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ABSTRACT 1:9 embryonal carcinoma (EC) cells, cultured in suspension in medium containing 
5 x 10 -8 M retinoic acid, aggregate and differentiate into embryoid bodies with an outer layer 
of visceral endoderm cells that synthesize and secrete alphafetoprotein (AFP) (Hogan, B. L. M., 
A. Taylor, and E. Adamson, 1981, Nature (Lond.). 291:235-237). Here we analyze the formation 
of the outer layer of cells as a model for epithelial differentiation. Three morphological phases 
are described, but analyses of cell numbers and the synthetic rates of some proteins, as well as 
the appearance of markers of visceral endoderm and basement membrane, show that the 
formation of the outer layer occurs as an orderly progression of mult iple events. The markers 
used to fol low the ontogeny of epithelial layer formation include SSEA-1, I, and i blood group 
antigens, laminin, f ibronectin, type IV collagen, cytoskeletal intermediate f i lament proteins 
(vimentin, Endo A, and B), and AFP. The onset of epithel ium formation occurs between the 
third and fourth day of culture, but its funct ion is maximally expressed only when it is well 
organized. We found the rate of AFP secretion to be a measure of the proper al ignment and 
maturity of the epithel ium which occurs at the seventh or eighth day. This model of epithel ium 
formation may help to explain how similar processes occur during embryogenesis. 

F9 cells are a clonal cell line of  mouse teratocarcinoma-derived 
embryonal carcinoma (EC) cells. Normally, F9 cells show very 
little spontaneous differentiation in vivo or in vitro. However, 
given certain conditions, F9 cells have been shown to differ- 
entiate into two distinct populations of extraembryonic cell 
types, parietal and visceral endoderm. F9 monolayers treated 
with retinoic acid (1) and dibutyryl cAMP (2) differentiate into 
an early embryonic cell type, parietal endoderm. Recently, it 
has been shown that F9 EC cells treated with 5 × 10 -s M 
retinoic acid for 6 to 8 d in suspension culture differentiate into 
aggregates called embryoid bodies. Embryoid bodies are so- 
called because they morphologically resemble early mouse 
embryos at the two-layered stage. The outer layer of embryoid 
bodies synthesizes and secretes alphafetoprotein (AFP) (3) 
which is characteristic of visceral endoderm (4). 

The formation of embryoid bodies may be useful as a three- 
dimensional model of some of the processes occurring in early 
embryogenesis, such as endoderm differentiation, cavitation, 
and epithelial layer formation. In common with most epithelial 
layers, the visceral endoderm layer in this system consists of a 
sheet of cells underlaid by a thin basement membrane. We 
used this model to investigate the formation and maturation of 
an epithelial layer. 

We made a detailed analysis of the growth and differentia- 

tion of the aggregates using metabolic radiolabeling and im- 
munofluorescent staining. The distribution of marker proteins 
and antigens in the process of formation of the epithelial layer 
during the differentiation of the F9 embryoid bodies is de- 
scribed. Following the aggregation of EC cells, overlapping but 
clearly defmed stages (cell proliferation, differentiation, base- 
ment membrane formation, and outer cell alignment) occur 
which lead to the formation of an epithelial layer of functioning 
visceral endoderm cells. 

MATERIALS AND METHODS 

Cells: F9 embryonal carcinoma (EC) cells (5) were cloned, and we selected 
a subclone (BI) based on its increased ability to differentiate in suspension 
cultures (measured by AFP production, see below). Clone BI was used in all 
experiments (referred to as F9). The cells were maintained and passaged as 
described previously (6). 

Antisera: For immunofluorescence, the antisera used were affinity-puri- 
fied rabbit antibodies to mouse AFP (7) and mouse type IV collagen (8), rabbit 
antiserum to rat laminin (9), and rabbit antiserum to mouse fibronectin, absorbed 
with human fibronectin (10). In some experiments, the antifibronectin serum was 
also absorbed with bovine fibronectin before use. Both antilaminin and antifi- 
bronectin were provided by Dr. Eva Engvall (La Jolla Cancer Research Foun- 
dation). Rabbit antiserum to purified mouse Endo A and Endo B ( I 1) reacts with 
endodermal cytoskeletal proteins. Human autoantibodies to hurr~an blood group 
antigens I (anti-l-Ma) and i (anti-i-Dench) were obtained from Dr. E. R. Giblett 
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(Puget Sound Central Blood Bank) and from Dr. M. C. Crookston (Toronto 
General Hospital), respectively, and were provided to us by Dr. Michiko Fukuda 
(La Jolla Cancer Research Foundation). Monoclonal mouse antibodies (obtained 
from the culture fluid) to stage-specific embryonic antigen (SSEA-I) (12) were 
provided by Dr. D. Solter (Wistar Institute). 

For immunoprecipitation, we used IgG fraction of rabbit anti-mouse laminin 
(13), rabbit antimouse Endo A and Endo B (11), and rabbit antiserum to baby 
hamster kidney (BHK) vimentin (a gift from Dr. S. J. Singer, University of 
California, San Diego). 

For ELlSA, affinity-purified goat anti-AFP IgG (14) was provided by Dr. 
Ruoslahti (La Jolla Cancer Research Foundation). 

Differentiation: To stimulate the differentiation into embryoid bodies, 
exponentially growing F9 EC cells were dissociated with a trypsin-versene-protein 
solution (TVP) (15) into single cells and small clumps of up to 5-10 cells. The 
dissociated cells were seeded at indicated densities in 96-well untreated polysty- 
rene microtiter plates (Linbro/Titertek, cat. no. 76-202-05; Flow Laboratories, 
Inc., Hamden, CT) in 200-300 p.l of  a 1:1 mixture of Dulbecco's modified Eagle's 
medium (DME) and Ham's F-12 supplemented with 10% heat-inactivated fetal 
bovine serum (FBS), 0.01 M HEPES buffer, and 5 x 10 -s M retinoic acid added 
from a stock of I mg/m] (3 x 10 -:~ M) in dimethyt sulfoxide. The medium was 
replaced on days 2, 4, 6, and 7 and the culture was continued for 8 d. 

Measurement of Growth Rates: At various times after the initia- 
tion of suspension cultures in 96-well plates the aggregates were washed in 
phosphate-buffered saline (PBS), and 200 td of 1 M glycine, 2 mM EDTA, pH 
7.4, was added and the mixture was incubated at 37°C (16). After - 3  h of 
incubation, vigorous pipetting disrupted the aggregates into single cells. The cell 
suspensions were allowed to settle, and the cells were counted with Artek TV 
camera and cell counter (Artek Systems Corp., Farmingdale, NY). 

Quantitation of  AFP: At appropriate times up to 8 d, the culture 
medium was collected and frozen at - 2 0 ° C  until assayed; AFP was determined 
by a ELISA assay as previously described (17). The sensitivity of the assay was 
such that 10 ng/ml  AFP was readily detectable, and the upper limit of the linear 
portion of the standard curve was at 400 ng/ml  AFP. 

Im m unofluorescence: Aggregates of F9 cells were washed with PBS 
and fixed for 10 min in freshly prepared, cold acidified ethanol (99 ml of 95% 

ethanol to I ml of glacial acetic acid) (18). The aggregates were then washed with 
cold 70°70 and 50% ethanol and finally several times with PBS at room tempera- 
ture. The fixed aggregates were embedded in 1% agar (wt/vol) and immediately 
frozen in liquid nitrogen. The agar blocks were sectioned on a cryostat and 6-#m 
sections were air dried onto gelatin-coated slides. 

Washed sections were treated for 30 rain at room temperature with anti-AFP 
(1:20), anti-type IV collagen (1:20), anti-rat laminin ( 1:40), antifibronectin (1:40), 
anti-Endo A (1:10), anti-Endo B (1:10), anti-I (1:50), anti-i (1:50), or anti-SSEA- 
1 (1:50). The controls were normal rabbit serum, normal human serum, or normal 
mouse serum. The sections were washed with PBS and treated with rhodamine- 
conjugated goat anti-rabbit or fluorescein-conjugated rabbit anti-mouse second 
antibody (1:40; Cappel Laboratories, CochranviUe, PA). 

Metabolic gadiolabeling and Immunoprecipitation: The 
F9 aggregates were rinsed in methionine-free medium, then incubated for 4 h in 
methionine-free DME medium supplemented with 10% FBS and 50/*Ci/ml of 
{a~Slmethionine (>1,000 Ci/mmol; New England Nuclear, Boston, MA). The 
aggregates were washed three times in cold PBS containing 10/.tg/ml of soybean 
trypsin inhibitor. The aggregates were lysed by mixing in 2~1 ml of 0.1% SDS, 10 
mM Tris-HCl, pH 7.5, 3 mM MgCI2, 0.1 mM CaCI2, 0.5 mM phenylmethylsul- 
fonyl fluoride, 1 mM N-ethyl maleimide, 0.19 trypsin inhibitor units of Aprotinin 
(Sigma Chemical Co., St. Louis, MO), and 10 ttg/ml soybean trypsin inhibitor. 
After ~30 s of mixing, 0.04 vol of 10% SDS and 0.1 vol of 0.1 M EDTA, pH 7.5, 
were added. The lysates were heated at 100°C for 2 rain, cooled on ice, and a 0.1 
vol of 10% Nonidet P-40 was added. The lysates were stored at -85°C.  

We performed immunoprecipitation analyses as previously described (19). 
The immunoprecipitates were solubilized in SDS sample buffer and analyzed by 
15% PAGE in the presence of SDS (20, 21). Gels were fluorographed (22) with 
Kodak XAR-5 x-ray film at -85°C.  

RESULTS 

Morpho log ica l  Observations 

Starting almost immediately after seeding in microtiter 
plates, F9 cells aggregated and formed small tight colonies in 

FIGURE 1 Morphology and immunofluorescent staining of F9 aggregates. (a) An aggregate of F9 cells cultured in the absence of 
retinoic acid for 8 d. (b) An aggregate of F9 ceils cultured in the presence of retinoic acid for 6 d showing an outer layer of cells. 
(c) F9 cells cultured in the presence of retinoic acid for 8 d forming a cystic embryoid body. (d) Section through an aggregate of 
F9 cells cultured in the presence of retinoic acid for 8 d and stained with anti-AFP. Bars, 50 pro. (a, b, and c) x 110. (d)  x 270. 
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suspension culture. In the absence of retinoic acid, the aggre- 
gates were smooth spheres that grew up to 0.5 mm in diameter 
(Fig. I a). After 4--5 d in suspension culture, the aggregates 
were dark and appeared to be necrotic in the center. 

In the presence of 5 x 10 -8 M retinoic acid, F9 EC cells 
were stimulated to differentiate into embryoid bodies. The 
process was divided into three stages. In the first stage, the 
aggregates formed and increased in size. In the second stage, 
their appearance as observed by phase-contrast microscopy 
started to change after 3-5 d. A distinct single-celled outer 
layer became visible (Fig. 1 b). We found that the number and 
size of the aggregates and the time of appearance of the outer 
layer of cells depended upon the cell numbers of F9 EC cells 
seeded per well at the start of the culture. The aggregates 
formed from a higher number of F9 EC cells seeded per well 
were greater in number and small in size and the outer layer of 
cells appeared after only 3 d in culture, whereas the aggregates 
formed from a lower number of EC cells seeded per well were 
comparatively fewer in number, larger in size and the outer 
layer of cells appeared after 5-6 d in culture. The third stage 
occurred after 5-6 d, when most of the embryoid bodies were 
cystic (Fig. I c). Only at this stage were the cells of the outer 
layer stained for AFP in immunofluorescence tests (Fig. I d). 

Cell Proliferation 
The cells in the aggregates cultured in the presence of 5 x 

10 -8 M retinoic acid proliferated more slowly than in its 
absence (at about one-half of the rate on average). The number 
of cells seeded in one well of a 96-well plate (in 0.3 ml of 
medium) also affected the growth rate of aggregates. Fig. 2 is 
a plot of cell numbers during 8 d of culture (for simplicity, 
only the data of seeding densities 150, 1,200, and 4,800 cells 
are plotted and the data of seeding densities 75, 300, 600, 2,400, 
and 9,600 cells are not included in Fig. 2). Two phases of cell 
growth were discernible. The first phase was from days 0 to 3 
when rapid proliferation occurred at all densities. The cells in 
the the aggregates formed from lower numbers of starting EC 
ceils (75, 150, or 300) grew more slowly than those formed 
from intermediate (600, 1,200, or 2,400) or higher seeding 
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FIGURE 2 Growth of F9 aggregates in the presence of retinoic acid. 
The numbers represent the starting number of F9 EC cells seeded 
per well in a 96-well microtiter plate. 
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FIGURE 3 Production of AFP by F9 aggregates cultured in the 
presence of retinoic acid. The numbers represent the starting num- 
ber of F9 EC cells seeded per well in a 96-well microtiter plate. 

density (4,800 or 9,600). From day 3 to 6, however, the cell 
number of aggregates formed from the higher seeding densities 
declined, and this was not prevented by daily feeding. The 
second phase was after day 6 with a new rise in cell number of 
all seeding densities. It was thus clear that densely seeded 
cultures proliferated more rapidly and, as shown below, had a 
striking effect on the time of appearance and the level of AFP. 

Quantitation of Secreted AFP 

It has previously been shown that F9 EC ceils cultured in 
suspension in the absence of retinoic acid show a few sponta- 
neously differentiated cells. These cells could be detected by 
immunoperoxidase reaction for AFP on sections (3), but AFP 
was not detectable in the medium by ELISA. When retinoic 
acid was present, the cultures seeded at high densities produced 
detectable levels of AFP at 6 d. There was a sharp rise on day 
7 and it leveled off by day 8 (Fig, 3). The detectable level of 
AFP appeared 2 d later in cultures of lower seeding densities. 
One explanation for the earlier differentiation of aggregates of 
high cell densities is that the medium is conditioned in these 
cultures. Components secreted into the medium that appear to 
affect the course of differentiation are currently being analyzed. 

Appearance of Endodermal Markers and 
Laminin Synthesis 

We used immunoprecipitation analysis and PAGE to deter- 
mine the time at which increased synthesis of endodermal 
marker proteins could be detected. We treated high density 
cultures of F9 cell aggregates with retinoic acid for various 
times up to 7 d, washed, incubated for 4 h with [a~S]methionine, 
and solubilized (19). The cell lysates were immunoprecipitated 
with antisera to vimentin, endodermal cytoskeletal proteins 
Endo A and B, AFP; and laminin. Fig. 4 compares the products 
immunoprecipitated by vimentin and Endo A and Endo B 
antisera. Control cultures not treated with retinoic acid synthe- 
sized detectable levels of vimentin (Fig. 4a, lanes 1 and 2) but 
very low levels of Endo A and B (not detectable at the exposure 
times shown) (Fig. 4 b and c, lanes I and 2). Vimentin synthesis 
increased by the second day of culture (Fig. 4a, lane 4) and 



then decreased or remained relatively constant through the rest 
of the experiment (Fig. 4a). The transient increase in the 
amount of [3~S]methionine-labeled vimentin immunoprecipi- 
tated from a constant amount of  trichloroacetic acid-insoluble 
lysate was reproducible in three replicate experiments (data 
not shown). 

Increased synthesis of Endo A and B were detectable in 
cultures treated for 3 d with 5 × 10 -8 M retinoic acid (Fig. 4b 
and c, lane 5). This corresponds to the earliest time at which a 
distinct endodermal cell layer is observed and is still within the 
period of rapid initial cell growth (Fig. 2). High levels of Endo 
A and B synthesis continued through the remaining 7 d of the 
test period (Fig. 4 b and c, lanes 6 and 7). 

Low levels of intracellular AFP could be detected by im- 
munoprecipitation on the third day of culture (Fig. 5 a, lane 5). 
It took at least two additional days of culture to detect AFP in 
the culture medium (Fig. 3). Immunoprecipitation with laminin 
antisera detected a basal level of synthesis by control cultures 
and cultures exposed to retinoic acid for 1 d (Fig. 5 b, lanes 1, 
2, and 3). However, a large increase in the amount of immu- 
noprecipitable laminin was detected on day 2 (Fig. 5 b, lane 4). 
It is of interest that increased synthesis of laminin on day 2 is 
also accompanied by increased vimentin synthesis (Fig. 4a, 
lane 4). This increased synthesis of laminin clearly preceded 
the increased levels of Endo A, Endo B, and AFP detected on 
day 3 (compare lanes 4 of Fig. 4b and c and Fig. 5a) and may 
be a controlling factor in the formation of an epithelial layer. 

Organization o f  the Basement Membrane and 
Formation o f  the Epithelial Layer 
during Differentiat ion 

We examined sections of aggregates and embryoid bodies 
cultured at high density by immunofluorescence using anti- 
bodies against laminin, fibronectin, and type IV collagen to 

study the organization of the basement membrane. Day-8 
aggregates cultured in the absence of  retinoic acid were stained 
uniformly for laminin, fibronectin, and type IV collagen (Fig. 
6, column A). In contrast, sections of  8-d bodies cultured in 
the presence of  retinoic acid showed laminin, fibronectin, and 
type IV collagen located mainly as a distinct deposit under- 
neath the outer layer of cells (Fig. 6, column D). Only the outer 
layer of cells was stained for AFP (Fig. I d), Endo B (Fig. 7, 
column C), and Endo A (data not shown). It is thus clear that, 
after 8 d of culture in retinoic acid, F9 aggregates have a 
distinct basement membrane underneath an outer epithelial 
layer of visceral endoderm cells. 

We studied the formation of the epithelial layer and the 
organization of the basement membrane by staining sections 
of embryoid bodies at various days in culture. Up to 3 d of 
culture, the sections of aggregates were uniformly stained for 
laminin, fibronectin, arid type IV collagen (Fig. 6, column B, 
data for day-1 and day-2 aggregates not shown). The intensity 
of stain for laminin was stronger in sections of day-3 aggregates 
when compared to sections of day-I aggregates. The observa- 
tion agrees with the increased synthesis of laminin observed on 
day 3 (Fig. 5 b). In sections of day-4 embryoid bodies, in 
addition to staining the core of the body, most of the staining 
for laminin, fibronectin, and type IV collagen was located 
under and around the outer layer of cells (Fig. 6, column C), 
indicating the start of the formation of the basement mem- 
brane. A complete layer was seen by day 6: thus, the organi- 
zation of the basement membrane begins after 3 d in culture 
and is complete by day 6. 

We studied the onset of the differentiated phenotype of the 
epithelial layer using antibodies against cytoskeletal markers 
(Endo A and Endo B), blood group antigens I and i whose 
expression changes during differentiation of the early mouse 
embryo (23), and a stage-specific cell surface antigen of  the 
embryo (SSEA-I) (13). F9 EC cells express SSEA-1 and I 

FIGU•L 4 I m m u n o p r e c i p i t a t i o n  
with vimentin, Endo A, and Endo B 
antisera. Each panel shows a f luo- 
rographic exposure of SDS poly- 
acrylamide gels used to separate the 
immunoprecipitated [a%] methio- 
nine-labeled proteins of control F9 
cultures grown as monolayers for 2 
d (lane 1) or as aggregates for 2 d 
(lane 2); F9 cells grown in the pres- 
ence of 5 x 10 -8 M retinoic acid for 
1 d (lane 3), 2 d (lane 4), 3 d (lane 
5), 5 d (lane 6) or 7 d (lane 7). In 
each panel, lane O represents [3H]- 
leucine marker proteins actin (Ac), 
Endo B (B), Endo A (A), and vimen- 
tin (V). (a) Vimentin antiserum. (b) 
Endo A antiserum. (c) Endo B anti- 
serum. Each lane represents the 
[a%] methionine-labeled proteins 
immunoprecipi tated from 10 7 cpm 
of acid-insoluble radioactive [ysate. 
Exposure time was 3 d 
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antigen but not i antigen on their ceU surface. Embryoid body 
cultures up to 3 d show uniform distribution of SSEA-1 and I 
antigen but are negative for i antigen and Endo B as shown by 
immunofluorescent staining (Fig. 7, column A). For I antigen, 
day-i sections are shown. Day-3 sections show a similar distri- 
bution). At 4 d, Endo A (data not shown), Endo B and i 
antigen appear, while SSEA-1 is less well stained and has 
disappeared altogether from the outermost layer (Fig. 7, col- 
umn B). The distribution of I antigen is also different; it is now 
found mainly in the outer layer (Fig. 7, column B). By 8 d, 
epithelial markers (Endo A and B) and blood group antigens 
(i and I) are restricted to the outer layer while SSEA- 1 (EC cell 
marker) has almost completely disappeared from all ceils (Fig. 
7, column C). 

Thus, by immunofluorescence tests, differentiated expression 
of the outer ceils occurs after 4 d (Endo A, Endo B, i appear- 
ance, SSEA-I disappearance and change in distribution of I 
antigen); basement membrane formation and epithelial layer 
alignment also occur after 4 d; AFP secretion (which charac- 
terizes visceral endoderm) is a product of the mature epithelial 
layer after 6 d of culture. 

D I S C U S S I O N  

We have investigated the process of the formation of an 
epithelial layer during embryoid body formation in F9 cells. 

FiGure 5 ImmunoprecipitationwithAFPandlamininantisera. Cell 
lysates labeled with [3SS]methionine were immunoprecipitated with 
antiserum to AFP (a) or laminin (b) and analyzed by SDS PAGE 
followed by fluorography. Lanes 1 and 2 of each panel represent 
control F9 lysates grown either as monolayers (lane 1) or as aggre- 
gates (lane 2) for 2 d in the absence of retinoic acid. F9 cells exposed 
to retinoic acid for either 1 d (lane 3), 2 d (lane 4), 3 d (lane 5), 5 d 
(lanes 6 and 9) or 7 d (lanes 7 and 10). Lane 8 (PC13 EC cells). 
Exposure time for a was 9 d and for b, 1 d. Position of migration of 
[3H]leucine marker proteins actin (Ac), Endo B (B), Endo A (A), and 
vimentin (V) and nonradioactive AFP marker are indicated on the 
left margin. Arrows on the right margin indicate the two subunits of 
laminin. 

These studies show that an orderly progression of events ac- 
companies the development of an epithelial layer before the 
establishment of functional maturity (see below). In comparing 
the time courses of morphological changes, correlations with 
changes in the rate of synthesis and localizations of several 
biochemical markers were apparent. The following model is 
suggested. A phase of rapid cell proliferation for 3 to 4 d 
produces a colony of similar cells, an aggregate, with similar 
and uniform distributions of laminin, fibronectin, type IV 
collagen, and SSEA-1. Laminin synthesis is greatly increased 
on day 2 (Fig. 4), and sections of day-3 aggregates show a 
homogeneous distribution slightly more intense than earlier. 
We conclude that the increased production of laminin is an 
important event because it precedes the appearance of ceils 
expressing the differentiated phenotype (Endo A, Endo B, and 
AFP) which are first detected on d 3 (Figs. 4 and 5). It is 
possible that laminin stimulates in some way either the growth 
or the differentiation of the endoderm cell, and evidence for 
this will be presented elsewhere (Grover, A., G. Andrews, and 
E. D. Adamson, manuscript submitted for publication). By day 
4, it is apparent that the outer cells are synthesizing large 
amounts of laminin but now this matrix component is being 
accumulated under the outer layer (Fig. 6). In addition, mor- 
phological observation shows an outer ring of cells. The fourth 
day is also the crucial stage when differentiated endodermal 
expression is observable by immunofluorescence (appearance 
of Endo A, Endo B, and i antigens; Fig. 7). At this time, the 
outer layer of cells lose the ability to stain for SSEA-I but still 
show high intensity of I antigen. 

By the fifth day, the basement membrane is well formed and 
cystic spaces are observable in the interior. In this model, we 
see falling cell numbers (Fig. 2) as a part of the orderly 
progression of embryoid body formation, just as it is a part of 
normal embryogenesis (24). Only after the formation of inter- 
nal cysts does the cell number start to rise again, and this 
correlates with the appearance of AFP in the medium and 
possibly with an increase in the number of visceral endoderm 
cells. Although it is impracticable to count the proportions of 
cells in the two main compartments, it is likely that an expan- 
sion of all cell layers occurs as the body enlarges and becomes 
cystic. 

Expressed on a per cell basis, the production of AFP is 
greatly accelerated at 7 d and, since only the outer cells appear 
to make AFP (Fig. l d), it suggests that these cells rapidly 
become much more efficient in expressing their visceral endo- 
derm phenotype. By the eighth day, the cytoskeleton of the 
epithelial layer is maximally organized (Fig. 7), and this cor- 
relates with almost maximal rates of AFP synthesis. We suggest 
that AFP secretion may require the formation of a mature 
polarized epithelium and the formation of a complete contig- 
uous basement membrane, together with an organized cyto- 
skeleton (Endo A and B), in order to attain a maximal rate. In 
this system, we assumed that a criterion of the functional 
maturity of the epithelial layer is the rate of AFP secretion 
(Fig. 3). This occurs only when the epithelial layer is maximally 
expressing its characteristic markers and when it is well aligned 
on a thin basement membrane. The importance of basement 
membrane on epithelial integrity has also been reported by 
Sugrue and Hay (25). As a final measure of the maturity of the 
outer visceral endoderm layer, we followed the progress of 
AFP production in cultures as old as 23 d. The rates of AFP 
synthesis remain at a high plateau over this time period. In 
addition, SSEA-I cell surface antigen reappears on the outer 
surface of the endoderm cells (not shown). This was not 
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FIGURE 6 Immunofluorescent staining of sections of F9 aggregates cultured in the absence and presence of retinoic acid. Column 
A shows sections of aggregates cultured for 8 d in the absence of retinoic acid. Columns B, C, and C show sections of aggregates 
cultured in the presence of retinoic acid for 3, 4 and 8 d, respectivety. (L) Stained with anti-taminin; (F) stained with anti- 
fibronectin; (C) stained with anti-type IV collagen. Bar, 50 # m x  250. 

FIGURE 7 Immunofluorescent staining of sections of F9 aggregates cultured in the presence of retinoic acid for 3 d (column A, for 
I antigen a day 1 section is shown), 4 d (column B) and 8 d (column C). Column D shows sections treated with normal serum 
(controls). NRS, normal rabbit serum. NHS, normal human serum. NM5, normal mouse serum. (E) Stained with anti-Endo B. Bar, 
20/Lm. (i) Stained with anti-i. Bar, 50#m. (S) Stained with anti-SSEA-1. Bar, 50#m. (/) Stained with anti-I. Bar, 50~m. (E) X 420. (i, 
5, and I) x 250. 
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unexpected since the visceral endoderm of the egg cylinder 
stages of mouse embryo development expresses this antigen 
(26). 

It is possible that part of the explanation for the late pro- 
duction of high levels of AFP is related to the stage of the cell 
cycle of the outer visceral endoderm ceils. If this is the case, 
then AFP production in this system is highest when cell 
numbers have become steady (8 to 10 d), a situation which is 
the reverse of that described for rat fetal hepatocytes (27). It 
seems then that the mechanism of control of gene expression 
in primary cultures is quite different from that of the model 
system described here in which the epithelial layer is still 
undergoing development and differentiation. 

There is no reason to think that cells can relocate in the 
embryoid body during the process of differentiation, and there- 
fore we favor the hypothesis that an outside cell position is 
important in the cell's ability to differentiate into a functioning 
visceral endoderm cell. This is also supported by the findings 
of Rosenstraus et al. (28), who showed that if PSA 1 or F9 EC 
cells differentiated in suspension cultures in the presence of a 
distinguishable cell line that grew on the aggregates as an outer 
layer, then the EC ceils in the aggregate no longer formed 
endoderm. We believe that the internal layers of less-well- 
differentiated cells are important in some unknown way to the 
maintenance of the endoderm layer since all attempts to isolate 
an independent line of visceral endoderm cells which continue 
to secrete AFP have failed. The inner cell layer, however, never 
achieves an ordered pseudostratified epithelium which occurs 
when some multipotent cell lines differentiate into embryoid 
bodies (29). 

During the process of differentiation of F9 aggregates, 
SSEA-1 (the cell surface marker expressed by EC cells) is lost, 
first by the outer layer of cells and later from the inner cells 
(Fig. 7). This is not true for the embryoid bodies formed from 
OTT6050 cells (26), in which inner cells continue to express 
SSEA-1. Similarly, I antigen disappears from the interior cells 
of F9 aggregates (Fig. 7). The expression of  these antigens may 
depend on the cell line and hence on the degree of differentia- 
tion achieved. It is also possible that retinoic acid affects the 
expression of SSEA-I and I antigen either directly, or indi- 
rectly, by allowing a state of  differentiation distinct from that 
of spontaneously differentiating cell lines such as OTT6050. 

Our experiments have showed that the laminin component 
of the new basement membrane was likely to have been derived 
by de novo synthesis which increases on the second day (Fig. 
5 b). It is likely that type IV collagen was also synthesized by 
the aggregates (6) and was not derived from the fetal bovine 
serum in the medium. We also used a species-specific antifi- 
bronectin antiserum to show that most if not all of the fibro- 
nectin which organizes into the basement membrane is synthe- 
sized by the differentiating F9 cells. Since we have shown that 
higher cell densities differentiate earlier and produce higher 
rates of AFP synthesis, we may conclude that either the cells 
are stimulated by interaction or that they produce materials 
which condition the medium and that this then stimulates 
differentiation. It is therefore possible that basement membrane 
components are stimulatory (Grover, A., G. Andrews, and E. 
D. Adamson, manuscript submitted for publication) since they 
are synthesized at early stages. 

On the basis of these data, the process of differentiation of 
F9 embryonal carcinoma cells into an epithelium consists of 
the following stages: (a) aggregation, (b) proliferation, (c) dif- 
ferentiation, (d) organization, (e) maturation, and ( f )  secre- 
tion. We are currently investigating in further detail these 
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events of epithelial layer formation and maintenance. Experi- 
ments are in progress to study basement membrane breakdown 
as an approach to the analysis of epithelial layer degradation. 
The process of embryoid body formation appears to provide a 
useful model for both normal and pathological processes. 
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