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Abstract

Study Design: Cross sectional database study.

Objective: To develop a fully automated artificial intelligence and computer vision pipeline for assisted evaluation of lumbar
lordosis.

Methods: Lateral lumbar radiographs were used to develop a segmentation neural network (n ¼ 629). After synthetic aug-
mentation, 70% of these radiographs were used for network training, while the remaining 30% were used for hyperparameter
optimization. A computer vision algorithm was deployed on the segmented radiographs to calculate lumbar lordosis angles. A test
set of radiographs was used to evaluate the validity of the entire pipeline (n ¼ 151).

Results: The U-Net segmentation achieved a test dataset dice score of 0.821, an area under the receiver operating curve of
0.914, and an accuracy of 0.862. The computer vision algorithm identified the L1 and S1 vertebrae on 84.1% of the test set with an
average speed of 0.14 seconds/radiograph. From the 151 test set radiographs, 50 were randomly chosen for surgeon mea-
surement. When compared with those measurements, our algorithm achieved a mean absolute error of 8.055� and a median
absolute error of 6.965� (not statistically significant, P > .05).

Conclusion: This study is the first to use artificial intelligence and computer vision in a combined pipeline to rapidly measure a
sagittal spinopelvic parameter without prior manual surgeon input. The pipeline measures angles with no statistically significant
differences from manual measurements by surgeons. This pipeline offers clinical utility in an assistive capacity, and future work
should focus on improving segmentation network performance.
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Introduction

Spinal alignment is increasingly being recognized as a key,

quantitative assessment of spinal health, and is associated with

various spinal disorders such as adolescent idiopathic scoliosis,

adult spinal deformity, and degenerative spondylolisthesis.1-4

Malalignment, and the resulting compensatory response to main-

tain upright posture, places additional strain on key spinal, pel-

vic, and lower extremity structures that can cause arthritis and

pain.5,6 Restoring proper alignment in the coronal and sagittal

plane is therefore essential for improving biomechanical

efficiency and preventing further progression of disease.5,7,8

In clinical practice, preoperative radiographic assessment of

spinal alignment is conducted by measuring key angles and
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distances using various landmarks and comparing them with

established alignment targets.3,6

Poor sagittal alignment in particular has recently been asso-

ciated with negative health-related quality of life (HRQoL).2,9

Sagittal alignment is characterized by 5 key radiographic para-

meters: cervical lordosis (CL), thoracic kyphosis (TK), pelvic

incidence minus lumbar lordosis (PI-LL), sagittal vertical axis

(SVA), and pelvic tilt (PT).3,6 While surgeons require these

manually acquired radiographic measurements for presurgical

planning, the process is both time-consuming and prone to

rater-dependent error.10,11 Furthermore, previous studies have

demonstrated significant differences between standing and

supine angle measurements.4,12 Intraoperative surgical mea-

surements better reflect postoperative sagittal balance because

rigid fixation from instrumentation can prevent the passive

corrections in spinopelvic parameters that occur in the supine

position.13 Therefore, the development of automated tools for

making rapid, intraoperative calculation of sagittal parameters

may be useful for proper evaluation of alignment correction

and to improve surgical decision making.

Machine learning, deep learning in particular, is being

deployed on medical data to triage patients, automate preopera-

tive planning, and predict outcomes for surgeons.14-16 Within

the field of orthopedics, segmentation using neural networks is

a particularly promising technique for automatically identify-

ing bony structures in medical images. Spurred by advances in

computer vision techniques, multiple groups have attempted to

apply artificial intelligence and other computational methods

on radiographs to combat the numerous sources of variability

inherent to radiographic angle measurement. While many stud-

ies have attempted coronal Cobb angle calculations, they

required a large amount of a priori annotation by physicians

on the input radiographs. This level of input may help reduce

variability but has little intraoperative value and precludes

robust spinal curvature assessment at scale.17,18 Other groups

attempted to work directly on unannotated radiographs to iden-

tify landmarks but did not measure any sagittal angles.19,20

The purpose of this study was to develop a novel fully

automated machine learning pipeline that reliably measures

lumbar lordosis (LL) from radiographic images. Our methods

do not require any a priori feature engineering or landmark

identification. We report a combined segmentation and com-

puter vision pipeline to measure lumbar lordosis in 0.14 sec-

onds with potential perioperative value.

Materials and Methods

Materials

A total of 780 radiographs were collected from patients who

received a lateral lumbar X-ray at our orthopedics department

over a 1-year period. All radiographs were standardized and

taken by an X-ray technician with the patient standing neutral

weightbearing. Only 1 radiograph was selected for each patient

to reduce potential bias of training the model on multiple

X-rays from a single patient. Any patients with prior spine

surgery or spine instrumentation were excluded. Standing

lateral X-rays were used because they are higher quality and

better standardized than intraoperative X-rays, increasing the

probability of successfully training the model. Binary masks

were generated by manually annotating every vertebral body in

each radiograph using Photoshop (Adobe Systems, San Jose,

CA) (Figure 1). This study was approved by our institutional

review board.

Model Training and Optimization

Radiographs were preprocessed using adaptive histogram

equalization to improve contrast and normalize signal inten-

sity.21 The dataset was split into 629 learning images (80% of

total data) and 151 test images (20% of total data) for future

performance testing. The learning data was then synthetically

augmented using a custom script to 12 580 images and further

split into 70% training and 30% validation data (Figure 2). The

augmentations included flipping, randomly rotating, and ran-

domly cropping the radiographs to incorporate natural varia-

tions inherent to clinical radiographs into the training dataset.

We utilized U-Net, a well-established convolutional neural

net (CNN) architecture for segmentation, to generate bone seg-

mentations of the radiographs by optimizing dice similarity

coefficient (DSC) loss.22,23 DSC is a standard metric for eval-

uating the accuracy of segmentations by comparing the overlap

between CNN generated segmentations and manually gener-

ated masks. While a loss function defined by a simple pixel

accuracy may be more intuitive, the DSC outperforms these

more naive approaches for segmentation based problems.23

The final model was trained using batch size of 20 on a

Figure 1. Example of a raw radiograph and its corresponding manu-
ally generated binary mask.
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NVIDIA GeForce GTX 1080-TI GPU for 200 epochs over

24.4 hours.

Beginning with raw radiographs, the algorithm first seg-

ments the image. Then, it automatically identifies the L1 and

S1 vertebra from the segmentation and approximates their

superior endplates to calculate the LL angle (Figure 3). Failure

to properly identify L1 and S1 was treated as an algorithm

failure, and no Cobb angle was measured for these cases. The

algorithm was written using Python (version 3.5) and Keras

(version 2.2.0).24,25

Statistical Analysis

The segmentation performance was evaluated using DSC

and the area under the receiver operating characteristic

curve (AUC). The algorithm-generated angles were com-

pared to manual angle measurements from a chief resident

(JK), spine fellow (SL), and attending surgeon (SKC) on 50

randomly selected radiographs from the test dataset using

Welch’s 2-sample t test. Each surgeon measured every

radiograph twice over a 2-week period to evaluate intra-

and interrater reliability using interrater correlation

coefficient (ICC) with a 2-way random effects model.26

Measurements from surgeon 3 (SKC) were used as the gold

standard for comparison. All statistical analysis was per-

formed with R (version 3.4.4).27

Results

Automatic Segmentation of Vertebral Bodies

The final U-Net achieved a training DSC of 0.966 and valida-

tion DSC of 0.923 with an overall training time of approxi-

mately 24.4 hours. The U-Net performed well on segmenting

the test dataset, with a test DSC of 0.821, AUC of 0.914, and

accuracy of 0.862 (Figure 4).

Calculation of Lumbar Lordosis Angle
From Segmentations

The algorithm measured LL Cobb angles for 127 of the 151

radiographs in the test dataset, an overall success rate of

84.1%, with an average speed of 0.14 seconds/radiograph. From

the 151-image test set, 50 radiographs were randomly chosen for

surgeon measurement. On comparison, the algorithm succeeded

in measuring angles for 42 images, a success rate of 84%.

Manual measurements among the surgeons demonstrated

excellent intra- and interrater reliability, consistent with previ-

ous studies evaluating the surgeon reliability of radiographic

spine angle measurements, with an overall ICC of 0.958 (95%
CI: 0.931-0.976).10,11,28-30 The intrarater correlation coeffi-

cients (IaCC) for surgeons 1, 2, and 3 were 0.933 (95% CI:

0.878-0.963), 0.984 (95% CI: 0.970-0.991), and 0.970 (95%
CI: 0.945-0.984), respectively. The algorithm had higher varia-

bility in the mean absolute difference (MAD) from gold stan-

dard measurements, with a standard deviation of 12.989�,
compared with 3.232� and 3.152� for surgeons 1 and 2 (JK,

LS), respectively (Table 1). However, the algorithm still

achieved good accuracy, with an overall mean absolute angle

difference of 8.055 degrees and was not statistically different

from the gold standard measurements (P ¼ .372). Compared

with the gold standard measurements, the algorithm was even

more accurate with a median absolute angle difference of

6.965�, and this was also not statistically different (P ¼ .161).

The sorted bar plot of the raw angle differences between the

algorithm and gold standard measurements demonstrated higher

rates of overestimation than underestimation (Figure 5). A sub-

population analysis revealed much lower variation in absolute

angle difference in the images with 6 compared with 7 or more

segmented vertebral bodies (Figure 6).

Discussion

Accurate measurement of radiographic parameters is essential

for proper assessment of sagittal alignment and surgical plan-

ning.31,32 The present study demonstrates the first fully auto-

mated system for the assessment of sagittal alignment on

routine lumbar imaging. The pipeline in this study demon-

strates strong segmentation quality (assessed by DSC) and

accurate spinopelvic measurement when compared with 3

orthopedic surgeons.

While the advent of digital radiographs and computer-

assisted measurement software have simplified the process of

acquiring those parameters, they still require extensive manual

input from the surgeon—increasing surgeon demand and intro-

ducing potential for interrater variability.28,30,33 Previous work

on automatic extraction of spinal parameters focused mostly on

computed tomography and magnetic resonance data, as they

contain higher-resolution data with less noise and allow for 3-

dimensional reconstruction.34-37 These imaging modalities

allow for high-fidelity segmentations and measurement of

additional parameters such as apical vertebral rotation but are

not routinely used for monitoring or intraoperative imaging due

Figure 2. Overview of data workflow for training and testing the
U-Net. Augmentation involved flips, random rotations, and random
zooms. Each dataset was randomized prior to splitting.

Cho et al 613



to exposure to radiation and high price, limiting their clinical

utility.38-40 Therefore, this study aimed to evaluate the effec-

tiveness of a fully automated, rapid LL Cobb angle measuring

algorithm on lateral lumbar radiographs.

Previous groups have utilized machine learning models such

as faster region-based convolutional neural networks (faster R-

CNN) as well as traditional computer vision techniques to

automatically localize the spine on radiographs.17,41-44 How-

ever, many of these studies were limited by small sample sizes,

due to a lack of widely available source of labeled data, and

utilized single vertebra-level segmentation—increasing com-

plexity of the model and thus potential for error.17,41 One sys-

tematic review of Cobb angle measurement also noted that all

previous Cobb angle computerized approaches, even ones that

were deemed “automatic,” require landmark identification or

another user input to generate each measurement, reducing

scalability.45 Recent work by Al Arif, et al46 demonstrated how

a high-performance cervical vertebra segmentation algorithm

Table 1. Absolute Angle Difference Performance Metrics.

Operator Minimum Q1 Median Mean Q3 Maximum SD Pa

Relative to gold standard (deg)
Algorithm 0.668 3.810 6.965 13.441 21.857 50.528 12.989 0.161
Surgeon 1 0.300 1.762 4.050 4.474 6.650 14.000 3.232 0.224
Surgeon 2 0.100 1.375 3.050 3.529 4.825 18.400 3.152 0.460

Relative to overall surgeon average (deg)
Algorithm 0.187 3.815 8.055 13.069 19.834 54.395 13.126 0.372

aP values computed using Welch’s 2-sample t test.

Figure 3. Overview of algorithm workflow for automatic lumbar lordosis angle calculation. (A) The raw radiograph is captured and pre-
processed. Bony segmentation is generated from the raw radiograph with the trained U-Net. The L1 and S1 slopes are identified from the
segmented image with a computer vision algorithm. (B) Overlay of the L1 and S1 slopes on the raw radiograph demonstrates proper slope
placement and accurate angle estimation.

Figure 4. Receiver operating characteristic (ROC) of the U-Net for
the test dataset. The overall test area under the ROC curve (AUC)
was 0.914 and the overall test accuracy was 0.862. The dotted line
denotes AUC ¼ 0.50.
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that achieved an average DSC of 0.944 suffered decreases in

performance to a DSC of 0.840 when integrated to a fully

automatic workflow due to accumulation of error in the multi-

model pipeline.46 In comparison, our model segmented the

entire radiograph at once and still achieved a similar test DSC

of 0.852 on lateral lumbar radiographs, which contains addi-

tional physiological radiopaque artifacts such as bowel gas

and panniculus that increases segmentation difficulty. Most

of the algorithm failures were due to segmentation of too few

vertebral bodies (<5 lumbar þ 1 sacrum) or due to the mis-

segmentation of separate vertebral bodies as a single, fused

body (Figure 7). The importance of segmentation quality on

performance was also demonstrated in our subpopulation anal-

ysis (Figure 6), where the variability in absolute angle

difference was much higher in the radiographs with higher than

expected number of segmented vertebral bodies (7þ vs 6).

Segmentation allows the algorithm to determine where the

vertebral bodies are located in a radiograph, just as spinal sur-

geons identify the vertebral bodies before identifying the end

plates to use for measurement. While this may seem like a

trivial task, the large variability in posture and vertebral shape

as well as the presence of various radiopaque artifacts make

this a difficult problem using traditional computer vision tech-

niques. Computer vision algorithms exhibit robust performance

on visual tasks and are largely insensitive to a lack of training

data, but they tend to fail on images with high complexity such

as radiographs. Deep learning algorithms and CNNs, on the

other hand, can tolerate higher complexity but require training

on massive datasets in order to identify refined features. While

the size of our dataset is significantly larger than those reported

in other spine segmentation studies, training a neural network

to directly predict the angle from raw radiographs would

require an unreasonably large dataset. Segmentation networks

are therefore necessary to reduce the complexity of the input

image so that robust computer vision algorithms can be uti-

lized. Further improving the robustness of segmentation will

therefore be essential for improving the performance of future

algorithms, as the computer vision techniques rely on the

algorithm-generated segmentation to determine which land-

marks to use for measurement.

Our overall median absolute angle difference of 8.055� is

larger than the error margins from surgeons (Table 1). While

the t test showed that the algorithm measurements were not

significantly different from surgeon measurements, demon-

strating good accuracy, the standard deviation was much higher

for the algorithm, demonstrating lower precision. Considering

the lower precision relative to surgeon measurement, this algo-

rithm may find perioperative clinical utility in an assistive

capacity. We envision the algorithm could be integrated into

manual tools for digital radiograph measurement to provide a

visualized default measurement suggestion similar to that seen

in Figure 8. The surgeon could then adjust the interactive mea-

surement visualization tools as needed from the automatically

generated starting point, reducing surgeon input compared to

fully manual measurement. Even in cases of inaccurate mea-

surement suggestion, the algorithm often still often succeeds in

locating one of the necessary end plates (Figure 8b). Thus,

deployment of this algorithm could provide clinical utility

despite its lower precision by providing a bridge between man-

ual measurement and fully automated measurement. Before

fully automating the measurement of PI � LL with clinically

acceptable error, consideration should be made to achieve

absolute error and standard deviation that are sufficiently small

to avoid affecting management. While there have been

attempts at automating the measurement of Cobb angles in

adolescent idiopathic scoliosis,17,47,48 there is an unfortunate

lack of literature on automating the measurement of other

radiographic parameters such as pelvic incidence and sagittal

alignment that are important for grading and surgical plan-

ning.49 Further work in providing near real-time measurements

Figure 5. Sorted bar plot of predicted angle error compared to the
gold standard measurements (n¼ 42). The algorithm overestimated in
26 radiographs and underestimated in 16 radiographs.

Figure 6. Box-whisker plot of absolute angle difference for radio-
graphs with 6 and 7þ vertebral bodies segmented.
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from radiographs may increase the utility of these measure-

ments in the outpatient as well as pre-, intra-, and postoperative

settings, leading to improved screening and/or surgical

outcomes.

This study has several limitations. The first limitation is that

radiographs with any implants were excluded. This exclusion

criteria simplified the process of generating masks, which

allowed us to create a large enough database for robust training,

optimization, and testing. However, it limits the utility of our

tool in the setting of postoperative follow up or revision, as a U-

Net trained solely on radiographs without implants is most

likely to include the highly radiopaque implant in the segmen-

tation. A large number of image/mask pairs with advanced

augmentation techniques may be necessary to account for the

high variability in the types of implants used and the levels at

which they are placed.46 Another limitation is that all the

Figure 8. Computer-generated visualizations of end plate location and angle measurement for accurate and inaccurate algorithm measure-
ments. (A) Accurate algorithm measurements corresponding to gold standard measurements of 61.1� (left) and 32.8� (right). (B) Inaccurate
algorithm measurements corresponding to gold standard measurements of 37.7� (left) and 66.4� (right).

Figure 7. Examples of U-Net segmentation failures. (A) Image and corresponding segmentation characterized by L1 segmentation failure.
(B) Image and corresponding segmentation characterized by fused L2 and L3 vertebrae.
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radiographic data originated from a single hospital system,

which may not reflect the differences in X-ray machines and

acquisition techniques used in other institutions that could

introduce additional artifacts to the radiographs. Additionally,

this study did not stratify the radiographs by severity of ASD,

which has been shown to increase the MAD for LL Cobb angle

between human observers.11 Severe deformities in the vertebral

bodies that are not included in the training data may affect the

quality of the segmentation, decreasing the performance of the

algorithm. Finally, our comparison analysis excluded radio-

graphs that the algorithms failed to identify the L1 and S1

vertebra on. This may have biased our analysis, as we do not

know how the algorithm would have performed on them if the

segmentation quality was higher.

Conclusion

This is the first published fully automatic algorithm that mea-

sures the LL Cobb angle using lateral lumbar radiographs.

Deep learning, in combination with computer vision, is a pro-

mising tool in automating the measurement of various radio-

graphic parameters. Our algorithm accurately measures the LL

Cobb angle and is not statistically different from manual mea-

surements made by surgeons, suggesting potential clinical util-

ity in an assistive capacity. As techniques in bone segmentation

and computer vision improve over time, these types of tools

may prove useful in preoperative and intraoperative surgical

decision making. Future work should focus on improving the

quality of segmentation to increase the reliability of measure-

ments. We envision this to be possible with multilabel segmen-

tation nets that incorporate the femoral heads, which would

allow us to calculate important measurements such as pelvic

tilt, pelvic incidence, and PI � LL.
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