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Abstract

Background: Although the number of discovered long non-coding RNAs (lncRNAs) has increased dramatically, their
biological roles have not been established. Many recent studies have used ribosome profiling data to assess the
protein-coding capacity of lncRNAs. However, very little work has been done to identify ribosome-associated lncRNAs,
here defined as lncRNAs interacting with ribosomes related to protein synthesis as well as other unclear biological
functions.

Results: On average, 39.17% of expressed lncRNAs were observed to interact with ribosomes in human and 48.16%
in mouse. We developed the ribosomal association index (RAI), which quantifies the evidence for ribosomal
associability of lncRNAs over various tissues and cell types, to catalog 691 and 409 lncRNAs that are robustly
associated with ribosomes in human and mouse, respectively. Moreover, we identified 78 and 42 lncRNAs with a high
probability of coding peptides in human and mouse, respectively. Compared with ribosome-free lncRNAs,
ribosome-associated lncRNAs were observed to be more likely to be located in the cytoplasm and more sensitive to
nonsense-mediated decay.

Conclusion: Our results suggest that RAI can be used as an integrative and evidence-based tool for distinguishing
between ribosome-associated and free lncRNAs, providing a valuable resource for the study of lncRNA functions.
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Background
Long non-coding RNAs (lncRNAs) are sequences longer
than 200 nucleotides with no protein-coding capacity.
Over 58,000 genes had been identified as human lncRNAs
as of 2015 [1], and that number continues to grow [2, 3].
In contrast, only a small number of lncRNAs have been
functionally annotated to date [4]. Because the major-
ity of human lncRNAs are still interpreted as having an
unknown function, identification of lncRNA functions has
become a challenging problem [5].
Analysis of macromolecular lncRNA interactions has

been used as an approach to conduct large-scale studies
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of lncRNA functions [6]. Ribosome profiling techniques
adapt high-throughput sequencing methods to ribosome-
protected fragment sequences, which provides a genome-
wide dataset of ribosome–RNA interactions [7]. Ingolia
et al. first developed ribosome profiling and applied it to
studying long intergenic noncoding RNAs (lincRNAs) and
reported that the majority of lincRNA fragments engaged
by ribosomes represent a limited portion of different lin-
cRNA sequences [8]. Other modified ribosome profiling
techniques were applied to identify ribosome-associated
lncRNAs and reduce false positives [9, 10].
Many previous studies have used ribosome profiling

data to examine ribosome–lncRNA interactions, with a
primary focus on detecting protein-coding signatures in
lncRNAs. Hence, rigorous metrics and ignoring lncRNA
characteristics can lead to underestimates of the asso-
ciation between lncRNAs and ribosomes. For instance,
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Guttman et. al defined the RRS, a ratio of counts of ribo-
some footprints from putative ORF to counts of ribosome
footprints based on downstream sequences, to assess
the sharp decrease in ribosome occupancy at the end of
putative ORFs, ultimately demonstrating that lincRNAs
do not produce proteins [11]. Wang et al. utilized the
three-nucleotide periodicity and uniform distribution of
ribosome occupancy to evaluate the translation potential
of lincRNAs [12]. These two studies mainly focused
on detecting lincRNAs with the ability to encode pro-
teins while excluding any other forms or functions of
ribosome-associated lncRNAs from consideration (e.g.,
storing ribosomes or translational regulation discussed
in [13]). Ruiz-Orera et al. assessed ribosomal associations
by measuring the breadth of ribosome coverage, which
was defined as the number of nucleotides overlapped by
Ribo-seq reads on a transcript or a transcript region [14].
This metric ignores the influences of the depth of ribo-
some coverage, the expression level of a transcript, and the
length of a transcript with ribosomal association. Taken
together, little attention has been given to ribosome–
lncRNA interactions that may involve biological functions
[15–17]. Efforts that focus on the identification of reliable
ribosome-associated lncRNAs are insufficient.
Here, we define the term “ribosome-associated lncR-

NAs” as a class of lncRNAs that ribosomes associate
with by sliding along regions on them or by binding to
specific sites within them. In contrast, “ribosome-free
lncRNAs” represent lncRNAs with little (or no) ribosomal
association. Note that the term “ribosome-associated
lncRNA” was frequently used in previous studies to refer
to a rare fraction of lncRNAs with the predicted ability
to encode peptides. By mapping ribosome profiling data
to lncRNAs, we observed that an average of 39.17%
(24.65–59.92%) and 48.16% (26.04–70.13%) of expressed
lncRNAs interact with ribosomes in human and mouse,
respectively. The protein-coding capacity remains rela-
tively low for the total population of ribosome-associated
lncRNAs compared with mRNAs. However, some
evidence has emerged for the translation of ribosome-
associated lncRNAs. As such, we newly present the
ribosomal association index (RAI), an integrative and
evidence-based tool that assigns a confidence score to a
specific lncRNA representing its ribosomal associability.
RAI can be applied to both tissue-specific and ubiqui-
tous lncRNAs in combination with the tissue-specific
expression metric spec (see “Methods”). Focusing on
ubiquitously expressed lncRNAs, we used RAI * (1 - spec)
to measure ribosomal associability. (Note that RAI*spec
can be used for analyzing tissue-specific lncRNAs.) Fur-
thermore, we apply two threshold values (the 5th and
95th percentiles of RAI * (1 - spec) scores) to divide the
lncRNAs into “noribo-lncRNAs” and “ribo-lncRNAs.”
Those lncRNAs that scored below the lower threshold

are defined as “noribo-lncRNAs,” representing a subset
of reliable ribosome-free lncRNAs. Conversely, lncRNAs
that scored above the upper threshold are referred to as
“ribo-lncRNAs,” representing a subset of high-confidence
ribosome-associated lncRNAs. We show that transcript
length may not be a major factor associated with riboso-
mal associability in lncRNAs. Moreover, we have obtained
78 human sequences (and 42 mouse sequences) that
are putatively translated lncRNAs from ribo-lncRNAs,
respectively. Finally, we investigated the relationship
between the ribosome-associated lncRNAs and NMD
and cell localization, and we conclude that RAI analyses
are a valuable resource that will assist with determining
the underlying lncRNA functions.

Methods
Data collection
We retrieved the original experimental data from NCBI
GEO [18] as detailed in Additional files 1 and 2. To calcu-
late the transcript expression level and quantify potential
lncRNA–ribosomal associations, we selected ribosome
profiling experiments that contained both RNA-seq and
ribosome footprint (Ribo-seq) measurements. For further
analysis of lncRNA–ribosomal associations, we chose a
single representative dataset for each tissue or cell type
according to the following three empirical criteria: (i) The
mapping rates of both RNA-seq and Ribo-seq are greater
than 30%; (ii) The dist value is less than 0.15; (iii) For a
tissue/cell type represented across multiple datasets, the
dataset with the lowest dist value, indicating that the foot-
print length distribution for lncRNAs is closest to that of
CDSs in this dataset, is selected. Here, dist is a metric
of the length distribution similarity between two popula-
tions of ribosome footprints that mapped to lncRNAs and
CDSs, respectively.

dist(P,Q) = 1
2
∑

l∈L
|P(l) − Q(l)| (1)

where P and Q denote length frequency distributions of
ribosome footprints that mapped to CDSs and lncRNAs,
respectively, andL is a finite length space. This value takes
a real number between 0 and 1, and larger values indicate
a greater difference between these two distributions (see
Additional files 3, 4 and 5). Finally, we selected ten dif-
ferent human datasets, which were derived from different
tissues or cell types (i.e., brain, breast, fibroblasts, RPE-1,
myeloma, ES, HEK293, HeLa, PC3, and U2OS). We
selected eight mouse datasets, which were derived from
different cell types (fibroblast, EB, and ES) and tissues (i.e.,
brain, hippocampi, skin, liver, and testis).

Transcriptome
The transcriptome (consisting of mRNAs and lncRNAs)
was used as a reference for mapping RNA/Ribo-seq reads
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based on the following considerations. First, we restricted
read mapping to annotated transcripts to avoid the iden-
tification of novel transcripts. Second, mapping reads to a
genome is a complicated problem as the mapping rate is
sensitive for short reads and those reads spanning splic-
ing junctions. Thus, we downloaded genomic sequences
and gene annotation files from GENCODE [2] and then
utilized custom Python scripts to generate transcriptome
sequences (see Additional file 6). By excluding lncRNAs
that are derived from known protein coding genes, we
finally obtained 27,545 and 14,609 lncRNAs for human
and mouse, respectively, which primarily represent lin-
cRNA and antisense RNA sequences (see Table 1).

Alignment and quantification
RNA/Ribo-seq reads were mapped to the transcriptome
using Bowtie2 [19] with the –very-sensitive-local option.
Cutadapt [20] was used to trim adapter sequences from
reads if the adapter sequence was described in the liter-
ature. Additionally, we performed a local read alignment
to remove adapter sequences from one or both ends of
the alignment. The Ribo-seq reads were produced by a
strand-specific protocol, which means reads from 5′ to 3′
are mostly mapped to the transcript sense strand. This
helps to determine whether reads were sequenced from
the protein-coding transcript or the antisense transcript
on the opposite strand. For each read, we allowed a max-
imum of 100 distinct alignments to take into account the
high sequence similarity among transcript variants of the
same gene locus or among transcripts with repetitive ele-
ments. Additional file 7 shows the details of the software
parameters used in this procedure.

Table 1 Long non-coding RNAs used in this study

Biotype Human Mouse

LincRNA 13245 6473

Antisense 10980 3612

TEC 1072 2759

Sense_intronic 984 294

Retained_intron 517 294

Processed_transcript 368 980

Sense_overlapping 310 50

3prime_overlapping_ncRNA 34 3

Pseudogene 20 24

Bidirectional_promoter_lncRNA 11 118

Non_coding 3 0

Macro_lncRNA 1 2

Total 27545 14609

See https://www.gencodegenes.org/gencode_biotypes.html for the details on
transcript biotype

The transcript expression value RPKM (reads per kilo-
base per million mapped reads) was pre-computed from
RNA-seq data using RSEM v1.2.31[21]. To quantify one
Ribo-seq read that mapped to N (1 ≤ N ≤ 100) dif-
ferent locations, we defined a metric w(i) to represent
the fraction of mapped reads assigned to the i-th location
(1 ≤ i ≤ N).

w(i) = RPKM(i)
∑N

n=1 RPKM(n)
(2)

where RPKM(i) is the expression value for the transcript
referring to the i-th location.

Expressed transcripts and tissue specificity
Although most previous studies are based on quantita-
tive data over a single representative transcript for each
gene, we used RSEM to estimate the abundance of total
known transcript variants from RNA-seq data, defined by
an expression threshold of 1 (i.e., ≥ 1 RPKM) for the pur-
pose of identifying expressed transcripts [22, 23]. Where
not otherwise specified, the following analyses were based
on sets of expressed transcripts.
For a transcript, to measure the expression tissue speci-

ficity, we count the number (x) of tissues/cell types in
which this transcript is expressed and transform it to a
scale from 0 (ubiquitous) to 1 (specific) as follows:

spec = M − x
M − 1

(3)

whereM is the total number of tissues and cell types used
in this study. The specmetric is consistent with the counts
metric mentioned in [24].

Ribosome density to distinguish ribosome-associated and
ribosome-free lncRNAs in a single dataset
To measure the extent to which ribosomes are associ-
ated with a transcript or a region of a transcript, we used
ribosome density, which is calculated as

ribosome_density(i, j;T) = ribo(i, j)
RPKM(T) · |j − i + 1| (4)

where T = t1...tn is a transcript of length n, ribo(i, j) is
the number of Ribo-seq reads mapped on the substring
T(i, j) = ti...tj (1 ≤ i ≤ j ≤ n), and RPKM(T) is
the expression value of T. Thus, ribosome_density(1, n;T)

represents the density of ribosome occupancy over the
whole transcript T. In general, a ribosome will disso-
ciate from mRNA once a stop codon is encountered,
which makes the area downstream of the stop codon
(the 3′ UTR), a ribosome-free region and thus a suitable
reference region for detecting ribosome-associated sig-
nals. To obtain a significant ribosome-associated lncRNA,

https://www.gencodegenes.org/gencode_biotypes.html
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we further derived an empirical distribution of ribo-
some density scores from 3′ UTRs and then applied a
90th percentile cut-off value of ribosome density scores
from 3′ UTRs in order to distinguish between ribosome-
associated and ribosome-free lncRNAs (see Fig. 3a). The
rationale for choosing this seemingly less stringent cut-off
value is that it (i) may enable the detection of ribosome
rescue in 3′ UTRs [25] and (ii) guarantees that themajority
(i.e.,> 90%) of mRNAs that are associated with ribosomes
and produce proteins are identified as expected [26]
(see Fig. 1).

Ribosomal association index (RAI) defines ribo-lncRNAs
and noribo-lncRNAs across multiple datasets
For each lncRNA, we applied the newly proposed
ribosomal association index (RAI) to quantify ribosome
associability.

RAI =
∑M

i=1 x(i) · y(i)
∑M

i=1 x(i)
(5)

where M is the number of independent experiments; x(·)
is the indicator function of transcript expression, that is,
x(i) = 1 if the lncRNA is expressed in the i-th experiment
and 0 otherwise; and y(·) denotes the ribosomal associa-
tion sign function, that is, y(i) = 1 if the ribosomal associ-
ation was supported by the i-th experiment and − 1 oth-
erwise. Here, a continuous value of y(i) will provide more
information about the ribosomal association. However, it
is difficult to directly compare the ribosomal association
across different datasets by using ribosome density, which
is normalized to transcript abundance in each dataset.
Furthermore, we used RAI * (1 - spec) to assign a more

confident score of ribosome associability based on multi-
ple pieces of experimental evidence. The RAI * (1 - spec)
score can range between 1, for ribosome-associated lncR-
NAs, and -1, for the ribosome-free lncRNAs (see Fig. 2
and Additional file 8).

The putative ORF in lncRNAs
For lncRNAs, putative ORFs with lengths ≥ 30nt (includ-
ing the stop codon) were considered to analyze their
coding potential. A putative ORF is a continuous sequence
of trinucleotides starting with an ATG trinucleotide and
ending with TGA, TAA, or TAG.

Coding potential assessment
Fragment length organization similarity score
The fragment length organization similarity score
(FLOSS) was computed as formulated and presented by
[27]. Footprints derived from translating ribosomes are
expected to have a specific length distribution. Thus,
the idea behind the FLOSS analysis is to compare the
histogram distributions of footprint lengths between a
given transcript and the reference (i.e., CDSs), in which
ribosomes are considered to translate proteins. To main-
tain the consistency of metrics of coding potential, we
transformed the original FLOSS score to 1 - FLOSS. Thus,
the transformed FLOSS (called FLOSS hereafter) value
range is from 0 (non-translated) to 1 (high possibility of
translating).

Ribosome release score
For a previously defined putative ORF of a lncRNA or
a CDS, the ribosome release score (RRS) was calculated
according to the description in [11]. A transcript under-
going translation tends to show ribosome coverage over
the majority of an ORF, and thus the ribosome density
over ORFs ends sharply at the translation termination
site. Guttman et al. developed the ribosome release score
(RRS) based on the drop signal at the translation termina-
tion site to detect the translation event [11]. Here, the RRS
value was scaled to range from 0 to 1.

Framescore
As the ribosome moves three nucleotides in each step
along each ORF during protein synthesis, the three-base

Fig. 1 The percentages of expressed mRNAs (blue) and lncRNAs (orange) that are associated with ribosomes across multiple tissues or cell types. For
the human datasets, 94.73–99.51% of mRNAs and 24.65–59.92% of lncRNAs were associated with ribosomes. For the mouse datasets, 95.99–99.42%
of mRNAs and 26.04–70.13% of lncRNAs were associated with ribosomes. In summary, 7153 and 3577 lncRNAs were identified to be associated with
ribosomes in at least one dataset. The ribosome association was defined based on ribosome density (see “Methods”). The number of expressed
mRNAs or lncRNAs is shown in each bar
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Fig. 2 The ribosomal association index (RAI) enables an integrative analysis of ribosome associability of lncRNAs across multiple independent
datasets. The table summarizes ribosomal association and translation for selected human lncRNAs. Rows represent lncRNAs, while colored columns
denote datasets. For each lncRNA, “N (gray)” and “F (green)” cells correspond to unexpressed and ribosome-free lncRNAs, respectively. “A0”∼“A3” cells
represent the lncRNA containing a putative ORF that passed 0–3 coding filters. The last four columns are statistics that describe the corresponding
lncRNAs. Spec is the transcript expression specificity, ranging from 0 (ubiquitous) to 1 (specific). For a lncRNA, RAI is the ribosomal association index
across datasets in which this lncRNA is expressed, ranging from -1 (ribosome-free) to 1 (ribosome-associated). RAI * (1 - spec) is a metric to measure
the confidence of ribosomal association for a lncRNA that has a broad expression, ranging from -1 (lncRNA was observed as ribosome-free in most
datasets) to 1. Conversely, RAI * spec can be used to select ribosome-associated or ribosome-free lncRNAs from the population of tissue-specific
lncRNAs. TS can be used with RAI * (1 - spec) to filter the putatively translated lncRNAs. (See Additional file 8 for the complete list of human and
mouse lncRNAs)

periodicity can be represented by the frame distribution,
which displays the frequency of Ribo-seq reads (from
the 5′ end of each read) in each frame. If the majority
of lncRNAs also encode peptides, three-base periodicity
would be expected in most of their putative ORFs. Note
that the different experiments and different methods of
processing reads may affect the shape of the frame dis-
tributions. Fortunately, the frame distribution of CDSs
provides a good reference for the differentiation of ORFs
between active and inactive translation. We proposed the
Framescore to measure the dissimilarity in terms of frame
distribution, which is the proportion of 5′ ends of Ribo-
seq reads mapped to all three frames. Here,Q is the frame
distribution of Ribo-seq reads among all CDSs undergoing
ribosomal translation, and P represents the frame distri-
bution of reads in a (putative) ORF from a transcript.
Framescore was used to calculate the Kullback–Leibler
divergence from P to Q as

Framescore(P,Q) =
3∑

i=1
P(i) log

P(i)
Q(i)

. (6)

The difference between Framescore and ORFscore
which is the other triplet phasing metric [28], is that
ORFscore supposes footprints derived from translating
ribosomes will be predominantly mapped to frame one
and frame two. However, Framescore uses the mapping
results onto CDSs as the reference to obtain a more stable
performance.

Translation score
Taken together, we applied these three coding metrics
(FLOSS, RRS, and Framescore) to assess the ability of
each putative lncRNA ORF to encode a peptide. For each
coding metric, a cut-off was generated such that 90% of
mRNAs can be identified as having coding ability accord-
ing to this threshold, which was then applied to lncRNAs.
To integrate these three filtering results, we developed the
translation score (TS) to evaluate the coding potential for
a specific lncRNA across multiple datasets.

TS =
N∑

i=1
w(α(i)) (7)
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where N is the number of datasets in which the tran-
script is identified as ribosome-associated. In the i-th
dataset, α(i) is a translation level function ranging from
0 to 3, indicating the maximum number of coding fil-
ters passed for a putative lncRNA ORF. While w(·) is
a function that assigns the weight for each translation
level (0, 1, 2, and 3 correspond to weights of -1, -0.5,
0.5, and 1, respectively). Finally, for a given lncRNA, TS
is a weighted sum function, with a positive value indi-
cating translation, and a negative value indicating no
translation.

Mass spectrometry data
Peptide sequences derived from mass spectrometry data
were downloaded from sORFs.org [29]. Peptide sequences
aligned to protein coding transcripts (by tBlastn [30]) were
removed, then the remaining peptides were aligned to
lncRNAs.

Sequence conservation
PhyloP scores, which measure base-wise evolutionary
conservation frommultiple alignments, were downloaded
from GENCODE [2]. Positive phyloP scores represent
slower evolution than expected (in other words, con-
served), and vice versa.

Nonsense-mediated decay (NMD) and cellular localization
analysis
For the NMD analysis, we computed the fold change of
RNA-seq expression levels from the control sample to
those from the UPF1 knockdown sample. Here, UPF1
is one of the major NMD factors, and interfering with
the expression of UPF1 is expected to cause increased
expression levels of NMD-targeted transcripts. RNA-seq
data from HeLa cells were downloaded from NCBI GEO
(GSE86148) [31].
For the cellular localization analysis, cells were first

separated into cellular fractions before the extraction of
RNA. We calculated the fold change of RNA-seq data
from the cytoplasmic fraction to that from the nuclear
fraction of HeLa cells. RNA-seq data from the nucleus
(ENCSR000CPQ) and the cytoplasm (ENCSR000CPP)
were download from ENCODE [32].
We applied the same procedure to calculate the fold

change for the NMD analysis and the cellular localiza-
tion analysis. Reads mapped to tRNAs, rRNAs, snoR-
NAs, or miRNAs were first removed. For the remaining
reads, their first 15 nucleotides with low sequencing qual-
ities were trimmed by Cutadapt [20]. Trimmed reads
were mapped to the transcriptome by Bowtie [33]. Tran-
script expression values were calculated by RSEM v1.2.31
[21]. Differential expression analysis was performed using
EBSeq [34] to obtain the posterior fold change for each
transcript.

Results
A large fraction of expressed lncRNAs are associated with
ribosomes
To identify ribosome-associated lncRNAs in each dataset,
we first calculated the ribosome density (i.e., the num-
ber of ribosomes per unit length of transcript) for each
lncRNA and further derived the empirical distribution of
ribosome density values from 3′ UTRs. Then we adopted
a cut-off value at the 90th percentile of the ribosome
density values for 3′ UTRs. The rationale for choosing
this cut-off value is that it guarantees that the majority
(i.e., > 90%) of mRNAs that are associated with ribo-
somes and produce proteins are identified as expected
[26] (see Fig. 3a and Additional file 9). Finally, a transcript
with ribosome density greater than or equal to the cut-off
value was defined as ribosome-associated and was oth-
erwise defined as ribosome-free. For expressed mRNAs,
an average of 97.36% (94.73–99.51%) and 98.30% (95.99–
99.42%) of them were observed to interact with ribosomes
in human and mouse, respectively. This is in agreement
with the fact that mRNAs serve as protein-coding tran-
scripts associated with ribosomes. Surprisingly, we found
that an average of 39.17% (24.65–59.92%) of human-
expressed lncRNAs and an average of 48.16% (26.04–
70.13%) of mouse-expressed lncRNAs were also associ-
ated with ribosomes (see Fig. 1 and Additional file 10). In
total, 7,153 and 3,577 lncRNAs were identified as asso-
ciated with ribosomes in at least one human and mouse
dataset, respectively. We also determined that riboso-
mal association was more difficult to detect among low-
expression transcripts than among highly expressed ones,
but this was not observed among all datasets (see Fig. 3b
and Additional file 9). Despite the differences between
the experiment samples, which may affect the expression
level and the ribosomal association of lncRNAs, a substan-
tial fraction of lncRNAs were observed to interact with
ribosomes over all human and mouse ribosome profiling
experiments.

Analysis of the coding potential for ribosome-associated
lncRNAs based on Ribo-seq
To further examine whether the ribosome-associated
lncRNAs encode peptides, we first defined the putative
lncRNA ORFs (see “Methods”), and then assessed the
coding potential of their putative ORFs based on the fol-
lowing considerable characteristics for translating ORFs.
(i) FLOSS (fragment length organization similarity score)
was used to compare the length distributions of foot-
prints from CDSs with the surveyed lncRNAs; (ii) RRS
(ribosome release score) was used to measure the drop
signal of footprints at the translation termination sites;
(iii) Framescore, which was developed in this study, was
used to measure the three-nucleotide periodicity. Note
that such characteristics are measured by analyzing Ribo-
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Fig. 3 The discrimination of ribosome-associated and ribosome-free lncRNAs by ribosome density in the HeLa dataset. a Kernel density distribution
of ribosome density (log2 scale) for 3′UTRs (gray), CDSs (blue), and lncRNAs (red). The vertical dashed line corresponds to the 90th percentile of the
ribosome density scores for 3′ UTRs, which is used as the cut-off to distinguish between ribosome-associated lncRNAs and ribosome-free lncRNAs.
Those lncRNAs to the right of this cut-off (including the cut-off itself) are identified as ribosome-associated lncRNAs; the rest are ribosome-free in
this study. Note that transcripts or regions without any mapped Ribo-seq read correspond to a peak near -33 (owing to the addition of a pseudo
value of 10e-10 prior to log transformation). b Violin plot of the expression levels (RPKM, log2 scale) of mRNAs as well as ribo-associated and free
lncRNAs. The p-values correspond to two-sample t-tests. c Classification of lncRNAs by using FLOSS, RRS, and Framescore as filters to assess the
coding potential for each ribosome-associated lncRNA. “F” means ribosome-free, “A0” means no coding filter has been passed, “A1”, “A2”, and “A3”
denote that one, two, and three passed translation filter(s), respectively. (See Additional file 9 for the other datasets)

seq reads across a given transcript (see “Methods” for
detailed description of FLOSS, RRS, and Framescore).
The above three different coding metrics were cal-

culated after removing footprints corresponding to
contaminants. To filter footprints from among poten-
tial nonribosomal RNA–protein complexes, we first
compared Ribo-seq reads from lncRNAs to those from
mRNAs and found that reads of a specific length were
enriched among lncRNAs (see Additional file 11). By
identifying the sequences that were most frequently
observed in these enriched reads from the full transcripts,
we found that Ribo-seq reads may also be obtained
from snRNAs, snoRNAs, and miRNAs. This finding is
consistent with previous observations [35]. To integrate
these three coding metrics to more stringently assess the
ability of each ribosome-associated lncRNA to encode a
peptide, we first generated cut-offs from mRNAs based
on these three metrics and then applied these cut-offs
to filter lncRNAs. Figure 4b and Additional file 12 show
the distribution of FLOSS, RRS, and Framescore val-
ues among mRNAs as well as ribosome-associated and
ribosome-free lncRNAs. Based on these three coding
metrics, mRNAs consistently have the strongest coding
abilities. Conversely, both the ribosome-associated and
ribosome-free lncRNAs showed weak coding potential.

Note that there is still a tendency toward higher cod-
ing scores for ribosome-associated lncRNAs relative to
ribosome-free lncRNAs across all datasets, suggesting
that some of the ribosome-associated lncRNAs may even
encode peptides. Figure 4a (see Additional file 12 for
other datasets) indicates how many of the putative ORFs
in ribosome-associated lncRNAs pass the cut-offs for
those three coding scores (FLOSS, RRS, and Framescore).
In HeLa cells, for example, we observed 275 putative
ORFs that passed those three coding filters, implying that
translation of these putative ORFs may occur.
For convenience, we label the translation of a lncRNA

containing an ORF that passed 0–3 coding filters as
“A0”–“A3”. When there are multiple ORFs in a lncRNA,
we chose the one with the highest number of coding
filters it passed. Finally, we obtained a preliminary clas-
sification of lncRNAs in each dataset. Figure 3c shows
that 5215 lncRNAs are expressed in HeLa cells, of which
3238 are classified as ribosome-free, while the rest are
classified as ribosome-associated. Furthermore, among
the ribosome-associated lncRNAs, 978 were classified as
“A0,” which means we have no evidence of translation
events on these lncRNAs, while 165 were classified as “A3,”
which indicates that at least one putative ORF has passed
all three coding filters (FLOSS, RRS, and Framescore)
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Fig. 4 Analysis of coding potential by using FLOSS, RRS, and Framescore on the HeLa dataset. a Venn diagram of putative ORFs in
ribosome-associated lncRNAs evaluated by three coding filters (FLOSS, RRS, and Framescore). b Comparisons of the coding potential among CDSs
(blue) and putative ORFs of ribosome-associated (red) or ribosome-free lncRNAs (green) for FLOSS, RRS, and Framescore, respectively. Based on
these three coding metrics, we generated three cut-offs (the 10th percentiles represented as horizontal dashed lines) from CDSs to independently
filter translation events for lncRNAs. For a coding filter of FLOSS, RRS, or Framescore, lncRNAs above the corresponding cut-off values (including the
cut-off values) are identified as putatively translated lncRNAs according to this coding filter. (See Additional file 12 for the other datasets)

and means that credible translation of them may be
happening.

Identification of trans-lncRNAs, ribo-lncRNAs and
noribo-lncRNAs across multiple datasets
As a measure of the reliability of ribosomal associations
for a particular lncRNA, we developed RAI * (1 - spec)
to assess the integrated confidence of specific ribosomal
associations across multiple pieces of experimental evi-
dence. Here, RAI is a metric that measures ribosomal
association across datasets in which the target lncRNA
was expressed; spec is a metric for transcript expres-
sion specificity. We used a binary value to represent the
ribosome density for a lncRNA in each experiment, as
the ribosome density is normalized to transcript abun-
dance in each dataset, which complicates the use of ribo-
some density across different datasets directly. A lncRNA
with an RAI * (1 - spec) value of 1 indicates that the
transcript consistently interacts with ribosomes among
multiple datasets, and an RAI * (1 - spec) value of -
1 denotes that this transcript is highly dissociated from
ribosomes. (See “Methods” for the detailed definition of
RAI * (1 - spec).) Additional file 8 lists the RAI * (1 - spec)
values of all lncRNAs in the human and mouse datasets,
respectively. As shown in Fig. 5a and 5d, we also used two
threshold values—a low threshold at the 5th percentile
and a high threshold at the 95th percentile—to determine
high confident ribosome-free lncRNAs (termed “noribo-
lncRNAs”) and ribosome-associated lncRNAs (termed
“ribo-lncRNAs”). A lncRNA was classified as a noribo-
lncRNA when its RAI * (1 - spec) value fell below the
lower threshold and as a ribo-lncRNA when its RAI
* (1 - spec) value exceeded the upper threshold. It is
worth noting that the terms “ribosome-associated lncR-
NAs” and “ribosome-free lncRNAs” mentioned above

are particularly used to categorize lncRNAs in a single
dataset, whereas the terms “ribo-lncRNAs” and “noribo-
lncRNAs” are defined across multiple datasets.
Furthermore, for ribo-lncRNAs that were widely

expressed and commonly associated with ribosomes
across multiple tissues or cell types, we determined if
there are lncRNAs that can be translated. We presented
the translation score (TS), a weighted sum function of
translation events (A0∼A3), to evaluate the coding capac-
ity for each ribo-lncRNA. The TS value for a lncRNA
is expected to be positively related to the likelihood
of this lncRNA contains an ORF encoding a peptide.
We separated ribo-lncRNAs within the top 5% of TS
values as putatively translated lncRNAs (termed “trans-
lncRNAs”). (See Figs. 5b and 5e.) Overall, 746 noribo-
lncRNAs, 613 ribo-lncRNAs, and 78 trans-lncRNAs in
human (326 noribo-lncRNAs, 367 ribo-lncRNAs, and 42
trans-lncRNAs inmouse) were identified in this study (see
Additional file 8 for the complete list of trans-lncRNAs,
ribo-lncRNAs, and noribo-lncRNAs).
Footprint alignments, which were used to distinguish

between ribosome-associated and ribosome-free lncR-
NAs, are more likely to occur on a longer transcript
sequence. Thus, the first step is to evaluate the effect of
transcript length on the RAI * (1 - spec) metric. We com-
pared the transcript length among the trans-lncRNAs,
ribo-lncRNAs, and noribo-lncRNAs (see Fig. 5c and 5f).
Although we observed that the ribo-lncRNAs tended to
be longer than noribo-lncRNAs in the human datasets
(p < 0.05), we also found the opposite result in the
mouse datasets (p < 0.01), which suggests that tran-
script length may not the dominant factor affecting the
ribosomal association of lncRNAs. We also observed that,
on average, the trans-lncRNAs were the longest in both
human and mouse, suggesting transcript length is one of
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Fig. 5 Classification of trans-lncRNAs, ribo-lncRNAs, and noribo-lncRNAs. a The kernel density of the RAI * (1 - spec) scores for human lncRNAs. Two
vertical dashed lines represent the 5th percentile (left, upper bound for the reliable ribosome-free lncRNAs, termed “noribo-lncRNAs (green)”) and
the 95th percentile (right, lower bound for the reliable ribosome-associated lncRNAs (orange) for further classification) of the RAI * (1 - spec) scores.
b The kernel density of the TS scores for human ribosome-associated lncRNAs identified in a. Top 5% of lncRNAs were classified as “trans-lncRNAs
(red)” suggesting that stable translation events are likely to occur among them. The remaining lncRNAs were finally classified as “ribo-lncRNA
(orange)” indicating that there is an interaction with ribosomes in this part of lncRNAs, but no strong translation activity was observed. c Comparisons
among trans-lncRNAs, ribo-lncRNAs, and noribo-lncRNAs for their transcript lengths in human. d–f show the results for mouse; p-values in c and f
were calculated using two-sample t-tests

the important features that determines whether a tran-
script can encode a peptide.

Exploring the biological characteristics of
ribosome-associated lncRNAs
Next, we investigated the biological characteristics of
ribosome-associated lncRNAs to determine their cod-
ing potential, sensitivity to nonsense-mediated decay, and
cellular localization.

Coding potential
To investigate whether the trans-lncRNAs detected in
this study are consistent with mass spectrometry data,
we aligned peptide sequences that were transformed
from mass spectrometry data to lncRNAs. As expected,
the lncRNAs with mappable peptides were significantly
enriched among the trans-lncRNAs and ribo-lncRNAs
for human and mouse (all p < 0.001, see Table 2).
In particular, the trans-lncRNAs were associated with
the highest odds ratios (8.28 and 23.03 for human and
mouse, respectively), which indicates that trans-lncRNAs
have the highest potential for coding peptides. Figure 6
shows the footprint coverage, peptide alignment, and
sequence conversation (phyloP score) for trans-lncRNA
ENSMUST00000201653.1_CCT6A-003. For the footprint
coverage, a colored region indicates the putative ORF

predicted in this lncRNA. The peptide sequences trans-
formed from the mass spectrometry data are consis-
tently mapped onto this putative ORF. Also, we observed
positive phyloP scores for the putative ORF, which indi-
cates that this putative ORF sequence is evolutionarily
conserved. Both metrics supported the hypothesis that
the trans-lncRNA can encode peptides (see Additional
files 13, 14, 15 and 16 for the details of other putative
ORFs).

Cellular localization
We sought to examine whether the ribosome-associated
lncRNAs are enriched in the cytoplasm where the ribo-
somes are located. Here, we used expression fold change,
which compared the abundance of lncRNAs from the
nuclear or the cytoplasmic fraction, to quantify the sub-
cellular localization in HeLa cells (see “Methods” for
details for generating the fold changes). Figure 7a indi-
cates the kernel density of expression fold changes from
the cytoplasmic fractions to the nuclear fractions for
either ribosome-associated and ribosome-free lncRNAs.
As expected, both the ribosome-associated lncRNAs and
the ribosome-free lncRNAs were more likely to exist
in the nucleus (mean = 2.19 and 1.12 for ribosome-
free lncRNAs and ribosome-associated lncRNAs, respec-
tively). However, if compared with the ribosome-free
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Table 2 Long non-coding RNAs supported by mass spectrometry data

Human Mouse

Total MS supported (odds ratio) Total MS supported (odds ratio)

Trans-lncRNA 78 ***5 (8.28) 42 ***7 (23.03)

Ribo-lncRNA 613 ***18 (4.16) 367 ***10 (3.82)

Noribo-lncRNA 746 2 (0.32) 326 2 (0.73)

Other 12209 85 (0.40) 5525 33 (0.23)

Total 13646 110 6260 52

(One-sided Fisher’s exact test) ***p < 0.001

lncRNAs, the ribosome-associated lncRNAs have a
significant tendency to be present in the cytoplasm
(p < 0.001).

Sensitivity to nonsense-mediated decay
To test whether the ribo-lncRNAs are associated with
nonsense-mediated decay (NMD), we investigated the dif-
ferences in expression levels of various RNA populations
in the presence (control) or absence (UPF1_KD) of NMD
(see “Methods” for details to generate the fold change
values). In HeLa cells, Fig. 7b is the kernel density of
expression fold changes from the control samples to UPF1
knockdown samples for either ribosome-associated or
ribosome-free lncRNAs. In our observations, the expres-
sion level of ribosome-free lncRNAs was not affected

by NMD (mean = 0.07). Interestingly, we found the
expression level of ribosome-associated lncRNAs were
significantly sensitive toNMDcompared to ribosome-free
lncRNAs (mean = 0.46, p < 0.001).

Discussion
We emphasize that the term ribosomal association in
this study refers to the ribosome translating or bind-
ing of a transcript, as ribosomes not only translate pro-
teins but may also carry out other unclear functions
by interacting with transcripts. To our knowledge, this
is the first comprehensive study of ribosome–lncRNA
interactions across multiple ribosome-profiling experi-
ments in mammals, and it has several differences from
previous studies: (i) more lncRNAs, including lincRNAs

Fig. 6Overlapping of ribosome footprint coverage, mass spectrometry data, and sequence conservation (phyloP score) across mouse lncRNA CCT6A.
Top eight panels indicate the ribosome coverage (arbitrary unit) across the CCT6A-003 transcript, where the colored region represents a putatively
translated ORF identified by applying three coding metrics (FLOSS, RRS, and Framescore). Orange and red regions indicate this putative ORF has
passed two and three coding filters, respectively. The MS data panel shows the overlapping of peptides transformed from mass spectrometry
data in this transcript. The phyloP panel shows the base-wise conservation scores with positive values (blue) meaning slower evolution than
expected, and negative values (gray) suggesting faster evolution than expected
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Fig. 7 Comparisons between ribosome-associated lncRNAs and ribosome-free lncRNAs in HeLa cells (a) Cellular localization analysis. The fold
changes of expression values were calculated between the nuclear and the cytoplasmic compartments to quantify the localization. (See Additional
file 18 for the raw data used to generate this kernel density plot.) (b) Nonsense mediated decay (NMD) analysis. As UPF1 is an important NMD factor,
we can use the fold changes of expression values between samples from a UPF1 knockdown and control to express NMD sensitivity. (See Additional
file 19 for the raw data used to generate this kernel density plot.) The corresponding mean values are shown by vertical dashed lines; p-values were
calculated using Welch’s t-test

(long intergenic RNAs), were examined; (ii) a main focus
on human and mouse because of the well-annotated
lncRNAs for these two species; (iii) the use of the
ribosome density metric and the cut-off value derived
from 3′ UTRs to detect ribosomal associations of lncR-
NAs, which thus obtained robust detection rates of
ribosome-associated lncRNAs over multiple independent
datasets. We developed a novel tool, RAI * (1 - spec), to
measure ribosomal association from multiple ribosome-
profiling experiments. By using the RAI * (1 - spec) met-
ric, we determined high-confidence ribosome-associated
lncRNAs (ribo-lncRNAs) and ribosome-free lncRNAs
(noribo-lncRNAs) and investigated the biological charac-
teristics of ribosome-associated and ribosome-free lncR-
NAs involving coding potential, cellular localization, and
NMD sensitivity.
Processed transcripts and retained introns were

observed to prefer to associate with ribosomes, which
suggests these two biotypes of lncRNAs are related to
either protein-coding or ribosome-mediated regulation.

For example, SEC22B has two transcript variants in
the human genome, both of which were annotated as
“processed transcript that does not contain an ORF” in
GENCODE v25lift37(release 25 mapped to GRCh37).
However, they had high RAI * (1 - spec) scores (both
are 1, see Fig. 2 and Additional file 8), indicating their
strong association with ribosomes. Moreover, we also
observed a high translation score for SEC22B-001 (TS
= 9.5), which indicates there is credible translation
activity on this transcript. Strikingly, we found that
SEC22B was removed from lncRNA category and anno-
tated as a “protein coding” transcript in human genome
h19 (GRCh38). Indeed, compared to ribosome-free
lncRNAs, ribosome-associated lncRNAs have a higher
protein-coding potential in the light of three variant
coding metrics—FLOSS, RRS, and Framescore (see
Fig. 4b and Additional file 12). This particular case of
SEC22B suggests that some lncRNAs with high RAI * (1
- spec) and TS values could be protein/peptide coding
transcripts. It seems plausible to use the RAI * (1 - spec)
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and TS in combination to examine the coding capacity
of lncRNAs.
Most snoRNAs are located in introns of ribosomal

protein genes and of genes encoding translation fac-
tors or nucleolar proteins. However, several noncoding
genes are also reported as hosts for small nucleolar RNA
(snoRNA) expression. Notably, as shown in Additional
file 17, we observed snoRNA host gene-derived lncRNAs
enriched in both trans-lncRNAs and ribo-lncRNAs, sug-
gesting their interaction with ribosomes, which is consis-
tent with previous studies [8, 36–38]. One possible reason
for their association with ribosomes is that such lncRNAs
are by-products of snoRNA production and are targeted
to ribosomes, thus triggering the nonsense-mediated
decay (NMD) pathway. Host gene-derived lncRNAs were
reported to be sensitive to NMD [37], which provides
indirect support of this hypothesis. In particular, GAS5
(growth arrest-specific 5) and ZFAS1 (ZNFX1 Antisense
RNA 1), which were revealed by ribosomal association
analysis in this study, have been reported to be associ-
ated with distinct biological functions. The GAS5 lncRNA
sequence was determined to control transcriptional activ-
ity of apoptosis-related genes, while the NMD pathway
appears to regulate the abundance of GAS5 transcripts
[38]. The ZFAS1 lncRNA sequence was primarily iden-
tified to interact with the 40S ribosome subunit and
reported to affect ribosomal protein modification [39].
The ZFAS1–ribosome interaction was also conserved in
mouse (see Additional file 8), which suggests that the
lncRNA may play a role in targeting the ribosome.
For lncRNAs, the dissociation of ribosomes illumi-

nates lncRNA localization and functional studies. NEAT1
(nuclear enriched abundant transcript 1) is known to
be a nuclear-enriched lncRNA. NEAT1 has been found
to function as an important structural determinant of
nuclear paraspeckles [40], which corresponds to the
apparent ribosome-free NEAT1 (RAI *(1 - spec) = -0.8).
TUG1 (taurine up-regulated gene 1) is a PRC2 (poly-
comb repressive complex 2)-associated lncRNA involved
in cell-cycle regulation [41]. The longest transcript vari-
ant of TUG1 was highly ribosome-free (RAI * (1 -
spec) = -1)). A TUG1 transcript variant of the human
(ENST00000569149, RAI * (1 - spec) = 0.2)) and two tran-
script variants of the mouse (ENSMUST00000193809 and
ENSMUST00000132077 with RAI * (1 - spec) = 1 and -1,
respectively), on the contrary, displayed entirely dif-
ferent ribosomal association characteristics. This is
also consistent with the finding that a unique pep-
tide maps to TUG1 [42]. We, therefore, concluded
that different transcript variants of lncRNAs act with
different ribosome-associated properties, which may
suggest a new functional class of lncRNAs regu-
lated by alternative splicing coupled with ribosome
targeting.

Conclusions
In this study, we applied ribosome profiling data to iden-
tify interactions between lncRNAs and ribosomes. To
our knowledge, this is the first report showing that a
large fraction of lncRNAs–ribosome interactions over
multiple independent studies are consistent and reli-
able in human and mouse. We developed the riboso-
mal association index (RAI) and used it with transcript
expression specificity (spec) to measure the degree of
reliability of lncRNA-ribosome interactions across multi-
ple datasets. Furthermore, we used three different cod-
ing metrics (FLOSS, RRS, and Framescore) to assess
the coding potential for ribosome-associated lncRNAs.
LncRNAs detected to associate with ribosomes were
observed to be more likely to be located in the cyto-
plasm and be more sensitive to NMD compared to
ribosome-free lncRNAs. We also noticed that many
ribosome-associated lncRNAs are tissue- or splicing-
specific, which suggests these lncRNAs may target ribo-
somes under specific conditions to perform certain spe-
cial functions. An interesting goal for future research
is determining the biological mechanism underlying the
condition-specific ribosomal association for lncRNAs.
Future research may also identify the genomic charac-
teristics of ribosome-associated lncRNAs and develop
a method for distinguishing ribosome-associated lncR-
NAs from other RNA species. The complete list of
ribosome associations of known lncRNAs in human
and mouse are available online, from Additional file 8,
which will be a useful resource for functional lncRNA
studies.

Additional files

Additional file 1: Table S1. Ribosome profiling datasets used in this
study (human). (DOCX 287 kb)

Additional file 2: Table S2. Ribosome profiling datasets used in this
study (mouse). (DOCX 288 kb)

Additional file 3: Table S6.Mapping statistics for RNA-seq and Ribo-seq
reads. (XLSX 51.4 kb)

Additional file 4: Figure S1. Frequency distributions of Ribo-seq read
lengths across CDSs, 5′/3′UTRs, and lncRNAs (human). (PDF 8253.44 kb)

Additional file 5: Figure S2. Frequency distributions of Ribo-seq read
lengths across CDSs, 5′/3′UTRs, and lncRNAs (mouse). (PDF 10956.8 kb)

Additional file 6: Table S3. Genomic sequences, gene annotations, and
contaminant sequences for human and mouse. (DOCX 279 kb)

Additional file 7: Table S4. Software and parameters used in this study.
(DOCX 278 kb)

Additional file 8: Table S8. Ribosome association for human and mouse
lncRNAs. (XLSX 1515.52 kb)

Additional file 9: Figure S3. The discrimination of ribosome-associated
and ribosome-free lncRNAs by ribosome density in all selected datasets.
(PDF 1146.88 kb)

Additional file 10: Table S7. Analysis of ribosomal associations of mRNAs
and lncRNAs. (XLSX 46.7 kb)

https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z


Zeng et al. BMC Genomics  (2018) 19:414 Page 13 of 14

Additional file 11: Table S5. Contaminant Ribo-seq reads derived from
miRNAs, snRNAs, and snoRNAs are enriched in lncRNAs. (DOCX 280 kb)

Additional file 12: Figure S4. Analysis of coding potential by using
FLOSS, RRS, and Framescore in all selected datasets. (PDF 1771.52 kb)

Additional file 13: Table S9. Alignment of mass spectrometry data to
human trans-lncRNAs. (TSV 9.83 kb)

Additional file 14: Table S10. Alignment of mass spectrometry data to
mouse trans-lncRNAs. (TSV 5.97 kb)

Additional file 15: Table S14. Putative ORFs in human lncRNAs.
(TSV 7987.2 kb)

Additional file 16: Table S15. Putative ORFs in mouse lncRNAs.
(TSV 5478.4 kb)

Additional file 17: Table S13. LncRNAs derived from snoRNA host genes
are enriched in trans-lncRNAs and ribo-lncRNAs. (PDF 55.9 kb)

Additional file 18: Table S11. Fold change values for cellular localization
analysis in HeLa cells. (XLSX 154 kb)

Additional file 19: Table S12. Fold change values for NMD analysis in
HeLa cells. (XLSX 147 kb)

Abbreviations
CDS: Coding sequence; FLOSS: Fragment length organization similarity score;
lincRNA: Long intergenic noncoding RNA; lncRNA: Long noncoding RNA;
miRNA: microRNA; NMD: Nonsense-mediated decay; ORF: Open reading
frame; RAI: Ribosomal association index; Ribo-seq: Ribosome profiling;
RNA-seq: RNA sequencing; RPKM: Reads per kilobase per total million mapped
reads; RRS: Ribosome release score; snoRNA: Small nucleolar RNA; snRNA:
Small nuclear RNA; spec: Transcript expression tissue-specificity; TEC: To be
experimentally confirmed; TS: Translation score; UTR: Untranslated region

Acknowledgements
CZ and MH are grateful to Kiyoshi Asai, Junichi Iwakiri, Anish Man Singh
Shrestha, Martin Frith, Yutaka Saito, Shintaro Iwasaki, Nobuyoshi Akimitsu,
Masahiro Onoguchi, Hisanori Kiryu, Wataru Iwasaki, Tetsuo Shibuya, and Riu
Yamashita for valuable discussions. The computations in this research were
performed using the supercomputing facilities at the National Institute of
Genetics in Research Organization of Information and Systems.

Funding
This work was supported by the Ministry of Education, Culture, Sports, Science
and Technology (KAKENHI) [grant numbers JP17K20032, JP16H05879,
JP16H01318, and JP16H02484 to MH].

Availability of data andmaterials
The datasets and materials supporting the findings of this article are included
within Additional files 1–2.

Authors’ contributions
MH conceived and supervised this study. CZ developed analysis systems and
performed all the experiments. CZ, TF, and MH contributed to analysis and
interpretation of the data. CZ wrote the draft, MH and TF revised it critically. All
authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1AIST-Waseda University Computational Bio Big-Data Open Innovation
Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, 169-8555 Tokyo, Japan.
2Department of Electrical Engineering and Bioscience, Faculty of Science and
Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku,

169-8555 Tokyo, Japan. 3Artificial Intelligence Research Center, National
Institute of Advanced Industrial Science and Technology (AIST), 2-41-6 Aomi,
Koto-ku, 135-0064 Tokyo, Japan. 4Institute for Medical-oriented Structural
Biology, Waseda University, 2-2, Wakamatsu-cho Shinjuku-ku, 162-8480 Tokyo,
Japan. 5Graduate School of Medicine, Nippon Medical School, 1-1-5, Sendagi,
Bunkyo-ku, 113-8602 Tokyo, Japan.

Received: 13 December 2017 Accepted: 7 May 2018

References
1. Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y, Barrette TR,

Prensner JR, Evans JR, Zhao S, Poliakov A, Cao X, Dhanasekaran SM,
Wu Y-M, Robinson DR, Beer DG, Feng FY, Iyer HK, Chinnaiyan AM. The
landscape of long noncoding RNAs in the human transcriptome. Nat
Genet. 2015;47(3):199–208.

2. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,
Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V,
Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G,
Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J,
Walters N, Balasubramanian S, Pei B, Tress M, Rodriguez JM, Ezkurdia I,
van Baren J, Brent M, Haussler D, Kellis M, Valencia A, Reymond A,
Gerstein M, Guigó R, Hubbard T. GENCODE: the reference human
genome annotation for the ENCODE project. Genome Res. 2012;22(9):
1760–74.

3. Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J,
Denisenko E, Schmeier S, Poulsen TM, Severin J, Lizio M, Kawaji H,
Kasukawa T, Itoh M, Burroughs AM, Noma S, Djebali S, Alam T,
Medvedeva YA, Testa AC, Lipovich L, Yip C-W, Abugessaisa I, Mendez M,
Hasegawa A, Tang D, Lassmann T, Heutink P, Babina M, Wells CA,
Kojima S, Nakamura Y, Suzuki H, Daub CO, de Hoon MJL, Arner E,
Hayashizaki Y, Carninci P, Forrest ARR. An atlas of human long
non-coding RNAs with accurate 5’ ends. Nature. 2017;543(7644):199–204.

4. Ma L, Li A, Zou D, Xu X, Xia L, Yu J, Bajic VB, Zhang Z. LncRNAWiki:
harnessing community knowledge in collaborative curation of human
long non-coding RNAs. Nucleic Acids Res. 2015;43(Database issue):
187–92.

5. Baker M. Long noncoding RNAs: the search for function. Nat Methods.
2011;8(5):379–83.

6. Iwakiri J, Hamada M, Asai K. Bioinformatics tools for lncRNA research.
Biochim Biophys Acta. 2016;1859(1):23–30.

7. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS.
Genome-wide analysis in vivo of translation with nucleotide resolution
using ribosome profiling. Science. 2009;324(5924):218–23.

8. Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse
embryonic stem cells reveals the complexity and dynamics of
mammalian proteomes. Cell. 2011;147(4):789–802.

9. Zhou P, Zhang Y, Ma Q, Gu F, Day DS, He A, Zhou B, Li J, Stevens SM,
Romo D, Pu WT. Interrogating translational efficiency and
lineage-specific transcriptomes using ribosome affinity purification. Proc
Natl Acad Sci USA. 2013;110(38):15395–400.

10. Aspden JL, Eyre-Walker YC, Phillips RJ, Amin U, Mumtaz MAS, Brocard M,
Couso J-P. Extensive translation of small open reading frames revealed by
Poly-Ribo-Seq. Elife. 2014;3:03528.

11. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome
profiling provides evidence that large noncoding RNAs do not encode
proteins. Cell. 2013;154(1):240–51.

12. Wang H, Wang Y, Xie S, Liu Y, Xie Z. Global and cell-type specific
properties of lincRNAs with ribosome occupancy. Nucleic Acids Res.
2017;45(5):2786–96.

13. Pircher A, Bakowska-Zywicka K, Schneider L, Zywicki M, Polacek N. An
mRNA-derived noncoding RNA targets and regulates the ribosome. Mol
Cell. 2014;54(1):147–55.

14. Ruiz-Orera J, Messeguer X, Subirana JA, Alba MM. Long non-coding
RNAs as a source of new peptides. Elife. 2014;3:03523.

15. Dallagiovanna B, Pereira IT, Origa-Alves AC, Shigunov P, Naya H,
Spangenberg L. lncRNAs are associated with polysomes during
adipose-derived stem cell differentiation. Gene. 2017;610:103–11.

16. Essers PB, Nonnekens J, Goos YJ, Betist MC, Viester MD, Mossink B,
Lansu N, Korswagen HC, Jelier R, Brenkman AB, MacInnes AW. A long
noncoding RNA on the ribosome is required for lifespan extension. Cell
Rep. 2015;10(3):339–45.

https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z
https://doi.org/10.1186/s12864-018-4765-z


Zeng et al. BMC Genomics  (2018) 19:414 Page 14 of 14

17. Carlevaro-Fita J, Rahim A, Guigó R, Vardy LA, Johnson R. Cytoplasmic
long noncoding RNAs are frequently bound to and degraded at
ribosomes in human cells. RNA. 2016;22(6):867–82.

18. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res.
2002;30(1):207–10.

19. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2.
Nat Methods. 2012;9(4):357–9.

20. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnet.journal. 2011;17(1):10–12.

21. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. BMC Bioinformatics.
2011;12:323.

22. Hebenstreit D, Fang M, Gu M, Charoensawan V, van Oudenaarden A,
Teichmann SA. RNA sequencing reveals two major classes of gene
expression levels in metazoan cells. Mol Syst Biol. 2011;7:497.

23. Wagner GP, Kin K, Lynch VJ. A model based criterion for gene expression
calls using RNA-seq data. Theory Biosci. 2013;132(3):159–64.

24. Kryuchkova-Mostacci N, Robinson-Rechavi M. A benchmark of gene
expression tissue-specificity metrics. Brief Bioinform. 2017;18(2):205–14.

25. Guydosh NR, Green R. Dom34 rescues ribosomes in 3’ untranslated
regions. Cell. 2014;156(5):950–62.

26. Savage N. Proteomics: High-protein research. Nature. 2015;527(7576):6–7.
27. Ingolia NT, Brar GA, Stern-Ginossar N, Harris MS, Talhouarne GJS,

Jackson SE, Wills MR, Weissman JS. Ribosome profiling reveals pervasive
translation outside of annotated protein-coding genes. Cell Rep.
2014;8(5):1365–79.

28. Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B,
Fleming ES, Vejnar CE, Lee MT, Rajewsky N, Walther TC, Giraldez AJ.
Identification of small ORFs in vertebrates using ribosome footprinting
and evolutionary conservation. EMBO J. 2014;33(9):981–93.

29. Olexiouk V, Van Criekinge W, Menschaert G. An update on sORFs.org: a
repository of small ORFs identified by ribosome profiling. Nucleic Acids
Res. 2017;46(D1):D497–502.

30. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 1997;25(17):3389–402.

31. Colombo M, Karousis ED, Bourquin J, Bruggmann R, Mühlemann O.
Transcriptome-wide identification of NMD-targeted human mRNAs
reveals extensive redundancy between SMG6- and SMG7-mediated
degradation pathways. RNA. 2017;23(2):189–201.

32. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A,
Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J,
Williams BA, Zaleski C, Rozowsky J, Röder M., Kokocinski F,
Abdelhamid RF, Alioto T, Antoshechkin I, Baer MT, Bar NS, Batut P,
Bell K, Bell I, Chakrabortty S, Chen X, Chrast J, Curado J, Derrien T,
Drenkow J, Dumais E, Dumais J, Duttagupta R, Falconnet E, Fastuca M,
Fejes-Toth K, Ferreira P, Foissac S, Fullwood MJ, Gao H, Gonzalez D,
Gordon A, Gunawardena H, Howald C, Jha S, Johnson R, Kapranov P,
King B, Kingswood C, Luo OJ, Park E, Persaud K, Preall JB, Ribeca P,
Risk B, Robyr D, Sammeth M, Schaffer L, See L-H, Shahab A, Skancke J,
Suzuki AM, Takahashi H, Tilgner H, Trout D, Walters N, Wang H,
Wrobel J, Yu Y, Ruan X, Hayashizaki Y, Harrow J, Gerstein M, Hubbard T,
Reymond A, Antonarakis SE, Hannon G, Giddings MC, Ruan Y, Wold B,
Carninci P, Guigó R, Gingeras TR. Landscape of transcription in human
cells. Nature. 2012;489(7414):101–8.

33. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and
memory-efficient alignment of short DNA sequences to the human
genome. Genome Biol. 2009;10(3):25.

34. Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BMG,
Haag JD, Gould MN, Stewart RM, Kendziorski C. EBSeq: an empirical
bayes hierarchical model for inference in RNA-seq experiments.
Bioinformatics. 2013;29(8):1035–43.

35. Ji Z, Song R, Huang H, Regev A, Struhl K. Transcriptome-scale
RNase-footprinting of RNA-protein complexes. Nat Biotechnol.
2016;34(4):410–3.

36. Makarova JA, Kramerov DA. Noncoding RNA of U87 host gene is
associated with ribosomes and is relatively resistant to
nonsense-mediated decay. Gene. 2005;363:51–60.

37. Lykke-Andersen S, Chen Y, Ardal BR, Lilje B, Waage J, Sandelin A,
Jensen TH. Human nonsense-mediated RNA decay initiates widely by

endonucleolysis and targets snoRNA host genes. Genes Dev. 2014;28(22):
2498–517.

38. Tani H, Torimura M, Akimitsu N. The RNA degradation pathway regulates
the function of GAS5 a non-coding RNA in mammalian cells. PLoS ONE.
2013;8(1):55684.

39. Hansji H, Leung EY, Baguley BC, Finlay GJ, Cameron-Smith D,
Figueiredo VC, Askarian-Amiri ME. ZFAS1: a long noncoding RNA
associated with ribosomes in breast cancer cells. Biol Direct. 2016;11(1):62.

40. Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A,
Lawrence JB. An architectural role for a nuclear noncoding RNA: NEAT1
RNA is essential for the structure of paraspeckles. Mol Cell. 2009;33(6):
717–26.

41. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D,
Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A,
Lander ES, Rinn JL. Many human large intergenic noncoding RNAs
associate with chromatin-modifying complexes and affect gene
expression. Proc Natl Acad Sci USA. 2009;106(28):11667–72.

42. Gascoigne DK, Cheetham SW, Cattenoz PB, Clark MB, Amaral PP, Taft RJ,
Wilhelm D, Dinger ME, Mattick JS. Pinstripe: a suite of programs for
integrating transcriptomic and proteomic datasets identifies novel
proteins and improves differentiation of protein-coding and non-coding
genes. Bioinformatics. 2012;28(23):3042–50.


	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Methods
	Data collection
	Transcriptome
	Alignment and quantification
	Expressed transcripts and tissue specificity
	Ribosome density to distinguish ribosome-associated and ribosome-free lncRNAs in a single dataset
	Ribosomal association index (RAI) defines ribo-lncRNAs and noribo-lncRNAs across multiple datasets
	The putative ORF in lncRNAs
	Coding potential assessment
	Fragment length organization similarity score
	Ribosome release score
	Framescore
	Translation score

	Mass spectrometry data
	Sequence conservation
	Nonsense-mediated decay (NMD) and cellular localization analysis

	Results
	A large fraction of expressed lncRNAs are associated with ribosomes
	Analysis of the coding potential for ribosome-associated lncRNAs based on Ribo-seq
	Identification of trans-lncRNAs, ribo-lncRNAs and noribo-lncRNAs across multiple datasets
	Exploring the biological characteristics of ribosome-associated lncRNAs
	Coding potential
	Cellular localization
	Sensitivity to nonsense-mediated decay


	Discussion
	Conclusions
	Additional files
	Additional file 1
	Additional file 2
	Additional file 3
	Additional file 4
	Additional file 5
	Additional file 6
	Additional file 7
	Additional file 8
	Additional file 9
	Additional file 10
	Additional file 11
	Additional file 12
	Additional file 13
	Additional file 14
	Additional file 15
	Additional file 16
	Additional file 17
	Additional file 18
	Additional file 19

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

