganization,

and the activation of protein kinases. In terms of myocardial
infarction, the RAC1 protein serves as a small GTP-binding
protein that regulates NADPH oxidase. NADPH oxidase is a
reactive oxygen species (ROS) that contributes to heart failure,
such as myocardial infarction. Failing of the myocardium in
patients with dilated cardiomyopathy (DCM) and ischemic
cardiomyopathy (ICM) is characterized by an upregulation of
NADPH oxidase–mediated ROS release associated with increased
RAC1 activity (Maack et al., 2003).

Furthermore, the AT1R pathway is responsible for promoting
hypertension, G protein-dependent signaling, transactivation of
growth factor receptors, NADPH oxidase, and ROS signaling
explaining why the RAC1 gene was enriched by the AT1R
pathway (Kawai et al., 2017). In addition to the RAC1 gene,
the PPP2R5A gene in the tissue whole blood paired with the
Reactome cell cycle pathway was hit on. The PPP2R5A gene
stands for protein phosphatase 2 regulatory subunit B’alpha. The
gene serves as a subunit of the protein phosphatase 2A (PP2A)
holoenzyme, which plays an essential role in regulating a diverse
array of myocyte functions through dephosphorylation of target
molecules. Functioning as an important phosphatase, the PP2A
holoenzyme is critical for serving as a regulatory module within
the heart, such that dysregulation of PP2A function may
contribute to cardiac diseases. Alterations in PP2A activity are
associated with heart failure and arrhythmia (Lubbers and

TABLE 5 | Adjusted p-values of 10 Most Significant eQTLs for autism spectrum disorder from 49 tissues.

Tissue Pathway Gene hits Genomic locations Fisher’s
exact test
p-valuea

Adipose Visceral
Omentum

Reactome biological oxidations GSTM5;GSTM3;GSTM1;GSTM4;EPHX1;
NCOA1;ABHD14B;UGT2A1;SULT1E1;
SLC26A1;UGT2B7;UGT3A2;AIP;GSTP1;
CES1;CYB5B;ALDH3A1

1p13.3, 1q42.12, 2p23.3, 3p21.2, 4q13.3,
4p16.3, 3q13.2, 5p13.2, 11q13.2,
16q12.2, 16q22.1, 17p11.2

3.44E-06

Brain Anterior
cingulate cortex
BA24

WikiPathways photodynamic
therapyinduced NFE2L2 NRF2
survival signaling

GCLM;EPHX1;ABCC2;GSTP1;CES1;NQO1;
SRXN1

1q42.12, 11q13.2, 16q12.2, 1p22.1,
10q24.2, 16q22.1, 20p13

7.66E-06

Brain Caudate
basal ganglia

KEGG steroid hormone biosynthesis SRD5A3;UGT2A1;UGT2B4;UGT2B15;
SULT1E1;UGT2B28

4q13.3, 4q12, 4q13.2 1.62E-05

Colon Transverse KEGG metabolism of xenobiotics by
cytochrome p450

GSTM5;GSTM3;GSTM2;GSTM1;GSTM4;
EPHX1;UGT2B4;GSTP1;ALDH3A1

1p13.3, 1q42.12, 11q13.2, 17p11.2,
4q13.3

1.28E-05

Kidney Cortex Reactome biological oxidations GSTM5;GSTM3;GSTM4;GSTM2;NCOA1;
UGT2A1;UGT2B4;UGT2B15;SULT1E1;
UGT2B28;UGT3A2

1p13.3, 2p23.3, 4q13.3, 5p13.2, 4q13.2 1.23E-06

Liver Reactome phase II conjugation of
compounds

GSTM5;GSTM3;GSTM4;GSTM2;UGT2A1;
UGT2B4;UGT2B15;SULT1E1;UGT2B28;
UGT3A2

1p13.3, 4q13.3, 5p13.2, 4q13.2 1.73E-08

KEGG metabolism of xenobiotics by
cytochrome p450

GSTM5;GSTM3;GSTM4;GSTM2;UGT2A1;
UGT2B4;UGT2B15;UGT2B28

1p13.3, 4q13.3, 4q13.2 7.30E-08

KEGG metabolism of xenobiotics by
cytochrome p450

GSTM5;GSTM3;GSTM1;GSTM4;EPHX1;
UGT2A1;UGT2B7;ALDH3B2;GSTP1;
ALDH3A1

1p13.3, 1q42.12, 4q13.3, 3q13.2,
11q13.2, 17p11.2

3.71E-06

Lung KEGG pentose and glucuronate
interconversion

UGDH;UGT2B4;UGT2A1;DHDH 4q13.3, 4p14, 19q13.33 7.16E-06

Skin Not Sun
Exposed
Suprapubic

KEGG drug metabolism cytochrome
p450

GSTM5;GSTM3;GSTM4;GSTM2;UGT2A1;
UGT2B4;UGT2B15;UGT2B28

1p13.3, 4q13.3, 4q13.2 9.15E-08

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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Mohler, 2016). The varying types of myocardial infarction make it
difficult for researchers to pinpoint a cure. In recent years, scientists
have recognized multiple types of myocardial infarction with
different causes, yet the knowledge of its pathogenic mechanisms
is still poorly understood and greatly lacking (DeFilippis et al., 2019).
While the different causes of myocardial infarction can be difficult to
pinpoint, we can start by identifying the pathways, tissues, genes that
are related to the causes. The results have shown some genomic
mechanisms contributing to myocardial infarction, whether it be the
enrichment of the RAC1 protein leading to the regulation of
NADPH oxidase causing heart failure, or the altered regulation
in the PP2A gene leading to heart failure and arrhythmia.
The importance of these findings is two-fold: first, these results
could serve as a pipeline to benefit the scientific community through
reducing repeated work, and second, the discovered specific
pathway-tissue-gene results could help researchers to reveal
pathogenesis mechanisms in myocardial infarction in hopes to
lower its occurrence rates or raise the rates of survival.

4 DISCUSSION

We have extended the loci2path (Xu et al., 2020) by using the
latest multi-tissue eQTLs data set from GTEx V8 release and
adding PID, Reactome, and WikiPathways databases. The total
numbers of eQTLs for each of 49 tissues we used in this study are
shown in Supplementary Table S2. Our results of enrichment
analysis have suggested multiple novel biological hypotheses of
disease mechanisms for AD, PD, and schizophrenia. The
proposed mechanisms of the increase of caspase-3 level in
amygdala tissue and KMO production that may contribute to
AD’s memory loss symptoms by increasing apoptosis and
neuronal loss and decreasing kynurenine metabolite levels
were supported by multiple past studies. The impaired
lysosomal functions of GCase, lysosomal-associated membrane
protein 2A, and heat shock cognate 70 resulted frommutations in
genes corresponding to these proteins may cause α-synuclein
accumulation to begin and thus lead to PD. The interaction

TABLE 6 | Adjusted p-values of Five Most Significant eQTLs for Myocardial Infarction in BioCarta and Reactome Pathway Sets from 49 tissues.

Tissue Pathway Gene hits Genomic locations Fisher’s
exact test
p-valuea

Brain Cortex BioCarta AT1R
pathway

SHC1;AGT;RAC1;GNAQ;MAPK3 1q21.3, 1q42.2, 7p22.1, 9q21.2, 16p11.2 0.00378

BioCarta PYK2
pathway

SHC1;MAPK14;RAC1;GNAQ;MAPK3 1q21.3, 7p22.1, 9q21.2, 16p11.2, 6p21.31 0.00378

Brain Nucleus
accumbens basal
ganglia

Reactome
glutathione
conjugation

GSTM2;GSTM5;GSTM1;HPGDS;GGCT;GSTO1;
CNDP2

1p13.3, 4q22.3, 7p14.3, 10q25.1, 18q22.3 3.71E-05

Lung BioCarta ATRBRCA
pathway

RAD17;FANCE;FANCG;MRE11;FANCA 5q13.2, 6p21.31, 9p13.3, 11q21, 16q24.3 0.00950

Ovary BioCarta ATRBRCA
pathway

RAD17;FANCG;MRE11;FANCA 5q13.2, 9p13.3, 11q21, 16q24.3 0.00385

Testis Reactome signaling
by Rho GTPases

KDM1A;WASF2;YWHAQ;CENPC;RASGRF2;
IQGAP2;H2BC1;H3C6;H2BC3;H2AC4;H2BC4;
CENPQ;MAPK14;H3C12;RAC1;H2AZ2;
ARHGEF35;ARHGEF10;DLC1;RHOBTB1;CFL1;
KLC2;CTTN;RHOG;RHOJ;MAPK3;SKA1;
SPC24;SRC

1p36.12, 6q21, 2p25.1, 4q13.2, 7p22.1, 16p11.2,
6p21.31, 5q14.1, 5q13.3, 6p22.2, 6p12.3,
6p22.1, 7p13, 7q35, 8p23.3, 8p22, 10q21.2,
11q13.1, 11q13.2, 11q13.3, 11p15.4, 14q23.2,
18q21.1, 19p13.2, 20q11.23

8.38E-05

Whole Blood Reactome cell cycle PPP2R5A;AHCTF1;LPIN1;VRK2;MZT2A;ANAPC4;
CENPC;DHFR;H3C6;H4C3;H2BC5;CENPQ;
TUBB2B;TUBB2A;CDKN1A;H4C12;H2BC14;
POM121;MAD1L1;H2AZ2;POM121C;PRKAR2B;
MCM4;RAB2A;DCTN3;CDKN2B;CDKN2A;SMC2;
PPP2R2D;BANF1;RAB1B;MRE11;NUP98;
ANKLE2;PSMC6;PPP2R5E;MAPK3;SPC24;
CHMP4B;DSN1

16p11.2, 11q21, 4q13.2, 6p22.2, 6p12.3, 7p13,
19p13.2, 1q32.3, 1q44, 2p25.1, 2p16.1, 2q21.1,
4p15.2, 5q14.1, 6p25.2, 6p21.2, 6p22.1,
7q11.23, 7p22.3, 7q22.3, 8q11.21, 8q12.1,
9p13.3, 9p21.3, 9q31.1, 10q26.3, 11q13.1,
11q13.2, 11p15.4, 12q24.33, 14q22.1, 14q23.2,
20q11.22, 20q11.23

1.61E-07

Reactome Rho
GTPase effectors

WASF2;PPP2R5A;AHCTF1;CENPC;H3C6;H4C3;
H2BC5;CENPQ;TUBB2B;TUBB2A;H4C12;
H2BC14;MAD1L1;RAC1;H2AZ2;NCF1;CTTN;
RHOG;NUP98;PPP2R5E;MAPK3;SPC24;DSN1

6q21, 7p22.1, 16p11.2, 4q13.2, 6p22.2, 6p12.3,
7p13, 11q13.3, 11p15.4, 19p13.2, 1q32.3, 1q44,
6p25.2, 6p22.1, 7p22.3, 11p15.4, 14q23.2,
20q11.23, 7q11.23

3.08E-05

Reactome signaling
by Rho GTPases

WASF2;PPP2R5A;AHCTF1;CENPC;ARAP2;
H3C6;H4C3;H2BC5;CENPQ;TUBB2B;TUBB2A;
H4C12;H2BC14;MAD1L1;RAC1;H2AZ2;NCF1;
ARHGEF35;ARHGEF5;DLC1;CTTN;RHOG;
NUP98;PPP2R5E;MAPK3;SPC24;DSN1

6q21, 7p22.1, 16p11.2, 4q13.2, 6p22.2, 6p12.3,
7p13, 7q35, 8p22, 11q13.3, 11p15.4, 19p13.2,
1q32.3, 1q44, 6p25.2, 6p22.1, 7p22.3, 11p15.4,
14q23.2, 20q11.23, 7q11.23, 4p14, 7q35

8.11E-05

BioCarta MAPK
pathway

MAP3K6;SHC1;MAP3K7;RIPK1;MAPK13;RAC1;
MAP3K11;RPS6KA5;MAPK3

1p36.11, 7p22.1, 1q21.3, 16p11.2, 6q15, 6p25.2,
6p21.31, 11q13.1, 14q32.11

0.00499

aFisher’s exact test p-value represents the adjusted p-value for genes in the pathway using Fisher’s exact test that are adjusted by Benjamini & Hochberg correction method.
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among HLA-C, HLA-DRB1, and HLA-DQB1 is likely to take part
in schizophrenia’s pathogenesis as well.

Our study has extensively evaluated multiple gene pathways’
involvements in the ten traits and further investigated significant
genes in each pathway that were hit in the given genomic query
regions. The proposed hypotheses have opened new avenues to
explore the underlying molecular mechanisms and thus could
illuminate further investigations on these traits. We have also
found many interesting associations between eQTLs and gene
pathways at trait-associated variants of NSCLC, blood pressure,
autism spectrum disorder, and myocardial infarction which
provided valuable insights into our comprehensive
understandings of them. Furthermore, our study has confirmed
the advantages of using tissue-specific eQTLs enrichment analysis at
pathway level, because our findings based on loci2path software were
strongly supported by multiple previous studies (Xu et al., 2020).
This has indicated that using eQTLs catalogs to find links between
genomic loci and their corresponding eGenes is valid and should be
vastly applied in future studies involving gene sets and traits.

There were several limitations in our study. Due to the nature of
the statistical analysis, our findings from loci2path could not be
considered as providing direct understandings of biological
mechanisms underpinning these traits, and we were only able
to generate hypotheses for trait determination. These hypotheses
should be experimentally verified by conducting further in-depth
functional studies by molecular biology laboratories. In addition,
loci2path′s reliance on current eQTLs sets data from GTEx could
also lead to biased results since the eQTLs sets data from brain
tissues were significantly smaller than other tissues like
tibial nerves, leg skin without sun exposure, and thyroid. This
was caused by the limited sample sizes of brain tissues from GTEx,
which may result in missing important biological pathways in
brain tissues for neurodegenerative diseases due to inadequate
statistical power. The imbalance of eQTLs sizes of various tissues
could also bring false-positive results in tissues with more samples
and generate coincidental enrichment of certain pathways at
tissues not related to the traits. Therefore, results from loci2path
need to be treated with extra care, and only the most significant

tissue-pathway associations should be extracted for analysis with
sufficient past evidence. The software itself also has rooms
for improvement, like including new gene pathway sets
and adding annotations on pathways uniquely enriched in a tissue.

Future studies on neurodegenerative diseases specifically
should implement more data on brain tissues to increase the
accuracy of loci2path. Other neurodegenerative diseases like
bipolar disorder and attention deficit disorder could be added
for a systematic analysis on their patterns to find potential
patterns for commonality among this type of disease.
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