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Abstract
The honey bee has been an important model organism for studying learning and memory.

More recently, the honey bee has become a valuable model to understand perception and

cognition. However, the techniques used to explore psychological phenomena in honey

bees have been limited to only a few primary methodologies such as the proboscis exten-

sion reflex, sting extension reflex, and free flying target discrimination-tasks. Methods to

explore operant conditioning in bees and other invertebrates are not as varied as with verte-

brates. This may be due to the availability of a suitable response requirement. In this manu-

script we offer a new method to explore operant conditioning in honey bees: the cap

pushing response (CPR). We used the CPR to test for difference in learning curves

between novel auto-shaping and more traditional explicit-shaping. The CPR protocol

requires bees to exhibit a novel behavior by pushing a cap to uncover a food source. Using

the CPR protocol we tested the effects of both explicit-shaping and auto-shaping tech-

niques on operant conditioning. The goodness of fit and lack of fit of these data to the

Rescorla-Wagner learning-curve model, widely used in classical conditioning studies, was

tested. The model fit well to both control and explicit-shaping results, but only for a limited

number of trials. Learning ceased rather than continuing to asymptotically approach the

physiological most accurate possible. Rate of learning differed between shaped and control

bee treatments. Learning rate was about 3 times faster for shaped bees, but for all mea-

sures of proficiency control and shaped bees reached the same level. Auto-shaped bees

showed one-trial learning rather than the asymptotic approach to a maximal efficiency.

However, in terms of return-time, the auto-shaped bees’ learning did not carry over to the

covered-well test treatments.

Introduction
Operant conditioning as originally envisioned by B. F. Skinner is characterized by goal-directed
motor manipulation of the environment [1]. This manipulation was achieved by substituting
an arbitrary response such as a lever press for the locomotive response associated with such
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commonly used apparatus as the runway, running wheel, and maze. The role of species typical
behavior was minimize by using an arbitrary response in the expectation that it would help
stimulate a “functional analysis” of behavior. This arbitrary response was created by a process
known as shaping (or “response differentiation by successive approximations”) [2]. Shaping
consists of the use of reward and non-reward to reinforce increasingly accurate responses by a
subject, leading to a final, arbitrary, response the organism would not otherwise produce. The
creation of this arbitrary behavior by the use of shaping has become one of the defining charac-
teristics of operant behavior and, in our view, one of the most important behavioral principles
in psychology. As one of the most widely employed treatment techniques used in applied
behavior analysis, shaping is most commonly used in applied treatments for individuals with
autism spectrum disorder [3], and to aid stroke patients in overcoming learned non-use of
limbs [4–6]. Despite its popularity in applied fields and vertebrate research, shaping is rarely
investigated in invertebrates, an area potentially ripe for investigation of the neuronal basis of
learning and memory. The present study uses a newly developed shaping protocol to examine
operant conditioning in an invertebrate, the honey bee.

Honey bees represent an important insect model in the study of learning and memory, and
two techniques have dominated this research: PER and SER [7, 8]. The proboscis extension
reflex (PER) pairs a scent with an unconditioned stimulus to elicit an appetitive associative
learning response. In contrast, the sting extension reflex (SER) pairs a scent with an electric
shock to illicit an aversive associative learning response.

The PER technique in immobilized honey bees produces a true associative learning situation
[9]. Although the first published use of a proboscis extension reflex technique in honey bees
was 70 years ago [10], only after refinements making experimental results highly repeatable
and applicable to psychology learning models [11–14] has the protocol become an attractive
mean for studying appetitive classical conditioning roles in a wide variety of learning and
memory scenarios [7]. PER methodology has elucidated many cognitive similarities between
honey bees and vertebrates [15, 16], and is proving to be an important tool for discovering the
underlying cellular and molecular processes involved in classical conditioning [17–22]. PER
experiments show that honey bees may accomplish the same task as vertebrates but cognitively
do so in a different manner. A case in point is the PER demonstrated inability of honey bees to
use the removal of an odor stimulus as a conditioning cue [23].

In contrast to the PER modality, the sting extension reflex is an aversive, classical condition-
ing experimental design that also utilizes a harnessed bee [24]. Like the PER technique, the SER
protocol has also been an important tool in studying the molecular basis of classical condition-
ing. It is clear that aversive long-term memory involves protein synthesis [25], and that the
ecdysone/dopamine signaling pathway is involved in aversive classical conditioning [26]. The
SER methodology actually has its roots in electro-shock aversive learning of free flying honey
bees [27, 28], and has also been successfully used in shuttle box experiments [28–31]. The shut-
tle box design allows a broader range of learning models to be tested than simple SER, and in
fact showed that the SER technique (harnessed bee) actually presented an aversive rather than
positive ‘attack’ conditioning situation [29]. The shuttle box experimental design also opens a
new leaning domain for study: operant conditioning.

Operant conditioning centers on learning from the consequences of behavioral choices [32],
and is less well studied in invertebrates than is classical conditioning when compared to the
vertebrate counterparts [33, 34]. Thus far, accounts of operant conditioning in invertebrates
are limited to behaviors such as discrimination in Y- or T-mazes [35, 36], place preference in
shuttle boxes [31, 37], and response rate change operant chambers [34, 38–40]. Specific genetic
mutants in Drosophila affect classical conditioning, and it is interesting that some of those
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decrease classical learning mutants have no effect on operant learning [41]. Thus, even on the
most basic level there are fundamental differences between classical and operant learning.

Like classical conditioning, operant conditioning has been a dominant element in the analy-
sis of learning across the animal kingdom [42], not only for the insight provided in basic ani-
mal cognition but also as a means to explore how environmental factors impacts behavioral
responses. Illustrative examples of the latter include alcohol in primates [43], pesticide inges-
tion by insects [9, 44], and the broad field of ‘cognitive ecology’ [45]. Various forms of operant
conditioning provide the determinants for advanced cognitive processes [46, 47] and capacities
for conceptual learning even in organisms with neuronal systems as relatively simple as the
honey bee [48]. Drosophila, Aplysia, and Lymnaea have been important invertebrate models
that have provided insights into the cellular and molecular basis of operant learning beyond
what can be gleaned from their vertebrate counterparts [33], and Apis mellifera is now proving
as valuable due to its rich behavioral repertoire associated with foraging and social interactions
[46, 49, 50].

In this paper we present a new modality, the cap pushing response (CPR), for exploring
operant behavior that lends itself to studies involving behavioral shaping of honey bees. The
CPR protocol requires bees to both exhibit a truly novel behavior and in doing so operate
‘manipulata’ in a process that mirrors the lever-pushing protocols used by Skinner with verte-
brates such as rats and pigeons [32]. Using the CPR protocol we test for the effect of explicit-
versus auto-shaping on learning curves.

Materials and Methods

Experimental Design
Experiments were conducted spring of 2015 at the Department of Entomology of the Pontificia
Universidad Católica de Valparaíso, in Quillota Chile. Honey bees (Apis mellifera L.) housed in
a laboratory hive at the Pontificia Universidad Católica de Valparaíso were trained to a feeding
platform 18 m from the hive following the methods of Abramson (1990) [51]. The training
platform contained a 59 mm diameter gray plastic disk with a 6 ml drop of 50% (w/v) sucrose
solution in the center as reward. Free-flying forager honey bees making repeated trips to the
foraging platform were used in the experiments. One bee was tested at a time, with N = 55 bees
in total used in experiments. All other bees were captured and removed from the location.

The experiment was initiated when the test subject returned to the hive. The gray plastic
disk was removed and replaced by an experimental target that consisted of a clear 88 mm
diameter plastic disk. The disk had a red 50 mm diameter circle painted in the center of the
disk on the underside. In the center was a feeding well 10 mm in diameter and 6 mm deep
capable of holding 20 ml of 50% sucrose solution (enough for three visits from one bee). A hol-
low plastic cap, measuring 12 mm in diameter, 10 mm in height, and weighing 0.12g, was used
to cover the feeding well in some trials of the experiment. The cap was hollow, open only on
the bottom. To control for odor cues, feeding disk and cap were changed between and within
experimental trials. The feeding disks and caps were washed, triple rinsed with distilled water,
and air dried between uses.

Three different experiments were performed: 1) Control, 2) Explicit-Shaping, and 3) Auto-
Shaping. Each bee experienced only one of the three experimental protocols (N = 20 bees Con-
trol, N = 20 bees Explicit-Shaping, N = 15 bees Auto-Shaping). The first two experiments were
run initially, and the results of those experiments led to the Auto-Shaping experiment. To con-
trol for calendar variables, bees from the Control and Explicit-Shaping groups were run inter-
mixed, but just one bee at a time. Each run of an experiment consisted of giving a bee 20
sequential, uninterrupted trials, where each trial represented a return trip from the hive.

Operant Conditioning in Honey Bees

PLOS ONE | DOI:10.1371/journal.pone.0162347 September 14, 2016 3 / 18



Recorded on each trial in both experiments were: 1) return time, 2) number of cover pushes
per-trial, and 3) latency to push cover from time of landing on the disk.

The Auto-Shaping experiment was subsequently performed. Each run of an experiment
consisted of giving a bee 20 sequential, uninterrupted trials, where each trial represented a
return trip from the hive. Recorded on each trial in both experiments were: 1) return time, 2)
number of cover pushes per-trial, and 3) latency to push cover from time of landing on the
disk.

Control group
Each bee was given 20 trials. The first 5 trials (baseline) utilized a disk with an uncovered feed-
ing well. Beginning on trial 6, bees encountered the feeding well fully covered by the cap on
each return trip (each trial). If a Control group bee failed to push the cap to gain access to the
reward within 10 minutes, the experiment was terminated for that bee since our previous work
shows that bees will abandon a situation if they are not rewarded within 10 minutes [28, 40]. If
the Control group bee pushed the target, the experiment continued for an additional 15 trials
for a total of 20 trials.

Explicit-Shaping group
Each bee was given 20 trials. Like the Control group, the first 5 trials (baseline) utilized a disk
with an uncovered feeding well. During trials 6–10 bees experienced a behavioral shaping regi-
ment to push the cap. On trial 6, half of the feeding well was covered by the cap (5mm). On tri-
als 7, 8, 9 and 10 the cap progressively covered 1 mmmore of the feeding well. The purpose of
the shaping phase was to give the bee explicit experience in pushing the cover. Trials 11–20
matched the Control group where the cap completely covered the feeding well, and to gain
access to the sucrose reward the bee had to push the cap to uncover the reward.

Auto-Shaping Experiment
Each bee was given 20 trials. Like the Control and Explicit-Shaping groups, the first 5 trials
(baseline) utilized a disk with an uncovered feeding well. During trials 6–10 bees experienced a
situation made to elicit behavioral auto-shaping to push the cap. During these 5 trials bees
were given the cap inverted, covering all but 0.5mm of the feeding well. This allowed bees to
access the reward via proboscis extension without moving the cap. Trials 11–20 matched that
of the Control and Explicit-Shaping groups where the cap covered the feeding well completely;
to gain access to the sucrose reward the bee had to push the cap to uncover the feeding well.

Statistical Analysis of Data
Data were fitted to the Rescorla-Wagner model of learning curves. The model predicts that the
rate of learning is proportional to the difference between the current ability to solve the prob-
lem (measure of ability) and the physiological limit possible. The model is semi-log in nature
and can be expressed in the form ln(cn − c1) = −an + ln(c0 − c1) where cn is the trial accuracy,
c1 is the physiologically possible best accuracy, co is the accuracy on the initial trial, a is the
learning-rate parameter, and n is the trial number [52]. The model fit is thus a line with y = ln
(cn − c1) and x = n where cn is the current measure of learning and c1 is a constant. We used 3
separate measure of learning, and analyze each separately. Thus, cn is ‘return-time’, ‘latency-
time’, or ‘pushes’ depending upon the analysis.

Each treatment of each experiment experienced by a cohort of bees was fit to the model and
statistically analyzed via regression analysis using the SAS program JMP [53, 54]. For Return-

Operant Conditioning in Honey Bees

PLOS ONE | DOI:10.1371/journal.pone.0162347 September 14, 2016 4 / 18



Times we used c1 = 180 sec which was 9 sec faster than observed for any bee in any treatment
for Control, Explicit-Shaping, or Auto-Shaping group subjects. For Latency-Times we used c1
= 1 sec which was 1.2 sec faster than observed for any bee in any treatment for Control,
Explicit-Shaping, or Auto-Shaping group subjects. When dealing with the number of cap
pushes, the results were integer values greater than or equal to 1 and many bees were able to
move the cover in a single push. Thus, we used c1 = 0.9 to resolve this issue (i.e. ln(0)) and
were able to analyze the entire data set.

Results
Our results, presented in detail in the following sections, demonstrate that honey bees are capa-
ble of developing the novel CPR tactic to access a concealed food source, both with and without
explicit shaping. Experience is critical to rapid mastery of this strategy. The results of the Con-
trol and Explicit-Shaping experiment led to the Auto-Shaping experiment presented below.

A. Control and Explicit-Shaping Experiments
Bees in the Control group were given two treatments: ‘baseline’ where the feeding well was
uncovered (trials 1 through 5), and ‘covered’ where the feeding well was covered by a moveable
cap (trials 6 through 20). Bees in the Explicit-Shaping group were given 3 treatments: ‘baseline’
where the feeding well was uncovered (trials 1 through 5), ‘shaping’ where the feeding well was
progressively covered by a movable cap over multiple trial (trials 6 through 10), and ‘covered’
where the feeding well was completely covered by a moveable cap (trials 11 through 20).

Return times. The Control group consisted of 20 bees. Five of those 20 bees failed to
return on trial 6, abandoning the foraging site upon experiencing the cap-covered well. The
remaining 15 bees completed all 20 trials. The regression coefficient was not significant in the
baseline treatment for either the 5 bees that abandoned the site (ANOVA: F1,23 = 0.0315, P =
0.8606) or the 15 bees that completed both the baseline and covered treatments, which together
encompassed 20 trials (ANOVA: F1,73 = 0.0845, P = 0.7721). Further, the mean return time did
not differ significantly between the 5 bees that abandoned the site and the 15 bees that com-
plete all treatments during the baseline period (t test: T98 = 0.01498. P = 0.9881). Combining
the baseline data from these two sets of bees (5 bees that abandoned the site and 15 bees that
completed all treatments), the average return-time fitting the mean over time was 240.7 sec
(Fig 1).

Bees in the Control group that completed the 20 trials initially experienced difficulty reach-
ing the sucrose when the well was covered, but progressively became more efficient at doing so.
The regression coefficient was significant (ANOVA: F1,223 = 282.9589, P<0.0001), and learning
appeared to occur at the rate predicted by the model across the covered trials, trials 6 through
20 (Fig 1). Return time diminished by half in 7.3 trials (model half-life). The Lack-of-Fit test
for the model was not significant (ANOVA: F13,210 = 0.7683, P = 0.6931).

Bees in the Explicit-Shaping group all completed the 20 trials (20 bees). This represented a
significant difference from the Control group (X1

2 = 5.7143, P = 0.0168). However, like the
Control group bees, bees in the Explicit-Shaping group did not have a significant regression
coefficient for the baseline trials (ANOVA: F1,198 = 0.5632, P = 0.4548). Bee average return-
time fitting the mean over time was 248.1 sec (Fig 1).

Like the Control group, bees in the Explicit-Shaping group initially experience difficulty
reaching the reward when the cap was present in the shaping treatment even though it did not
completely cover the well, but the bees rapidly mastered the task as the well become progres-
sively more obscure. The regression coefficient was significant (ANOVA: F1,98 = 17.3725,
P<0.0001), and the Lack-of-Fit test for the model was not significant (ANOVA: F3,95 = 1.1631,
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P = 0.3280). The regression-coefficient of the Explicit-Shaping group over the shaping trials
was greater (negative) than the Control group regression-coefficient over the covered 15 trials
where learning occurred (F test: F1,321 = 22.8587, P<0.0001). Learning for Explicit-Shaping
group bees appears complete by the end trial in the shaping treatment (Fig 1), and the regres-
sion coefficient was not significant in the covered treatment for these bees (ANOVA: F8,190 =
1.8836, P = 0.1715).

Latency to hit cover. The Control group consisted of 15 returning bees, which experienced
15 consecutive trials (trials 6–20, since trials 1–5 were the baseline treatment). The regressions
was significant (P<0.0001), but also was the Lack-of-Fit (P<0.0001). The areas where the data
did not fit the Rescorla-Wagner model can be seen (Fig 2) to be the initial trial (trial 6) and the
last five trials (trials 16–20). For trials 7 through 15 the regression coefficient was significant
(ANOVA: F1,133 = 449.2533, P<0.0001), and the Lack-of-Fit test for the model was not signifi-
cant (ANOVA: F7,126 = 1.2427, P = 0.2845). Latency-time diminished by half in 1.7 trials
(model half-life). Learning stopped during the last five trials (trials 16–20); the regression

Fig 1. Average Return-Time δ by Trial for Control and Explicit-Shaping Groups.Return-Time δ = (cn−cc1) is the difference between
the current-trial (cn) and physiologically shortest possible return time (cc1 = 180 sec in this study). Average return-time δwith standard
error bars is presented. Each square,&, is the mean of a trial for the Control group. Each diamond, ^, is the mean of a trial for the
Explicit-Shaping Experiment group. Vertical dashed lines mark treatment boundaries. Trials 1–5 are the baseline treatment for both
Control and Explicit-Shaping bees. Trials 6–10 are the shaping treatment for the Explicit Shaped group. Trials 11–20 are the covered
treatment for the Explicit-Shaping bees, while trials 6–20 are the covered treatment for the Control bees. Control bees only experienced
two treatments (baseline and covered) while the Explicit-Shaping group of bees experienced three treatments (baseline, shaping, and
covered). Regression lines shown are the least-square fit for the Rescorla-Wagner learning model, (cn − c1) = −a n + ln(c0 − c1).

doi:10.1371/journal.pone.0162347.g001
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coefficient was not significant (ANOVA: F1,73 = 1.4429, P = 0.2335). Bee average latency-time
fitting the mean over time was 3.03 sec (Fig 2).

The Explicit-Shaping group (N = 20) experienced the covered treatment in trials 11–20,
since the baseline treatment was trials 1–5 and the shaping treatment was trials 6–10. Like the
Control group, the regression was significant (P<0.0045), but also was the Lack-of-Fit to the
Rescorla-Wagner model (P<0.0001). Learning had stopped after the first 3 trials (Fig 2). The
regression coefficient was significant for trials 11 through 13 (ANOVA: F1,58 = 23.4244,
P<0.0001), and the Lack-of-Fit test for the model was not significant (ANOVA: F1,57 = 0.0003,
P = 0.9857). As expected, learning to solve the problem had occurred in the shaping treatment,
with the mean latency time in the first trial (trial 11) being only 3.60±0.16 sec (mean ± se) com-
pared to 39.18±4.25 sec in the first trial (trial 6) of the Control group. Surprisingly, a slight
increase in latency-time occurred in the Explicit-Shaping group over trials 14–20 (ANOVA:
F1,138 = 5.3522, P = 0.0169), with a non-significant Lack-of-Fit (ANOVA: F5,133 = 0.3666, P =
0.8707).

Fig 2. Average Latency-Time δ by Trial for Control and Explicit-Shaping Groups in the Covered Treatment. Latency-Time δ =
(cn−cc1) is the difference between the current-trial (cn) and physiologically shortest possible latency time (cc1 = 1 sec in this study).
Average latency-time δ with standard error bars is presented. Each square,&, is the mean of a trial for the Control group. Each diamond,
^, is the mean of a trial for the Explicit-Shaping Experiment group. Vertical dashed lines mark treatment boundaries. Trials 6–10 are the
shaping treatment for the Explicit Shaped group. Trials 11–20 are the covered treatment for the Explicit-Shaping bees, while trials 6–20
are the covered treatment for the Control bees. Trials 1–5 (not shown) are the baseline treatment for both Control and Explicit-Shaping
bees. Since there was no cap covering the feeding well, there was no latency-time between landing and pushing the cap. Regression
lines shown are the least-square fit for the Rescorla-Wagner learning model, (cn − c1) = −a n + ln(c0 − c1).

doi:10.1371/journal.pone.0162347.g002
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Shaping led to a significant difference in task performance by trial 11 when compared to the
Control group. On trial 11 the mean latency time differed between the two groups (t test: T33 =
4.9668, P<0.0001).

Number of cover pushes. The regession coefficient was significant for the Control group
bees (ANOVA: F1,223 = 406.3820, P<0.0001) and the Lack-of-Fit was not significant (ANOVA:
F13,210 = 1.2371, P = 0.2547) for trials 6 through 20. Thus, the Rescorla-Wagner model
explained the learning curve for the Control group well over the entire covered set of trials (Fig
3). The number of pushes needed to reveal the feeding well diminished by half in 2.2 trials
(model half-life).

In contrast, the regression was significant (ANOVA: F1,198 = 113.3754, P<0.0001) but the
Lack-of-Fit was also highly significant (ANOVA: F8,190 = 22.9589, P<0.0001) for the Explicit-
Shaping bees over the entire set of covered trials (trials 11–20). Bees became very proficient at
moving the cover by trial 14. The regression was not significant when performed on the
Explicit-Shaping group trials 14–20 (ANOVA: F1,138 = 0.7596, P = 0.3850). Bee average Num-
ber of Pushes fitting the mean over time was 1.0053 (Fig 3). For trials 11 to 13 where learning
occurred in the Explicit-Shaping group, the regression was significant (ANOVA: F1,58 =
52.2006, P<0.0001) and the Lack-of-Fit was not significant (ANOVA: F1,57 = 1.6314, P =
0.2067).

The shaping treatment of the Explicit-Shaping group did not have a significant effect on
learning when compared to the Control group which experienced the covered treatment over
the same set of trials. On trial 11 the mean number of pushes did not differ between the two
groups (t test: T33 = 1.2565, P = 0.2177), which was in contrast to the observation of Latency
times. However, shaping did lead to an accelerated reduction in the number of pushes to move
the cover off of the feeding well in the Explicit-Shaping group once the covered treatment
began. The regression slopes were significantly different (ANOVA: F1,284 = 12.9603, P =
0.0004) with the Explicit-Shaping group having the greater negative slope.

B. Auto-Shaping Experiment
Bees in the Auto-Shaping experiment were given 3 treatments: ‘baseline’ where the feeding well
was uncovered (trials 1 through 5), ‘auto-shaping’ where the feeding well was covered by an
inverted cap that allowed bees to access the reward via proboscis extension without moving the
cap (trials 6 through 10), and ‘covered’ where the feeding well was completely covered by a
moveable cap (trials 11 through 20).

Return times. Like the Explicit-Shaping group, bees in the Auto-Shaping experiment all
completed the 20 trials (15 bees). Further, the regression coefficient for the baseline trials was
not significant (ANOVA: F1,73 = 3.2370, P = 0.070). Bee average return-time fitting the mean
over time was 273.9 sec (Fig 4).

The learning curve for the Auto-Shaping bees did not fit the Rescorla-Wagner model during
the shaping treatment. Interestingly, the regression coefficient was significant (ANOVA: F1,73 =
92.7751, P<0.0001), as was the Lack-of-Fit test for the model (ANOVA: F3,73 = 6.9976, P =
0.0003). This is due to a one-trial learning event occurring midway through the shaping trials,
rather than the Rescorla-Wagner asymptotic approach to the physiological best possible over
the set of trials (Fig 4). Thus, return-time response of the Auto-Shaped group and Explicit-
Shaped group were fundamentally different during the shaping treatment (trials 6–10).
Explicit-Shaped bees became progressively more efficient over the series of trials in a Rescorla-
Wagner learning curve manner, while the Auto-Shaped group reached its greatest proficiency
in just one trial. Further, while learning from the explicit-shaping carried over to the covered
treatment, the auto-shaping learning did not.
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Unlike the Explicit-Shaping group, learning of the Auto-Shaped group in the shaping treat-
ment did not carry over well to the covered treatment in the Auto-Shaping experiment (Fig 4).
The regression coefficient for the final treatment (cover, trials 11–20) was significant (ANOVA:
F1,148 = 31.0671, P = 0.0001) as was the Lack-of-Fit (ANOVA: F8,140 = 4.1883, P = 0.0002). The
reason for the model lack of fit is that learning was complete by trial 13: bees had reached their
best physiological performance (Fig 4). The regression for trials 11–13 was significant
(ANOVA: F1,42 = 35.3336, P = 0.0001) with the Lack-of-Fit not significant (ANOVA: F1,42 =
0.0895, P = 0.7663). Further, the regression for trials 14–20 was not significant (ANOVA: F1,103
= 0.4299, P = 0.5135). The mean return time for trials 14–20 was 254.7 sec.

Latency to hit cover. The results for Latency time have many similarities to the Return
time. The learning curve for the Auto-Shaping bees did not fit the Rescorla-Wagner model.
The regression coefficient was significant (ANOVA: F1,148 = 48.9478, P<0.0001), but so was
the Lack-of-Fit test for the model (ANOVA: F8,140 = 35.7525, P<0.0001). Considering only tri-
als 12–20, the regression was not significant (ANOVA: F1,133 = 3.2200, P = 0.0750). The mean
latency time for trials 13–20 was 3.16 sec. Like the return times, latency time learning may best

Fig 3. Average Pushes δ by Trial for Control and Explicit-Shaping Groups in the Covered Treatment. Pushes δ = (cn−cc1) is the
difference between the current-trial (cn) and physiologically least possible number of cap pushes (cc1 = 0.9 used in this study—see
Materials and Methods). Average cap Pushes δwith standard error bars is presented. Each square,&, is the mean of a trial for the
Control group. Each diamond, ^, is the mean of a trial for the Explicit-Shaping Experiment group. Vertical dashed lines mark treatment
boundaries. Trials 6–10 are the shaping treatment for the Explicit Shaped group. Trials 11–20 are the covered treatment for the Explicit-
Shaping bees, while trials 6–20 are the covered treatment for the Control bees. Trials 1–5 (not shown) are the baseline treatment for both
Control and Explicit-Shaping bees. Since there was no cap covering the feeding well, there was no cap pushes to gain access to the
feeding well. Regression lines shown are the least-square fit for the Rescorla-Wagner learning model, ln(cn − c1) = −a n + ln(c0 − c1).

doi:10.1371/journal.pone.0162347.g003
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be described as a one-trial learning event (Fig 5) rather than the Rescorla-Wagner asymptotic
approach to the physiological best possible over the set of trials. Notice that the latency times
start at trial 11 at the same approximate value as the Control group on trial 11. However, the
leaning model is completely different from trials 12–30. Like return-time, latency-time
response of the Auto-Shaped group and Explicit-Shaped group were fundamentally different
during the shaping treatment (trials 6–10). Explicit-Shaped bees became progressively more
efficient over the series of trials in a Rescorla-Wagner learning curve manner, while the Auto-
Shaped group reached its greatest proficiency in just one trial.

Number of cover pushes. The results for Cover-Pushed are like that for Latency time. The
learning curve for the Auto-Shaping bees did not fit the Rescorla-Wagner model. The regres-
sion coefficient was significant (ANOVA: F1,223 = 23.1550, P<0.0001), but so was the Lack-of-
Fit test for the model (ANOVA: F13,210 = 6.6573, P<0.0001). Considering only trials 12–20, the
regression was not significant (ANOVA: F1,208 = 2.0701, P = 0.1517), and neither was the
Lack-of-Fit (ANOVA: F12,196 = 0.9097, P = 0.5383). The mean Cover-Pushes for trials 12–20
was 1.029 (SE 0.011). Like Latency times, Cover-Pushes learning may best be described as a

Fig 4. Average Return-Time δ by Trial for the Auto-Shaping Group in Shaping and Covered Treatments. Return-Time δ = (cn−cc1)
is the difference between the current-trial (cn) and physiologically shortest possible return time (cc1 = 180 sec in this study). Average
return-time δ with standard error bars is presented. Each diamond,♦, is the mean of a trial for the Auto-Shaping Experiment group.
Vertical dashed lines mark treatment boundaries. Trials 1–5 are the baseline treatment, trials 6–10 are the auto-shaping treatment, and
trials 11–20 are the covered treatment for the Auto-Shaping bees. Regression lines shown are the least-square fit for the Rescorla-
Wagner learning model, (cn − c1) = −a n + ln(c0 − c1). Arrow pointing down represents one-trial leaning event, which does not fit the
Rescorla-Wagner model.

doi:10.1371/journal.pone.0162347.g004
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one-trial learning event (Fig 6) rather than the Rescorla-Wagner asymptotic approach to the
physiological best possible over the set of trials.

Discussion
Existing literature focuses primarily on visual or odor discrimination; here we have provided
the protocol foundation to investigate motor tasks in free flying foragers without the use of pro-
hibitively expensive or complex apparatus. This protocol allows for a more varied and flexible
response from the animal without sacrificing measurement accuracy. Further, the unambigu-
ous cap pushing response can be readily applied to additional insect species, and allows for
comparative analysis through a simple foraging task with universal applications.

Honey bees developed the novel CPR tactic to access a concealed food source. Experience is
shown to more rapid mastery of this strategy. Control bees did not experience the shaping
treatment, and 25% were never able to solve the problem of accessing the covered nectar well.
Nevertheless, a majority (75%) of Control group bees (no shaping treatment) accessed the food
by happenstance. These bees were eventually able to consistently and rapidly access the sucrose

Fig 5. Average Latency-Time δ by Trial for the Auto-Shaping Group in Shaping and Covered Treatments. Latency-Time δ =
(cn−cc1) is the difference between the current-trial (cn) and physiologically shortest possible latency time (cc1 = 1 sec in this study).
Average latency-time δ with standard error bars is presented. Each diamond,♦, is the mean of a trial for the Auto-Shaping Experiment
group. Vertical dashed lines mark treatment boundaries. Trials 6–10 are the auto-shaping treatment (no points because bees did not
have to push the cap to access reward), and trials 11–20 are the covered treatment for the Auto-Shaping bees. Trials 1–5 (not shown) are
the baseline treatment. Since there was no cap covering the feeding well, there was no latency-time between landing and pushing the
cap. Regression lines shown are the least-square fit for the Rescorla-Wagner learning model, ln(cn − c1) = −a n + ln(c0 − c1). Arrow
pointing down represents one-trial leaning event, which does not fit the Rescorla-Wagner model.

doi:10.1371/journal.pone.0162347.g005
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reward after repeated contact with the cap, but acquired proficiency much more slowly than
bees explicitly shaped to do so (Explicit-Shaping group). These results were seen in all three
measures of learning: return time, latency time, and cap pushes. The Rescorla-Wagner learn-
ing-curve model [52] fit the observations well for all three measures in both shaped and control
bees. However, learning stopped after a set of trials rather than continuing endlessly as an
asymptotic approach to the physiological leaning limit as predicted by the model.

The results of the Control and Explicit-Shaping experiments led to the Auto-Shaping exper-
iment. In this experiment, the honey bees performed a self-shaping task without explicit shap-
ing by the experimenter. Specifically, the well was covered but the inverted cap allowed a bee’s
proboscis access to the reward through small cracks anywhere around the cap. Thus, access to
the reward technically did not require pushing the cap but produced a situation where it was
likely to occur. The auto-shaping trials resulted in a one-trial learning situation for return time
rather than a Rescorla-Wagner learning curve. However, the auto-shaping learning did not car-
ryover when the covered trials began, where a Rescorla-Wagner curve [52] was observed.

Fig 6. Average Pushes δ by Trial for the Auto-Shaping Group in the Covered Treatment. Pushes δ = (cn−cc1) is the difference
between the current-trial (cn) and physiologically least possible number of cap pushes (cc1 = 0.9 used in this study—see Materials and
Methods). Average cap Pushes δ with standard error bars is presented. Each diamond,♦, is the mean of a trial for the Auto-Shaping
group. Vertical dashed lines mark treatment boundaries. Trials 6–10 are the auto-shaping treatment while trials 11–20 are the covered
treatment. Trials 1–5 (not shown) are the baseline treatment. Since there was no cap covering the feeding well, there was no cap pushes
to gain access to the feeding well during the baseline treatment. Regression lines shown are the least-square fit for the Rescorla-Wagner
learning model, ln(cn − c1) = −a n + ln(c0 − c1). Arrow pointing down represents one-trial leaning event, which does not fit the Rescorla-
Wagner model.

doi:10.1371/journal.pone.0162347.g006
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Latency time was also a one-trial learning situation during auto-shaping trials, but interestingly
carried over to the covered trials. The same result occurred for number of Cover-Pushes.

In this study, bees were trained to access a concealed food source by pushing a plastic cap.
Bees successfully acquired this novel cap pushing response following either successive approxi-
mations (Explicit-Shaping group), or self-shaping through a task of intermediate difficulty
(Auto-Shaping group). Replications of this experiment performed with heavier 3D printed
caps (S1 Text) resulted in identical results for both Explicit-Shaping (S1 Video) and Auto-
Shaping groups (S2 Video), but bees were unable to access the food source by happenstance in
Control groups (S3 Video). Pilot manipulations have revealed interesting errors and patterns
(S4, S5 and S6 Videos), these and the results of this study suggest this method to be a valuable
alternative to existing protocol exploring foraging and operant behaviors in the honey bee.

These results suggest the strategies to access concealed food sources exist naturally, but
experience can hasten the bee’s mastery of such strategies. Not only must bees solve complex
discrimination problems, they must also solve mechanically challenging tasks in their daily
routine [55, 56]. Indeed, honey bees have been observed exploiting flowers with unsuitable
morphologies for pollinator resource collection such as plants with anemophilous characteris-
tics [57]. Honey bees have also been observed manipulating papilionate flowers, such as Robi-
nia pseudoacacia. These flowers have pollen release mechanisms for which the honey bee is
often too physically weak to activate [58]. However, honey bees appear to learn to favor R.
pseudoacacia flowers that are easier to trip and in many cases were able to trip the pollen
release mechanism while accessing the nectar or finding a suitable foothold [57, 58]. Learning
to manipulate flowers to access a nectar and pollen reward may be the natural foundations for
motor-task operant behavior in honey bees.

We have previously argued [32, 59] that any behavior sensitive to response-reinforcer con-
tingencies should not be automatically assumed to be an example of operant behavior. When
the term operant behavior is applied to a particular invertebrate, the invertebrate should not
only be able to manipulate an object but show that they know how to use it. The vertebrate lit-
erature is full of demonstrations in which an organism can be taught to press a lever at a partic-
ular speed, force, or directions. As far as we know there are no such demonstrations in the
invertebrate literature. We believe the Cap Pushing Response method to be a prime candidate
for continued exploration of operant behaviors in honey bees, and provides a potentially valu-
able comparative method for the functional analysis of behavior.

This method may also be of use for other psychological investigations in honey bees. The
utilization of strategies to gain access to a concealed food source suggests honey bees are capa-
ble of utilizing knowledge of representation in regard to working memory tasks [60] which pro-
vides supporting evidence for ‘aboutness’ or ‘intentionality,’ a form of mental representation
[61]. Representation in arthropods is an important point to consider in the discussion of con-
sciousness [62]. However, when considering consciousness from different zoological levels,
interpretations of behavior must consider the natural history of the animal [63–65].

Conclusions
While honey bees are established as useful models to study intermediate levels of cognitive
complexity and associated neural substrates [46, 66], our results provide further reason to
investigate cognitive skills likened to advanced vertebrates. Relatively complicated foraging
tasks where not all foragers solve the problem, or do so in different ways, are useful for examin-
ing the role of neurotransmitters in invertebrate decision processes [49]. What seemed like
simple chance event mediated individual decision process development now appears to be
influenced by slight differences in insect neurotransmitters [49]. Indeed, these techniques are
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advantageously suited for apicultural and ecological relevant studies such as investigating the
effects of pesticides and pollutants on the foraging capabilities of honey bees [67]. Further, the
learning-curve model fit demonstrated in this study provides a powerful tool for examining
subtle differences in both the rate and degree of learning. Here we saw a pronounced difference
in learning curves between auto- and explicit-shaped bees. Due to the ease of access to proce-
dural materials, the cap pushing response provides a powerful tool for basic and applied
research related to insect operant behavior and cognition.

Supporting Information
S1 Text. Methods for 3D Printed Materials. This document contains modified methodology
for experiment procedure using 3D printed caps and feeding wells.
(DOCX)

S1 Video. Explicit-Shaping. This bee is recruited to the food well and allowed to return five
times before the cap is added (only the fifth visit shown in video). She is then given five trials of
explicit-shaping through successive approximations. Following shaping, the well is completely
covered and the bee pushes the cap to access the well. She becomes increasingly more proficient
each visit. This video is cut, time-lapsed for length, and muted for file size. This file is for exam-
ple purposes and should not be used for analysis. Different and complete videos are available
upon request.
(MP4)

S2 Video. Auto-Shaping. This bee is recruited to the food well and allowed to return five times
before the cap is added (not shown in video). She is then given five trials of auto-shaping with a
task of intermediate difficulty. Following auto-shaping, the well is completely covered and the
bee pushes the cap to access the well. She becomes increasingly more proficient each visit. This
video is cut, time-lapsed for length, and muted for file size. This file is for example purposes
and should not be used for analysis. Different and complete videos are available upon request.
(MP4)

S3 Video. Control Bees Example. Time-lapsed video of bees recruited to the food well but do
not have experience pushing the cap.
(MP4)

S4 Video. Error Example 1. Following five trials of successful cap pushing, a discrimination
task was performed. The previously trained cap was moved to the side and a novel cap was
used to cover the sucrose feeding well. The trained cap was counterbalanced between cross pat-
terned and solid caps, and the novel cap presented for the discrimination task was different in
shape. Upon first return, 11 of 12 bees pushed the cap previously trained, ignoring the cap that
actually covered the sucrose well. If the bee pushed the cap off the plate, it was quickly returned.
Bees would continue to push the incorrect cap when available (see S5 Video: Error Example 2).
(MP4)

S5 Video. Error Example 2. Bees trained with one shape of cap (in this case cross patterned)
repeatedly make the same error and push the previously trained cap. This is generalized to sim-
ilar shaped caps as can be seen in the video.
(MP4)

S6 Video. Error Example 3. This bee missed the well when pushing the cap and continued to
push the cap for some time before reorienting to the sucrose well.
(MP4)
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