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Abstract

In this study, we have investigated the global impact of heterogeneous nuclear Ribonuclear Protein (hnRNP) H/F-mediated
regulation of splicing events and gene expression in oligodendrocytes. We have performed a genome-wide transcriptomic
analysis at the gene and exon levels in Oli-neu cells treated with siRNA that targets hnRNPH/F compared to untreated cells
using Affymetrix Exon Array. Gene expression levels and regulated exons were identified with the GenoSplice EASANA
algorithm. Bioinformatics analyses were performed to determine the structural properties of G tracts that correlate with the
function of hnRNPH/F as enhancers vs. repressors of exon inclusion. Different types of alternatively spliced events are
regulated by hnRNPH/F. Intronic G tracts density, length and proximity to the 59 splice site correlate with the hnRNPH/F
enhancer function. Additionally, 6% of genes are differently expressed upon knock down of hnRNPH/F. Genes that regulate
the transition of oligodendrocyte progenitor cells to oligodendrocytes are differentially expressed in hnRNPH/F depleted
Oli-neu cells, resulting in a decrease of negative regulators and an increase of differentiation-inducing regulators. The
changes were confirmed in developing oligodendrocytes in vivo. This is the first genome wide analysis of splicing events
and gene expression regulated by hnRNPH/F in oligodendrocytes and the first report that hnRNPH/F regulate genes that are
involved in the transition from oligodendrocyte progenitor cells to oligodendrocytes.
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Introduction

hnRNPH and F control alternatively spliced events (ASE) by

binding to G tracts positioned in close proximity to the 59 or 39

splice sites (ss), with G triplets being the basic recognition motif

[1,2,3,4,5]. hnRNPH and F can either enhance or inhibit the

alternatively spliced exon and the magnitude of the effect is

dependent on the length of the G tracts, the intronic vs. exonic

position and the strength of the 59 ss [6,7,8,9,10]. We have shown

that hnRNPH/F regulate the major myelin proteolipid protein

(PLP)/DM20 ratio predominantly by enhancing the selection of

the DM20 59 splice site through long G tracts positioned in exon

3B immediately downstream of the DM20 59ss [11,12,13]. Unlike

other ASEs, hnRNPH and F exert a novel synergistic regulation of

the PLP alternatively spliced event and their function is not

redundant [12].

The alternative splicing of PLP is a differentiation dependent

event in the oligodendrocytes (OL), the myelin producing cells of

the central nervous system (CNS). Endogenous hnRNPH and F

expression is high in oligodendrocyte progenitor cells (OPC) and

decreases in differentiated OL in vitro at the time when the PLP/

DM20 ratio increases [12]. Furthermore, siRNA-mediated knock

down of hnRNPH/F increases the PLP/DM20 ratio in the

oligodendrocyte cell line, Oli-neu cells [12]. The down regulation

of hnRNPH/F is temporally related to the transition of

oligodendrocyte progenitor cells to differentiated OL, suggesting

that hnRNPH/F may contribute broadly to differentiation-

induced changes in gene splicing and expression that occur as

part of the OL differentiation program.

Many excellent genomewide studies have characterized the role

of G tracts in splicing [6,7,14]. A global analysis of genome wide

hnRNPH/F mediated regulation of alternative splicing has been

conducted in human 293 T cells [15] and, for a relatively small

number of genes related predominantly to apoptosis and cancer, in

cancer cells [16]. In this study, we sought to investigate the global

impact of hnRNPH/F-mediated regulation of splicing events in

oligodendrocytes and to determine whether genes involved in OL

lineage progression are regulated by hnRNPH/F.

To this end, we have performed a genome-wide transcriptomic

analysis at the gene and exon levels in Oli-neu cells treated with

siRNA that target hnRNPH/F vs. untreated cells using Affymetrix

exon array platforms. Gene expression levels and regulated exons

were identified with the EASANA algorithm [17,18]. Bioinfor-

matics analyses were performed to determine the structural

properties of G tracts, such as length, distance and position that

correlate with the enhancing vs. silencing effect of hnRNPH/F.

The expression of genes involved in signaling pathways was

regulated by hnRNPH/F. Genes that regulate the transition of

OPC to OL are differentially expressed in hnRNPH/F silenced

PLOS ONE | www.plosone.org 1 December 2012 | Volume 7 | Issue 12 | e51266



Oli-neu cells. These changes were confirmed in developing OL

in vivo.

This is the first genome wide analysis of splicing events and

genes differentially regulated by hnRNPH/F in OL and the first

report that hnRNPH/F regulate genes involved in the transition

from OPC to OL.

Materials and Methods

Cell Cultures, Transfections and Primary Oligodendrocyte
Cell Isolation

Oli-neu cells [19] were grown in SATO medium, as described

[12,19]. Oli-neu cells were transfected with 80 nM of siF/H,

which targets both hnRNPH and F using the siPORT Amine

reagents (Applied Biosystems) and cultured in growth medium for

72 hrs [12]. Total RNA was prepared and submitted for

microarray analysis (Microarray Core Facility, University of

Kentucky). Cell suspensions were prepared from the CNP-EGFP

mouse brains (kind gift of Dr. V. Gallo) and EGFP+ OLs were

isolated by Fluorescent Activated Cell Sorting (FACS) (FACS

facility, University of Kentucky), as previously described [20,21].

The animal work was approved by Institutional Animal Care

and Use Committee at the University of Kentucky and was

conducted in adherence with the University’s guidelines for

animal husbandry.

Affymetrix Exon Array Data Analysis
RNA was prepared using the RNeasy mini kit (Qiagen) from

triplicate experimental and control mock siRNA treated Oli-neu

cells. Five micrograms of total RNA were used to generate probes

to hybridize with the Affymetrix Mouse Exon 1.0ST Array

featuring , 1 million exon clusters and 1.4 million probe sets

(Microarray Core Facility, University of Kentucky). Since exon

arrays contain multiple probes per exon, we were able to analyze

both splicing and transcript levels.

Microarray dataset analysis and visualization were made using

EASANAH (GenoSplice technology), which is based on the

GenoSplice’s FAST DBH annotations [18]. Data were normalized

using quantile normalization. Background corrections were made

with antigenomic probes and probes were selected as described

previously [22]. Only probes targeting exons annotated from

FAST DBH transcripts were selected to focus on well-annotated

genes whose mRNA sequences are in public databases [17].

Probes whose intensity signal was too low compared to anti-

genomic background probes with the same GC content were

removed from the analysis. Only probes with a DABG P value

#0.05 in at least half of the arrays were considered for statistical

analysis [22]. Only genes expressed in at least one compared

condition were analyzed. To be considered as being expressed, the

DABG P-value had to be #0.05 for at least half of the gene

probes.

We performed a paired Student’s t-test to compare gene

intensities in the different biological replicates. Statistical analyses

were also performed using the Student’s paired t-test on the

splicing index to analyze the Exon Array data as described

previously [22]. The splicing index corresponds to a comparison of

gene-normalized exon intensity values between the two analyzed

experimental conditions [22]. Exon and gene expression levels

were classified in two groups indicated as high and low confidence.

Bad-quality selected probes (e.g., probes labeled by Affymetrix as

‘cross-hybridizing’) were removed from the analysis for the high

confidence. For gene level analysis, genes were considered

significantly regulated when fold-change was $1.5 and P value

#0.05 for the high confidence and fold-change$1.2, P val-

ue#0.05 for the low confidence. Exons and part of exons were

considered statistically significant for P-values #0.05 and fold-

changes $1.2 for both high and low confidences.

Pathway Analysis
Significant KEGG pathways [23] were retrieved using DAVID

[24].

RT-PCR and Real time qRT-PCR
Total RNA was extracted with the RNeasy mini kit according to

the manufacturer’s instructions (Qiagen). The sequences of

primers used for semiquantitative RT-PCR and for Real Time

RT-PCR are shown in Table S1 and Table S2, respectively. qRT-

PCR was performed using the StepOneTM real-time PCR system

(Applied Biosystems) at the University of Kentucky Spinal Cord

and Brain Injury Research Center core facility, as described

[25,26], and data was analyzed by the StepOneTM Software v2.0

(Applied Biosystems). Relative RNA levels were determined by

comparing threshold cycles for individual RNA products normal-

ized with GAPDH using the 22DDCT method [27].

Results

hnRNPH and F Promote Both Exon Inclusion and
Skipping

To investigate the global role of hnRNPH/F in the regulation of

splicing events, we have performed a genome wide analysis of exon

levels in Oli-neu cells that were treated with an siRNA, siF/H,

which targets both hnRNPH and F, compared to mock siRNA

treated cells. As previously published, treatment of Oli-neu cells

with 80 nM siF/H reduces hnRNPH/F expression greater than

70% (Fig. 1B and [11]), which results in a two-fold increase in the

PLP/DM20 ratio derived from the endogenous PLP transcript

(Fig. 1A, [11]).

The exon levels were classified into high and low confidence

groups (see Methods). Splicing of 252 exons was differentially

regulated by knock down of hnRNPH/F in the high confidence

group and 1,649 exons were differentially regulated by knock

down of hnRNPH/F in the low confidence group. After manually

inspecting the 252 exons from the high confidence group,

individual types of alternatively spliced events were assessed. We

found four intron retention (2%), twelve 59/39 ASEs (5%), 26

alternative first exon (10%), 41 alternative terminal exon (16%), 18

cassette exons (7%) and 151 unknown internal alternative splicing

events (60%) (Fig. 1C, 1D).

The data show that hnRNPH/F regulate different types of

alternative spliced events, indicating a broad role in the regulation

of alternative splicing. In addition, in four of the six defined

categories of ASEs, alternative first, alternative terminal,59/39

alternative splicing and cassette exons, there are more events that

are excluded upon depletion (hnRNPH/F-activated) vs. those that

are included (hnRNPH/F-repressed) upon depletion (Fig. 1D).

Mechanisms of hnRNPH and F Mediated Regulation of
ASE

In the case of 59 alternatively spliced events, the proximal site is

preferentially utilized [28,29]. To gain insights into the mecha-

nisms by which hnRNPH/F regulate selection of competing 59 ss,

we have conducted a thorough analysis of the 59 ASEs that were

identified in both the high and low confidence groups. We

concentrated on the 59 ASEs since the PLP alternative splicing is

regulated by selection of competing 59 ss through hnRNPH/F

([12] and Fig. 1A). We first validated fourteen (3 from the high

Gene Splicing and Expression Regulated by hnRNPH/F
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confidence group and 11 from the low confidence group) 59 ASEs

by semiquantitative RT-PCR using primers that span the

alternatively spliced exons (Table S1). For 3 hnRNPH/F-activated

exons, we could not adequately amplify the alternative spliced

products, hence we have further analyzed the remainder 11 59

ASEs (data not shown). In three 59 ASEs, the inclusion of the

alternatively spliced exon is increased by knock down of

hnRNPH/F, while in eight ASEs the inclusion is decreased

(Fig. 1E). We confirmed the changes in exon inclusion/exclusion

by RT-PCR in 73% (8 out of 11) of the ASEs (Fig. 1E, indicated in

bold). These include one ASE in the hnRNPH/F-repressed exons

and seven in the hnRNPH/F-activated exons (Fig. 1E). The

changes in three ASEs (Fig. 1E, indicated in non bold characters)

are in the opposite direction of that detected in the arrays. The

data indicate that hnRNPH/F most often enhance the alterna-

tively the spliced exon.

To determine whether the presence, position and length of the

G tracts correlate with the outcome of splicing and allow a

prediction of the effect mediated by hnRNPH/F, we have

examined the G tracts in the alternatively spliced exon and in

the downstream intron. Only three of the hnRNPH/F-activated

ASEs did not have any G tracts in the downstream intron (Table

S3). One (NM_183151, Mid1) could not be consistently amplified

by RT-PCR, the other two were validated, however, for one

(NM_144842, MYM type 5) the changes were not statistically

significant while for the other (unknown gene, ae12) the changes

were robust (see Figure 1E for RT-PCR results). The absence of G

tracts suggests that these ASEs are not directly regulated by

hnRNPH/F. In all the others, G tracts were present, suggesting a

direct effect by hnRNPH and F.

The intron of the hnRNPH/F-activated exons contains on

average five G tracts (1–11), of which 25% are quadruplets (11),

6% are quintuplets (3), 2% are sixtuplets (1) and the remainder is

G triplets (Table S3). The intronic G tracts for the hnRNPH/F-

repressed exons are on average 5 (3–6) of which 5% are

quadruplets and quintuplets. Exonic G tracts are more represented

in the hnRNPH/F-repressed exons (1–5), while fewer G tracts

were present in the hnRNPH/F-activated exons (0–4) (Table S3).

The differences in exonic and intronic G tracts between

hnRNPH/F-activated and hnRNPH/F-repressed exons are sta-

tistically significant (p-value 1.29613E-19, Fisher’s exact test).

Although the number of ASEs regulated by hnRNPH/F in the

Figure 1. Genome wide analysis of alternative spliced events (ASEs) regulated by hnRNPH/F. Oli-neu cells were treated with an siRNA,
siF/H that targets both hnRNPH and F [12]. RNA was used to generate probes to hybridize with the Affymetrix Mouse exon 1.0ST array featuring , 1
million exon clusters and 1.4 million probe sets. We have analyzed splicing and transcript levels using the EASANAH from GenoSplice technology
(www.genosplice.com). A. RT-PCR amplification of the endogenous PLP and DM20 transcripts. Schematic of the PCR products is shown. siF/H
treatment induces a two-fold increase in the inclusion of exon 3B. Percent inclusion of exon 3B is shown. B. Western blot analysis of hnRNPH and F
expression. More than 70% reduction of hnRNPH/F is induced by the siF/H treatment. hnRNPA1 is used as loading control. C. Pie chart showing the
ASEs regulated by hnRNPH/F. Splicing of 252 exons was differentially regulated by knock down of hnRNPH/F. The types of spliced events are shown.
D. Pie charts show the relative abundance of included (hnRNPH/F-repressed) and excluded (hnRNPH/F-activated) exons. For four of the six categories
of alternative spliced events a greater number of exons are excluded (i.e. hnRNPH/F-activated) by depletion of hnRNPH/F. E. RT-PCR of alternative 59
splice sites. Representative RT-PCR of 59ASEs that were examined by semiquantitative RT-PCR analysis in siF/H treated vs. untreated Oli-neu cells
(mock) (n = 3). Each ASE is labeled with the gene ID and the alternative spliced exon (ae) is shown. The ASEs that were validated by RT-PCR are shown
in bold. The others, not bolded, demonstrated a change that was in the opposite direction of that detected in the arrays. Bar graphs represent the
percent change of the exon inclusion 6 SD in the siF/H treated cells vs. untreated cells set at 1 (n = 3). *#0.05 and **#0.01.
doi:10.1371/journal.pone.0051266.g001
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arrays is small, the data suggest that high density and length of the

intronic G tracts and a relative paucity of exonic G tracts correlate

with enhancement of the proximal 59 ss by hnRNPH/F. In

contrast, a balanced distribution of exonic and intronic G tracts is

associated with inhibition of exon inclusion by hnRNPH/F. The

latter may result from either silencing of the proximal 59 ss or

enhancement of the distal 59 ss mediated by the exonic G tracts.

We have shown that hnRNPH and F play distinct roles in the

regulation of the PLP/DM20 ratio and cooperatively regulate the

PLP exon 3B inclusion [11,12]. Here, we sought to determine

whether hnRNPH and F have a similar effect in the regulation of

the 59 ASEs identified in the arrays. For this analysis, we selected

the ASEs whose changes were found to be statistically significant

by RT-PCR analysis, as shown in Figure 1E. We have measured

exon inclusion/exclusion for the 59 ASEs by semiquantitative RT-

PCR after silencing of hnRNPH and hnRNPF individually and

compared it to the effect of silencing both. Importantly, knock

down of either hnRNPH or F does not influence the abundance of

the other as well as the expression of other hnRNPs [12], hence,

the individual effect on the ASE can be measured separately in

these reactions. The PLP/DM20 ASE was used as control (Fig. 2).

The fold change in the inclusion of PLP exon 3B is 12 fold

compared to 2 fold with siH and no change with siF, as previously

shown [12]. For all ASEs, silencing hnRNPH and F individually

had a modest effect and silencing both resulting in a greater

change in the inclusion of the regulated exon, suggesting that in

general they have a redundant function (Fig. 2).

In summary, hnRNPH and F most commonly enhance the

inclusion of exons regulated by competing 59 ss and this effect

correlates with the density and length of intronic G tracts.

Generally, hnRNPH and F are functionally redundant and their

combined effect is additive.

Gene Structure and G Tracts Determine the hnRNPH/F
Regulation of ASEs

Next, we sought to examine the G tract structural properties for

internal exons, which account for 67% of the hnRNPH/F

regulated ASEs in the arrays (in the high confidence group). We

have performed a bioinformatics analysis of the distribution and

length of intronic and exonic G tracts and correlated these features

with the functional outcome. Of 169 internal exons (i.e., cassette

exon and/or unknown internal alternative events) inclusion of the

regulated exon is reduced in 83 ASEs while it is increased in 86

ASEs. We have characterized G tracts in sequences extending

from +11 to +150 of the intron downstream of the regulated 59 ss

and from 211 to 2150 of the exon upstream of the regulated 59

ss. We have excluded sequences between +1 and +10 since G

tracts in this position overlap with the 59 splice site and were

shown to function as silencers [7] and enhancers [11]. The

frequency difference (FD) plot of G triplets was calculated as

previously described [10]. The highest FD is between +11 and +70

in the intron of both hnRNPH/F-repressed and hnRNPH/F-

activated exons, however, the FD is 1–5 folds greater in

hnRNPH/F-activated vs. -repressed exons (Fig. 3A). Furthermore,

G quadruplets or longer G tracts are more commonly clustered

between +11 and +40 and are more abundant in hnRNPH/F-

activated exons (Fig. 3B). Additionally, G runs are within 30

nucleotides from the 59 ss in 44 of the hnRNPH/F-activated exons

compared to 20 of the hnRNPH/F-repressed exons (Table S4). G

runs are positioned closer to each other, especially the first and

second G run, are separated by , = 20 nucleotides and contain

longer runs of Gs in the hnRNPH/F-activated vs. –repressed

exons (Table S4). The FD plot of G triplets in the upstream exon

sequences shows an overall lower G triplet representation in both

hnRNPH/F-activated and -repressed 59 ss without significant

differences between the activated vs. repressed exons (data not

shown). Together, the data show higher density and length of G

runs in the intron downstream of the hnRNPH/F-activated exons,

consistent with their role as ISE.

Next, we have examined the G tract dependence on the 59 ss

strength and the functional outcome on the regulated exon.

Greater clustering of intronic G triplets occurs at intermediate 59 ss

(4–8 bits) vs. strong 59 ss (8–12 bits) for hnRNPH/F-activated and

-repressed exons considered as a group (Fig. S1). The FD of G

triplets was higher for hnRNPH/F-activated vs. hnRNPH/F-

repressed exons for both intermediate and strong 59ss (Fig. 3C and

3D). However, the FD of intronic G triplets was 2–8 fold greater

for intermediate 59 ss compared to strong 59 ss (Fig. 3C and 3D), in

keeping with the dependence of ISE activity on the strength of the

59 ss [7].

The data indicate that the density and length of the G tracts

within the first 70 nucleotides of the intron is associated with

hnRNPH/F-dependent enhancement of the upstream 59 ss. This

effect is independent from the strength of the 59 ss, although the

clustering of intronic G tracts is higher for intermediate 59 ss, in

keeping with an evolutionarily conserved role of G tracts as

enhancers of weak 59 splice sites [7]. The presence of G tracts in

the exonic sequences does not show a clear association with either

an enhancer or silencer effect by hnRNPH/F.

hnRNPH and F Regulate Expression of Genes Involved in
OL Differentiation

Knock down of hnRNPH/F affected 6% of the expressed genes

in the low confidence group (832 transcripts out of 12,948

expressed genes). Of the regulated genes, 23% (188) were more

expressed and 77% (644) were less expressed in the low confidence

group. Among the 832 regulated genes, 131 (‘‘low confidence

group’’) (16%) also gather at least one differentially regulated exon,

while of the 12,948 expressed genes, 1,204 (9%) gather at least one

differentially regulated exon (‘‘low confidence group’’). The data

show an enrichment of differentially regulated exons in the genes

whose expression is affected by silencing hnRNPH/F.

A goal of this study was to determine whether hnRNPH and F

control the expression of genes that are important for OL cell

biology. By KEGG pathway analysis [23], we found that there was

an enrichment of genes that are involved in the insulin-IGF

signaling pathway, mTOR pathway, RNA binding proteins and

cell cycle (Fig. 4A). Because of the relevance of these pathways in

OL lineage progression, we have selected a number of genes and

validated the expression changes by Real Time qRT-PCR in Oli-

neu cells after knock down of hnRNPH/F. We have selected 15

genes involved in OL lineage progression (Table S5). We have

validated approximately 60% of the differentially expressed genes

(Fig. 4B and Table S5). IGF1 level was found to be significantly

increased in the arrays, but was found to be decreased by Real

Time qRT-PCR analysis (Fig. 4B). Other genes that are involved

in cell cycle progression (cdk2) and negative regulator of OPC

differentiation (SOX6) were reduced both in arrays and by Real

Time qRT-PCR analysis (Fig. 4B). Splicing of a constitutive exon

is differentially regulated by depletion of hnRNPH/F along with

changes in expression of cdk2, SOX6 and hnRNPA2/B1,

suggesting that an effect in splicing may be coupled with the

change in expression (Table S5 and Discussion). In support of this

possibility, CLIP-Seq tags were identified in cdk2 [7], while SOX6

was shown to be regulated by hnRNPF [15].

To demonstrate the biological relevance of the gene expression

changes induced by hnRNPH/F knock down, we have quantified

their expression in developing OL in vivo. We have isolated OPC,

Gene Splicing and Expression Regulated by hnRNPH/F
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pre-OL and differentiated OL by sorting EGFP+ oligodendrocyte

lineage cells at post-natal day 1, 10 and 21 respectively, as

described [21]. We have quantitated the expression levels of IGF1,

which plays a pivotal role in OL survival and differentiation [30],

SOX6, which is a negative regulator of OL differentiation [31],

CREB3 which is a critical transcription factor and a target of the

differentiation inducing cAMP pathway [32], cdk2, which

regulates cell cycle progression in OL terminal differentiation

[33,34], hnRNPA2/B1, which regulates transport and translation

of the myelin basic protein in differentiated OL [35,36] and U2AF

which is an essential spliceosomal factor [37]. The expression of

IGF1, CREB3 and hnRNPA2/B1 increases in p21 day OL, while

levels of SOX6 and cdk2 decrease at p21 vs. p1 OPC (Fig. 5B).

U2AF, a spliceosomal factor is lower in p21 OL. The changes in

the expression of these genes in p21 OL vs. P1 OL were similar to

those detected by arrays, the fold change in the arrays is indicated

in parenthesis in Figure 5. The expression levels in p10 OL

showed different patterns for each gene examined. In the case of

IGF1 and hnRNPA2/B1, there was a decrease at p10 compared

to an increase at p21, cdk2 expression did not change at p10, but

was significantly decreased at p21, while SOX6 was drastically

decreased at p10. The data suggest that these genes have distinct

temporal regulation reflecting different roles in development.

Differential expression of these genes in p21 OL is associated

with a dramatic reduction in the abundance of hnRNPH and F in

p21 OL vs. p1 OPC (Fig. 5A). Furthermore, the fold change of the

selected genes measured in the arrays is similar to those that occur

in vivo. Notably, IGF1 is up-regulated in the arrays and in

differentiated p21 OL, however, it was reduced at p10, similarly to

the results in Oli-neu cells treated by siF/H (compare Fig. 4B with

Fig. 5B).

In summary, knock down of hnRNPH/F reduces the expression

of negative regulators of OL differentiation while it increases the

expression of differentiation inducing genes, replicating changes

that occur in developing OL in vivo. The data suggest that

hnRNPH/F may participate in the regulation of OL lineage

progression.

Discussion

Our study is the first to examine the global impact that knock

down of hnRNPH and F has on alternative splicing and gene

expression in a brain derived oligodendrocytic cell line. We show

that hnRNPH/F regulate different types of alternative splicing and

the most common outcome caused by depletion of hnRNPH/F is

reduced inclusion of the alternatively spliced exon suggesting a

role as enhancers except for internal exons. In addition, our studies

Figure 2. Changes in exon inclusion induced by silencing hnRNPH and F individually vs. both simultaneously. Representative RT-PCR
(n = 2) of the products derived from 59ASEs in Oli-neu cells treated with siRNAs that target hnRNPH (siH), hnRNPF (siF) or both (siF/H). We selected
ASEs that were shown to have a statistically significant change in exon inclusion by RT-PCR. Mock are control untreated Oli-neu cells. Each ASE is
labeled with the gene ID number and the ae is shown (also refer to Figure 1E). The number shown below each lane represents the fold change in
exon inclusion compared to the mock treated cells set at the value of 1. The PLP/DM20 splicing event shows the synergistic effect of hnRNPH/F knock
down.
doi:10.1371/journal.pone.0051266.g002
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have uncovered a previously unrecognized function of hnRNPH/

F in the regulation of gene expression. Importantly, a significant

number of differentially expressed genes are components of

signaling pathways that regulate differentiation of oligodendro-

cytes, hence, positioning hnRNPH/F in the regulatory network

that control oligodendrocyte lineage progression.

Although hnRNPH/F are typically considered repressors of

alternative splicing, we show that knock down of both results in

decrease of the exon inclusion for four of the six categories of

spliced events examined consistent with enhancer function. We

conducted a careful analysis of the distribution, density and length

of the G runs in the intron downstream and the exon upstream of

the regulated 59 ss. hnRNPH/F regulated genes have a higher

frequency distribution of intronic G triplets in keeping with the

known function of G triplets as the basic binding motif for

hnRNPH/F and the G run ISE activity [7]. In both internal exons

and 59 alternative spliced events, there is a greater clustering of G

triplets and a higher representation of longer G tracts in the intron

downstream of the regulated 59 ss in genes that are enhanced vs.

those that are repressed by hnRNPH/F. The relative higher

density of intronic G triplets, especially between +11 and +30

nucleotides, in genes enhanced vs. repressed by hnRNPH/F may

reflect differences in the mechanism by which hnRNPH/F

activate vs. repress splicing.

We have concentrated on the 59 alternative spliced events as this

is the mechanism that regulates alternative splicing of the PLP

gene by hnRNPH/F in oligodendrocytes. High density and length

of the intronic G tracts and a relative paucity of exonic G tracts

correlate with enhancement of the proximal 59 ss by hnRNPH/F.

In contrast, a balanced distribution of exonic and intronic G tracts

is associated with inhibition of exon inclusion. These results are

consistent with the knowledge that intronic G runs function as

ISE, while exonic G runs function as silencers [38].

The higher G peaks close to the 59 ss and the greater density

close to weak 59 ss was previously reported in genome wide studies

[7,9,10]. Our study shows that there is a selective clustering of G

runs associated with the role of hnRNPH/F as enhancers vs. a

function as repressors. How might the higher density of G runs

and the greater length favor the role of hnRNPH/F as enhancers?

Clustering close to the 59 ss is thought to reflect an optimal

distance required for the splicing factors to interact with the

spliceosome [10]. Interestingly, binding of hnRNPH/F to G runs

through the qRRMs prevents formation of G mediated RNA

secondary structure [39]. Upon binding of hnRNPH/F, the higher

Figure 3. Frequency difference (FD) plot of G tracts in the intron downstream of internal cassette exons. A. FD plot of intronic G triplets
for decreased inclusion (down regulated) and increased inclusion (up regulated) 59 splice sites (ss). FD is defined as the difference between the
observed frequency of GGG in introns, calculated in a 30-nt window, and the mean frequency of GGG in 10 random permutations of the sequence in
the same window, with an offset of 3nt between successive windows, as described [10]. Black bars show the standard errors. B. FD plot of intronic G
quadruplets and longer G tracts for down and up regulated 59 ss. C. FD plot of G triplets in the intron downstream of intermediate and strong 59 ss of
exons with decreased inclusion (hnRNPH/F-activated). D. FD plot of G triplets in the intron downstream of intermediate and strong 59 ss of exons
with increased inclusion (hnRNPH/F-repressed).
doi:10.1371/journal.pone.0051266.g003
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number of G runs may generate a more ‘‘open’’ RNA structure

which enhances recognition of the 59 ss by the spliceosome.

Alternatively, the G runs may favor the interaction of hnRNPH/F

with the spliceosome and enhance either the ATP-independent

[13] or the ATP-dependent steps of spliceosomal assembly [40].

The greater representation of genes that are enhanced by

hnRNPH/F in some categories of alternatively spliced events led

us to conclude that hnRNPH/F more frequently activate exon

inclusion in these events. It is possible that this result represents a

skewed detection in our arrays on the basis of a stronger effect on

genes that are enhanced vs. those that are inhibited by hnRNPH/

F. However, we think that this is unlikely. Our data are in keeping

with those reported by a genome wide analysis of human cells

showing that hnRNPH1, F, M and U activate exon inclusion for a

majority of types of ASEs [15]. Furthermore, knock down of

hnRNPH/F also reduced inclusion of the alternatively spliced

exon of most apoptotic genes examined by RT-PCR in cancer

cells [39]. Interestingly, none of the alternatively spliced events

examined in the latter study were significantly changed in our

microarrays. The absence of overlaps with splicing events

identified in that study may reflect the nature of the cells and

the methodologies used in each study. We have performed the

analysis in non cancer cells and we have used microarrays that

have a different dynamic range than the RT-PCR detection

method used in the other study.

We have also examined the effect of depletion of both

hnRNPH/F vs. depletion of each individually. We were interested

in determining whether a cooperative effect similar to that we

described for PLP is utilized for other 59 ASE. We show that for

the 59 ASEs that displayed a significant change upon knock down

of both hnRNPH/F, the effect of hnRNPH and F is additive and

their function is redundant as the individual knock down has a

smaller effect or no effect. It remains to be determined what

elements in the gene structure would determine this outcome vs.

the cooperative effect active in the PLP gene. An important

difference is that PLP is a cell-specific ASE, while the 59ASEs

identified in the arrays are not, suggesting that cell specific factors

may contribute to the synergism.

A novel finding of our study is that 6% of genes are regulated at

the expression level with two thirds being down regulated by knock

down of hnRNPH/F. Interestingly, 16% were also regulated at

the exon level compared to 9% of the total expressed genes,

suggesting a splicing dependent regulation of gene expression.

Additionally, hnRNPH/F may regulate gene expression by an

Figure 4. Genes are differentially regulated at the transcriptional levels. A. Representation of significant pathways whose genes are
affected by knock down of hnRNPH/F. Thirty one Kegg pathways were significantly affected. Genes are either up- or down-regulated. B. Changes in
gene expression were verified by Real Time RT-PCR in Oli-neu cells depleted of hnRNPH and F. Bar graphs represent the mean6SD of transcript levels
of the indicated genes quantitated by Real Time RT-PCR in mock siRNA treated (Mock) and siF/H treated Oli-neu cells (n = 3). Oli-neu cells were
treated with siF/H and harvested after 72 hrs in culture for Real Time RT-PCR analysis. The data are expressed as percent change of the treated vs.
mock cells, the latter is set at the value of 1. ns = non significant, *p = 0.05. In parenthesis next to the gene name is shown the fold change in the
microarrays.
doi:10.1371/journal.pone.0051266.g004
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RNA mediated mechanism by affecting message stability through

binding to G runs in the 39 UTR especially close to polyA sites

[41,42]. Interestingly, the 39 UTRs of the genes examined contain

multiple G triplets and long 4–6 G tracts, suggesting that a 39

UTR-mediated regulation may play a role (data not shown).

Another possibility is that depletion of hnRNPH/F causes a

change in the expression of other splicing factors. Cross-regulation

of hnRNPs was recently demonstrated in human cells after

depletion of individual hnRNPs [15], pointing to a complex

regulatory network. However, we did not detect significant

changes of other hnRNPs in our arrays, with the exception of

hnRNPA2/B1. Changes in the expression of SR proteins, Sfrs7,

Sfrs11 and Tra2a, were detected by arrays, but could not be

confirmed by subsequent Real Time qRT-PCR in Oli-neu cells

depleted of hnRNPH/F (data not shown).

Of the genes examined and involved in OL differentiation,

regulation at the exon level was detected for cdk2, SOX6 and

hnRNPA2/B1 after depletion of hnRNPH/F, suggesting that

changes in splicing may result in changes in transcript levels/

stability. For the other genes, hnRNPH and F may regulate

transcription, possibly indirectly by affecting genes involved in

transcriptional regulation. An important conclusion of the results is

that expression of genes that inhibit OL differentiation, cdk2 and

SOX6, is reduced by knock down of hnRNPH/F while genes that

promote OL differentiation, CREB and IGF1 are increased. In

addition, the increased expression of IGF1 suggests a possible

autocrine mechanism by which OL may regulate lineage

progression.

These data suggest that hnRNPH/F might regulate OL

proliferation and differentiation. In support of this statement, we

show that the expression of hnRNPH/F decreases in developing

OL in vivo at the time of the other gene expression changes.

Interestingly, hnRNPH and F decrease according to a distinct

temporal pattern suggesting that each factor may serve indepen-

dent functions. Importantly, IGF1 and hnRNPA2/B1 demon-

strated a biphasic pattern of expression, i.e. high at p21, when

both hnRNPH and F are decreased and low at p10, when

hnRNPH is still expressed, compared to p1, suggesting a

differential role of each hnRNPH and F on these genes. The

expression of other genes changed in the same direction at p21

Figure 5. Expression profile of the validated genes in developing oligodendrocytes in vivo. CNPase-EGFP+ oligodendrocytes were
isolated at post-natal day (P) 1, 10 and 21 [43] and subjected to RT-PCR, Western blot analysis and Real Time RT-PCR. A. Representative RT-PCR of
PLP/DM20 ratio and Western blot analysis of hnRNPH and F in developing oligodendrocytes. CNPase is a marker of differentiation and increases in
P10 and P21 OL vs. P1 oligodendrocyte progenitor cells. b-tubulin is the loading control. B. Bar graphs represent the mean 6 SD of transcript levels of
the indicated genes quantitated by Real Time RT-PCR in EGFP+ oligodendrocytes in vivo (n = 3). The fold change detected in the microarray is shown
in parenthesis next to the gene name. ns = non statistically significant. **#0.01.
doi:10.1371/journal.pone.0051266.g005
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and p10. These patterns are likely to reflect their individual roles

in OL lineage progression, the mixed nature of OL development

at p10 and/or be influenced by the different temporal course of

hnRNPH/F decreased expression. Future studies will investigate

the role of hnRNPH and F in gene regulation in developing OL.

In summary, our studies show that hnRNPH/F exert a broad

effect on regulation of splicing and gene expression in OL.

Supporting Information

Figure S1 Clustering of intronic G triplets downstream
of intermediate and strong 59 ss. Frequency difference (FD)

plot of G triplets in the intron downstream of intermediate and

strong 59 ss in both hnRNPH/F-activated and -repressed exons.

(TIF)

Table S1 Sequences of the RT-PCR primers. The

sequences of the forward and reverse primers used for RT-PCR

are shown and labeled by the gene number and in parenthesis by

the gene name, when available, for the 14 ASEs that were

analyzed by RT-PCR. For the unknown genes we indicate in

parenthesis the alternatively spliced exon (ae).

(DOC)

Table S2 Sequences of Real Time qRT-PCR primers.
The sequences of the forward and reverse primers used for Real

Time qRT-PCR are shown and labeled by the gene ID number.

In parenthesis is shown the gene name.

(DOC)

Table S3 Analysis of G tracts in the exon upstream and
the intron downstream of the regulated 59 ASEs. We show

the sequence, position and length of the G tracts in the exon

upstream and intron downstream of the regulated 59 splice site for

the fourteen ASEs analyzed by RT-PCR. The G tracts are color

labeled depending on the length of the G run. For each ASE, we

show the gene ID number, gene symbol and whether hnRNPH

and F activate or repress.

(XLS)

Table S4 G tract analysis in the exon upstream and
intron downstream of the regulated 59 splice site for
internal exons. The Table shows the position, sequence and

length of exonic and intronic G tracts for 190 exons whose splicing

is affected by depletion of hnRNPH/F. Twenty one are alternative

first exons and one hundred and sixty nine are internal exons

(cassette and unknown). We show the gene ID number, gene

name, the regulated exon and whether the exon is down- or up-

regulated. The G tracts are color labeled depending on the length

of the G run.

(XLSX)

Table S5 List of genes with biological relevance for
oligodendrocytes and regulated by hnRNPH and F. We

show the ID number and name of genes that are relevant to

oligodendrocyte cell biology and whose transcript levels were

verified by Real Time qRT-PCR in siF/H treated compared to

control treated Oli-neu cells (n = $2). Approximately sixty percent

of the expression changes was confirmed by Real Time RT-PCR

(shown in bold). We indicate the genes for which a change in exon

splicing was also detected by array upon depletion of hnRNPH/F.

(DOC)
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