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Abstract: Using 84 structurally diverse and experimentally validated LSD1/KDM1A inhibitors, quan-
titative structure–activity relationship (QSAR) models were built by OECD requirements. In the QSAR
analysis, certainly significant and understated pharmacophoric features were identified as critical for LSD1
inhibition, such as a ring Carbon atom with exactly six bonds from a Nitrogen atom, partial charges of
lipophilic atoms within eight bonds from a ring Sulphur atom, a non-ring Oxygen atom exactly nine
bonds from the amide Nitrogen, etc. The genetic algorithm–multi-linear regression (GA-MLR) and double
cross-validation criteria were used to create robust QSAR models with high predictability. In this study,
two QSAR models were developed, with fitting parameters like R2 = 0.83–0.81, F = 61.22–67.96, internal
validation parameters such as Q2

LOO = 0.79–0.77, Q2
LMO = 0.78–0.76, CCCcv = 0.89–0.88, and external

validation parameters such as, R2ext = 0.82 and CCCex = 0.90. In terms of mechanistic interpretation
and statistical analysis, both QSAR models are well-balanced. Furthermore, utilizing the pharmacophoric
features revealed by QSAR modelling, molecular docking experiments corroborated with the most active
compound’s binding to the LSD1 receptor. The docking results are then refined using Molecular dynamic
simulation and MMGBSA analysis. As a consequence, the findings of the study can be used to produce
LSD1/KDM1A inhibitors as anticancer leads.

Keywords: LSD1; KDM1A; QSAR; anticancer; molecular docking; MD simulation; genetic algorithm–
multi linear regression; MMGBSA

1. Introduction

Lysine-specific histone demethylase 1A (LSD1), also known as lysine (K)-specific
demethylase 1A (KDM1A), is a crucial member of the monoamine oxidases family. LSD1
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catalyzes two important and completely opposing enzymatic reactions with flavin adenine
dinucleotide (FDA) as a cofactor: transcription repression via de-methylation at histone
3 lysine 4 methyl 1/2 (H3K4me1/2) and transcription activation via de-methylation at
histone 3 lysine 9 methyl 1/2 (H3K9me1/2) [1]. LSD1 is also involved in the de-methylation
of TP53, E2F1, and DNMT1 [2]. The typical healthy physiological condition is characterized
by regimented epigenetic control of cyclic cellular processes, including rejuvenation, differ-
entiation, and proliferation. LSD1 modulates differentiation and proliferation pathways
in highly proliferative and widely metastatic small-cell lung cancer (SCLC) [3]. LSD1
overexpression is also found in other cancer types, including prostate cancer, breast cancer,
colorectal cancer, and neuroblastoma [1–3].

According to reports, if LSD1 overexpression is reduced in several forms of blood
malignancies (haematological sarcomas) such as leukaemia, multiple myeloma, and solid
tumours, cell differentiation is also reduced. This makes LSD1 an appealing target for
anticancer medication development [1].

There have been several reports of reversible LSD1 inhibitors to date [4]. Sorna et al.
used high-throughput virtual screening to identify reversible LSD1 inhibitors; however,
these drugs appeared to have considerable off-target and nonspecific effects [4,5]. Ma et al.
found several pyrimidine–thiourea hybrids that showed a high sensitivity to LSD1 inhibi-
tion in vitro and in tumour xenografts. [4]. Furthermore, Li et al. developed a series of [1–3]
triazolo [4,5-d] pyrimidine derivatives as selective LSD1 inhibitors, which were reported
to block tumour cell migration [5]. The activity of documented reversible inhibitors, on
the other hand, did not meet the advances of covalent inhibitors, due in part to the huge
size and polarity of the LSD1 substrate binding pocket [6]. Furthermore, the reported com-
pounds’ erroneous binding techniques and the lack of theoretical research motivated us to
hunt for hidden and buried structural features that are required for developing effective,
efficient, and reversible LSD1 inhibitors. This convergence of circumstances encouraged us
to do a computational study on the proven reversible LSD1 inhibitors from the appropriate
database, as well as examine the underlying structural elements influencing the design and
inhibition of potent and effective LSD1 inhibitors.

QSAR is a statistically-based intersectional plan of activities and standardized tech-
nique for identifying the mathematical relationship between the structural property of a
molecule and its biological activity. General QSAR modelling protocol involves: (I) select-
ing a sufficiently abundant, admissible molecular dataset with accurate biological activity;
(II) 3D-structure creation and optimization; (III) molecular descriptor calculation and con-
strained trimming using appropriate statistical methods; (IV) QSAR model development
using an algorithm that fits favourable molecular descriptors; and (V) sufficient valida-
tion of the existing QSAR model (s) [5]. Circumstantial QSAR analysis quantifies the
relationship between conspicuous but seemingly confusing molecule structural features
and their experimentally studied biological activity. Statistical QSAR analysis predicts
the biological activity of a drug prior to wet lab manufacturing and experimental in vivo
testing. A QSAR that is conceptually neutral, illustrative, and statistically enhances phar-
macokinetics knowledge [6,7]. This emphasizes the value of the QSAR study in promoting
lead optimization.

QSAR models for LSD1 inhibitors have been discussed by a number of researchers.
Rahman Abdizadeh et al. developed a 3D QSAR model for the set of tranylcypromine
derivatives as a data set that performed similarly to the CoMFA (q2 = 0.67; r2ncv = 0.93;
r2pred = 0.97), CoMFA-RF (q2 = 0.69; r2ncr = 0.93; r2pred = 0.93), CoMSIA (q2 = 0.83;
r2ncv =0.96; r2pred = 0.96), and HQSAR models (q2 = 0.85; r2ncv,= 0.90; r2pred = 0.73) for
training as well as the test set of LSD1 inhibition. Moreover, the significant gap between
the q2 and the r2 values indicate the overfitting in both the COMFA and CoMSIA models.
However, because of the absence of mechanistic interpretation and atom-by-atom phar-
macophoric features in CoMFA and CoMSIA investigations, their use has been limited
to the optimization of a few pharmacological classes [8]. To date, several LSD1 inhibitors
have been approved, and some of them, including ORY-1001, GSK-2879552, IMG-7289,
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INCB059872, CC-90011, and ORY-2001 (See Figure 1), are currently being studied in clinical
trials for cancer treatment, particularly in small lung cancer cells (SCLC) and acute myeloid
leukaemia (AML) [9].

Molecules 2022, 27, x FOR PEER REVIEW 3 of 30 
 

 

features in CoMFA and CoMSIA investigations, their use has been limited to the optimi-
zation of a few pharmacological classes [8]. To date, several LSD1 inhibitors have been 
approved, and some of them, including ORY-1001, GSK-2879552, IMG-7289, INCB059872, 
CC-90011, and ORY-2001 (See Figure 1), are currently being studied in clinical trials for 
cancer treatment, particularly in small lung cancer cells (SCLC) and acute myeloid leu-
kaemia (AML) [9]. 

 
Figure 1. Presentation of the Structures of some clinical trial molecules. 

A moderate-sized dataset-based QSAR with enough predictive capability and mech-
anistic understanding is clearly useful for boosting lead potency. In this study, we used 
molecular docking, MD simulation, and MMGBSA to create robust QSAR models for 84 
structurally varied molecules with empirically established LSD1 inhibitory efficacy. 

2. Results 
Despite the fact that the current study is based on a moderate size dataset of 85 mol-

ecules, the existence of multiple molecular scaffolds, functional groups, substituents, di-
verse rings viz. non-aromatic, homoaromatic, heteroaromatic, fused rings; spiro com-
pounds, etc., has significantly covered a vast chemical space. The QSAR models devel-
oped are based on a split and entire data set. R2, R2adj, CCCtr, and other fitting metrics 
have values far above the allowed threshold values, indicating that the QSAR models are 
statistically tolerable with the required number of chemical descriptors. Internal valida-
tion parameters include Q2LOO, Q2LMO, and others with values that condescend to give the 
statistical robustness of the QSAR models. The external predictability of both models can 
be seen in the high values of external validation aspects like R2ex and Q2Fn. Model applica-
bility domain is supported by William’s plots (See Figure 2) (Applicability Domain). Ful-
fillment of allowed threshold values for numerous parameters, as well as poor correlation 
among molecular descriptors, rule out the possibility of serendipitous QSAR model con-
struction [10–14] (see Table S2, Supplementary Information). These grounds validate these 
models’ statistical robustness and strong external prediction. 

Figure 1. Presentation of the Structures of some clinical trial molecules.

A moderate-sized dataset-based QSAR with enough predictive capability and mech-
anistic understanding is clearly useful for boosting lead potency. In this study, we used
molecular docking, MD simulation, and MMGBSA to create robust QSAR models for
84 structurally varied molecules with empirically established LSD1 inhibitory efficacy.

2. Results

Despite the fact that the current study is based on a moderate size dataset of 85 molecules,
the existence of multiple molecular scaffolds, functional groups, substituents, diverse rings
viz. non-aromatic, homoaromatic, heteroaromatic, fused rings; spiro compounds, etc., has
significantly covered a vast chemical space. The QSAR models developed are based on a split
and entire data set. R2, R2adj, CCCtr, and other fitting metrics have values far above the allowed
threshold values, indicating that the QSAR models are statistically tolerable with the required
number of chemical descriptors. Internal validation parameters include Q2

LOO, Q2
LMO, and

others with values that condescend to give the statistical robustness of the QSAR models. The
external predictability of both models can be seen in the high values of external validation aspects
like R2

ex and Q2
Fn. Model applicability domain is supported by William’s plots (See Figure 2)

(Applicability Domain). Fulfillment of allowed threshold values for numerous parameters, as
well as poor correlation among molecular descriptors, rule out the possibility of serendipitous
QSAR model construction [10–14] (see Table S2, Supplementary Information). These grounds
validate these models’ statistical robustness and strong external prediction.

2.1. Outlier Behavior of the Dataset Molecules

The third type of outlier, outliers toward the model, can only be identified after the
regression model has been established. They indicate an X-Y link. Because of the variety of
chemical structures explored in the study, model outliers are a specific form of outlier that
may be found in high numbers in the QSAR/QSPR data set.

Based on the Williams plot, molecule 60 was identified as the third type of outlier in
the divided set model, molecule 79 as an X outlier, and molecule 82 as a Y outlier. Figure 3
illustrates the core plot and loading plot of the Descriptor in a split-set QSAR model. The
descriptor ring, CH3B, has a significant impact on molecule 60’s outlier characteristics, but
the descriptors lipo_ringS_8Bc and com_sp2O_4A have a substantial impact on molecule 82.
The descriptor fringCH3B, on the other hand, had a major impact on molecule 79. The
aforementioned conclusion explained the impact of particular molecular descriptors on the
cluster of molecules in the dataset (See Figure 3).
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2.2. GA-MLR QSAR Models

Model-1.1 (Divided Set: Training Set-80% (67 molecules) and Prediction Set-20%
(17 molecules)):

pEC50 = 13.856 (±1.734)–0.832 (±0.226) avg_molweight—0.211 (±0.087) fringCH3B + 0.263
(±0.092) fNringC6B + 4.482 (±1.892) lipo_ringS_8Bc—0.639 (±0.279) com_sp2O_4A.

[R2 = 0.83, R2
adj = 0.82, Q2

LOO = 0.79, Q2
LMO = 0.78, RMSEtr = 0.49, MAEtr = 0.37,

RSStr = 16.37, CCCtr = 0.91, RMSEcv = 0.54, MAEcv = 0.40, PRESScv = 20.07, CCCcv = 0.89,
R2

ext = 0.82, Q2
F1 = 0.81, Q2

F2 = 0.81, Q2
F3 = 0.81, CCCex = 0.90].

Model-1.2 (Full Set: Training Set-100%, (84 molecules)):
pEC50 = 6.488 (±0.315)–0.151 (±0.078) fringCH3B + 2.921 (±1.496) lipo_ringS_8Bc + 0.972

(±0.349) famdNnotringO9B + 0.347 (±0.104) fdonsp3C2B—0.775 (±0.302) fsp3CamdN4B.
[R2 = 0.81, R2

adj = 0.80, Q2
LOO = 0.78, Q2

LMO = 0.77, RMSEtr = 0.51, MAEtr = 0.41,
RSStr = 22.24, CCCtr = 0.90, RMSEcv = 0.56 MAEcv = 0.45, PRESScv = 26.57, CCCcv = 0.88].

In this QSAR investigation, model 1.1 was constructed using the extended dataset,
whereas model 1.2 was created using the entire dataset. The developed models are distinct
in three of the five descriptors out of a total of five. The effects of variation in each molecular
descriptor on the biological activity of the associated molecule are demonstrated with
examples in the next section, even if the permutation in the bioactivity of each molecule in
the dataset is the total of all five molecular descriptors.
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3. Discussion
3.1. Mechanistic Interpretation of Descriptors

fNringC6B, lipo_ringS_8Bc, famdNnotringO9B, and fdonsp3C2B: These four molec-
ular descriptors had positive coefficient values in both the divided and full set models,
showing that amplification in the values of these molecular descriptors improves the an-
ticancer potential of LSD1 inhibitors. The importance of some molecular descriptors is
demonstrated by comparing variations in the pEC50 or EC50 values with transformations
in the values of molecular descriptors.

fNringC6B (frequency of occurrence of ring carbon atom exactly at 6 bonds from
nitrogen atom). This observation is supported by comparing compound 1 (fNringC6B = 1;
pEC50= 9.42) with compound 6 (fNringC6B = 0; pEC50 = 7.71). Possibly, an increase in the
value of fNringC6B to 1 for compound 6 enhanced its LSD1 inhibitory potency by about
two hundred and twenty-two times (∆pEC50 = 2.22) (See Figure 4).

This observation was also seen by comparing the subsequent pair of molecules:
17(PIC50 = 7.25, fNringC6B = 2) with 18(PIC50 = 7.21, fNringC6B = 0), 31(PIC50 = 7.04,
fNringC6B = 4) with 32(PIC50 = 6.91, fNringC6B = 0), 52(PIC50 = 6.11, fNringC6B = 1) with
56(PIC50 = 5.88, fNringC6B = 0), etc.

Vianello Paola et al. and colleagues also reported the synthesis of chemical 2 (4-ethyl-
N-[3-(methoxymethyl)-2-[(4-[(3R)-pyrrolidin-3-yl] methoxyphenoxy) methyl] phenyl]- 4H-
thieno [3,2-b] pyrrole-5-carboxamide) from the dataset (see Figure 5). The most efficient
basic moiety was compound 2 with pyrrolidin-3-yl-methanol substituent, which had potent
inhibitory activity against LSD1 (IC50 = 0.08570.02 M) according to structure–activity
relationship studies. He went on to say that the polar interaction with two negatively
charged regions of the LSD1 catalytic site is responsible for the compound 2’s increased
potency [10] (See Figure 5).
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Figure 5. Depiction of the molecular descriptor fNringC6B in the compound 2.

Thus, the present observation supports that the pyrrolidine ring enhances the polarity
of the compound 2 that occurred exactly at 6 bonds. As a whole, the same feature has
been captured in the QSAR model through the descriptor fNringC6B; therefore, QSAR
results are complimentary with the reported findings. At the end, the QSAR model not only
identified the polar nitrogen, but it also recognized the lipophilic carbon atom important
for LSD1 inhibitory activity.

lipo_ringS_8Bc (Sum of partial charges of lipophilic atoms within 8 bonds from ring
sulfur atom). The molecule with the better LSD1 inhibition might be obtained by en-
hancing the number of lipophilic atoms that accounted within 8 bonds from the sulfur
atom. Just a four-fold amplification in the value of lipo_ringS_8Bc sufficed about 2 × 103



Molecules 2022, 27, 4758 7 of 29

fold more potent (∆pEC50 = 3.32) LSD1 inhibitor compound 4 (lipo_ringS_8Bc = 0.19;
pEC50 = 8.04) than compound 72 (lipo_ringS_8Bc = 0.05; pEC50 = 4.72). Several other pairs
of compounds also support this observation: 31 (lipo_ringS_8Bc = −0.23; pEC50 = 7.046)
with 32 (lipo_ringS_8Bc = 0; pEC50 = 6.917), 35 (lipo_ringS_8Bc = 0; pEC50 = 6.827) with
36 (lipo_ringS_8Bc = −0.28; pEC50 = 6.81), and 45 (lipo_ringS_8Bc = −0.207; pEC50 = 6.511)
with 46 (lipo_ringS_8Bc = −0.231; pEC50 = 6.509).

Whence merely adding the number of carbon atoms is restricted (here average_molweight,
i.e., molecular property average molecular weight, is with negative correlation) or inadequate,
it is advisable to add electronegative atoms to the carbon atoms within 8 bonds from the ring
sulfur to intensify the partial positive charge on the lipophilic atoms that boost up the LSD1
potency of the compound, respectively (see Figure 6).
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Furthermore, a comparison of compound 4 to the previously reported molecule
28186757 suggests that increasing the amount of carbon atoms at the 8th position, specifi-
cally in the ether-containing carbon atom, will enhance the LSD1 inhibitory activity even
more [10].

famdNnotringO9B (Frequency of occurrence of non-ring oxygen atom exactly at
9 bonds from the amide nitrogen) with a positive coefficient exhibit a direct correlation with
LSD1 inhibitory potency. The four displayed compounds, 10, 65, 13, and 14, in Figure 7
illustrate the influence of the present molecular descriptor on the LSD1 inhibitory potency
of the compound. It can be noted that, if the same non-ring carbon atom simultaneously
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occurred at one to eight bonds or more than 9 bonds from the amide nitrogen, then it is
eluded during the calculation of famdNnotringO9B (see Figure 7).
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Non-ring oxygen was detected exactly 9 links from the amide nitrogen in compound 10,
but the same oxygen was missing in compounds 65, 13, and 14. This finding further
supports the idea that the appropriate distance between the amide nitrogen and the non-
ring oxygen is important for LSD1 inhibition. This helps to explain why molecules 10
and 65, 13, and 14 have different LSD1 inhibitory action. Instead, Vianello, Paola, and
colleagues found that removing oxygen had only a little effect on the LSD 1 inhibitory
function. This new discovery backs up the QSAR concept, emphasizing the significance of
the oxygen atom in the 9th position from the amide nitrogen. In addition, Vianello Paola
emphasized the importance of thieno [3,2-b]pyrrole-5-carboxamides as novel reversible
inhibitors of the LSD1 receptor, noting that the same amide nitrogen was successfully
detected as famdNnotringO9B in QSAR modelling. As a result, the QSAR results are
consistent with the stated findings.

Another key chemical characteristic, fdonsp3C2B (frequency of occurrence of sp3
hybridised carbon atom exactly at 2 bonds from donor atom), is strongly linked with the
reported bioactivity of LSD1 inhibitors. When comparing compound 1 to compound 57,
it can be shown that increasing the number of sp3 hybridised carbon atoms exactly at 2
bonds enhances the LSD1 inhibitory potency (see Figure 8).
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Furthermore, the same result holds true for a few other compounds: the most active
compound 1 (PEC50 = 9.42, fdonsp3C2B = 6), as well as the compounds 2 (PEC50 = 8.17,
fdonsp3C2B = 2), 3 (PEC50 = 8.10, fdonsp3C2B = 2), 4 (PEC50 = 8.07, fdonsp3C2B = 2),
and 5 (PEC50 = 7.49, fdonsp3C2B = 2). The LSD1 inhibitory activity will be increased
by 3.55 units if the value of the molecular descriptor fdonsp3C2B for the molecule 57 is
increased from 2 to 6 (about a 35-fold increase in LSD1 inhibitory potency). Furthermore,
sp3 hybridised carbon atoms should be added to boost LSD1 inhibitory activity, according
to the current findings. Furthermore, increasing the amount of such sp3 hybridised carbons
along the donor increases the electrical and hydrophobic interaction with the LSD1 receptor,
showing lipophilicity.
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Following that, it was discovered that during the MD modeling of compound 1
that the NH moiety, which acts as a donor with two bonds from the sp3 hybridized
carbon atom (fdonsp3C2B), demonstrated significant hydrogen bonding with GLu308
(86 percent) and thus plays an important role in the stability of the LSD1–compound
1 complex. Furthermore, by including a water molecule, the same NH moiety created
hydrogen bonds with a similar residue (GLu308), increasing the stability of the drug
receptor complex. Furthermore, another NH2 substituent (91 percent) developed hydrogen
bonding connections with the Glue801 residue, increasing the stability of the drug receptor
complex (see Figure 9). This implies that the QSAR modelling has effectively identified
certain important pharmacophores involved in the stability of the drug receptor complex,
in addition to finding the many hidden structural elements crucial for LSD1 inhibition. As
a consequence, the QSAR findings are entirely consistent with the molecular docking and
MD simulation experiments.
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No one chemical descriptor can explain the variation in inhibitory effectiveness of
medicines in a dataset. The performance of the QSAR model is impacted by the syn-
chronous effect of many molecular descriptors, some of which are not included in the
QSAR models.

3.2. Molecular Docking

The molecular interaction of the five most active molecules with the LSD1 protein at
the active site was investigated using molecular docking. The crystal structure of LSD1
was obtained using the RCSB protein data repository (https://www.rcsb.org/structure/
2dw4, accessed on 24 May 2022) (PDB code: 2DW4). The full length of LSD1 comprises
852 amino acids with three key structure domains [11–14]: N-terminal Swi3-Rsc8-Moira
domain (SWIRM domain, residues 172–270); C-terminal amine oxidase-like domain (AOL
domain, residues 271–417 and 523–833); and central tower-like domain (Tower domain,
residues 418–522). The SWIRM domain of LSD1 consists of six long α-helices (SWα1–6) and
two stranded β-sheets (SWβ1–2), which regulates the chromatin remodeling and histone
modification by taking part in protein–protein interactions.

We investigated the probable interactions of inhibitors inside the active site of LSD1 to
better understand the SAR and QSAR models of the five most active drugs. With an RMSD
of 1.3618 A, the 2DW4 ligand was redocked into the LSD1 binding pocket. Because the

https://www.rcsb.org/structure/2dw4
https://www.rcsb.org/structure/2dw4
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accuracy of the docking results was determined by RMSD, this indicates that NRG Suite
docking was able to effectively recognise the correct binding configuration (2.0). The dock-
ing scores for the five compounds, 1 (EC50 = 0.38 nm), 2 (EC50 = 6.7 nm), 3 (EC50 = 7.8 nm),
4 (EC50 = 8.4), 5 (EC50 = 18), and pdb-2dw4 ligand, were found to be −8.33(RMSD−1.38 A),
−10.47(RMSD 1.82 A), −11.16(RMSD 1.32A), −11.10(RMSD 1.58A), −10.96(RMSD 1.13A),
and −11.31(RMSD 1.36A) Kcal/mol, respectively, demonstrating that docking scores could
predict ligand EC50 values. The 2D interactions for the five compounds were displayed in
Figures 10–14.

In terms of compound 5’s low activity, the amide nitrogen forms a conventional
hydrogen bond with the neutral non-polar amino acid residue MET332, a water–hydrogen
bond with HOH1032, and a neutral polar amino acid residue with the pyrrolidine ring.
THR624 forms a second hydrogen bond. With HOH1251, it creates a third water–hydrogen
bond. TRP751, GLY330, LEU859, ALA331, TYR761, VAL811, ARG316, and ALA814, on
the other hand, have been shown to form hydrophobic bonds with a thiene-pyrrole ring, a
benzamide ring, a phenoxy ring, or a pyrrolidine ring (pi-pi T-shaped, amide-pi stacked,
alky and pi-alkyl interactions). Despite the wide and flexible structure of compound five,
the active conformation and compound-5–LSD1 complex were maintained via a variety of
hydrophobic interactions and hydrogen bonding.

Compound 5 and compound 4 have similar interactions, although compound 4 is
three times more powerful than compound 5. In the structure, compound 5 has a folded
shape, whereas compound 4 has an extended conformation akin to the pdb-2dw4 ligand.
Within the active area of the LSD1 receptor, chemicals 5 and 4 are diametrically opposed.
Except for one hydrophobic interaction with a TYR761 amino acid residue, the thien-pyrrole
ring orientation was different. The QSAR models demonstrate the importance of the thiene-
pyrrole ring for the reversible inhibition of the LSD1 receptor. The molecular descriptor
lipo_ringS_8Bc indicates the importance of the Sum of partial charges of lipophilic atoms
within 8 bonds from ring sulfur atoms. With TRP751, compound 4 (lipo ringS 8Bc= −0.1869)
made more than eight types of hydrophobic connections and one pi-sulphure interaction,
whereas compound 5 (lipo ringS 8Bc = −0.2319) made seven hydrophobic contacts (See
Figure 11A,B). The difference in the reactivity of these compounds was linked with the oc-
currence of positively charged lipophilic atoms. The present observation indicates that the
decrease in the negative charge promotes more hydrophobic contacts in the compound 4.
Furthermore, in compound 1 (lipo ringS 8Bc = 0), partial positive charges are zero, un-
derlining the observation of declining negative charges and intensifying positive charges
within the thiene-pyrrole ring, which promotes better hydrophobic contact with the LSD1
receptor. The compounds 3 (lipo_ringS 8Bc = −0.1869) and 2 (lipo_ringS 8Bc = −0.2339)
showed the same behavior. Finally, QSAR analysis was successful in uncovering latent
pharmacophoric characteristics that determine not only the LSD1 inhibitory action of these
compounds, but also their binding pattern. As a result, the molecular docking analysis
results are entirely congruent with the QSAR findings.

Moreover, compound 2 (EC50 = 6.7 nm), was marginally more potent than compound 3
(EC50 = 7.8 nm). The 2D interactions for compounds 2 and 3 show that compound 2
produced three standard hydrogen bonding contacts with SER760, LYS661, ARG316, and
GLU801, but compound 3 did not form any conventional hydrogen bonding interactions
with SER760, ALA809, THR810, or HOH1257. Moreover, compound 2 executed more than
11 different hydrophobic contacts with the HIS564, ALA539, VAL333, GLY330, TRP751,
VAL811, VAL317, ALA814, etc. Moreover, the thiene-pyrrole ring in the compound didn’t
contribute in any of the hydrophobic contact, but it aligned over the solvent accessible
surface area of the LSD1 receptor (See Figure 12A,B). Furthermore, when the conformations
of compounds 2 and 3 are compared to the pdb-2dw4 ligand, it is clear that compound
2 aligns and superimposes entirely along the docked conformation of the pdb ligand.
Following that, in compound 3, the thiene-pyrrole ring aligns vertically in the receptor
(LSD1) binding pocket, which is completely different from the bioactive conformation of
the pdb ligand and could explain the difference in potency between these compounds
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(see Figure 13, green-comp-2, yellow-comp-3, and cyan-pdb-2dw4 ligand). The benzene
ring connected to the thiene-pyrrole ring by amide linkage in compound 3 contains a
bulky substituent (methoxy ethyl) compared to compound 2 (methoxy methyl), which may
have hampered compound 3’s ability to achieve the same bioactive conformation as the
pdb ligand. This helps to explain the differences in potency and binding affinity for the
LSD1 receptor.
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The compound 2 (PIC50 = 8.174, fdonsp3C2B = 2, lipo_ringS 8Bc = −0.2339) and
3 (PIC50 = 8.174, fdonsp3C2B = 2, lipo_ringS 8Bc= (PIC50 = 8.174, fdonsp3C2B = 2, lipo_ringS
8Bc = −0.2339) differed from the compound 1 (PIC50 = 9.42, fdonsp3C2B = 6, lipo_ringS
8Bc = 0) in terms of two descriptors: fdonsp3C2B and lipo_ringS 8Bc. Compound 3 can’t
form hydrogen bonds or hydrophobic interactions with the receptor because of its altered
orientation. The amide donor produced hydrogen bonds with the SER760 residue in
compound 2, whereas another donor nitrogen of the terminal pyrrolidine ring aligned
over the solvent accessible surface region, and the sp3 hybridised carbon atom made
hydrophobic interactions with the receptor. In the QSAR model, the same feature was
captured. In addition, the thiene-pyrrole ring sulphure atom formed conventional hydrogen
bonds with the ARG316 and GLU 801 residues, as well as a water–hydrogen link with
the HOH1254 residue. The relevance of the thiene-pyrrole sulphure atom, which was
captured in the QSAR model as lipo ringS 8Bc descriptors, is highlighted by this observation.
Furthermore, the lipophilic carbon atoms in the benzene ring of compound 2 connected
to the thiene-pyrrole ring via amide linkage generate distinct hydrophobic interactions
with the receptor. This finding emphasises the significance of positively charged lipophilic
carbon atoms in drug receptor interactions. Thus, QSAR modelling was successful in
identifying the features required to improve binding affinity, and the results were in perfect
agreement with the molecular docking data. In addition, comparison with the most active
compound 1 (PIC50 = 9.42, fdonsp3C2B = 6, lipo ringS 8Bc = 0) indicated the importance of
the lipophilic, as well as the electronic properties required for binding affinity and, ultimately,
LSD1 receptor inhibition.

The docking results revealed that the descriptors, fdonsp3C2B and lipo_ringS_8Bc,
played important roles in the inhibition of the LSD1 receptor, which was consistent with
the QSAR findings.

3.3. Molecular Dynamic Simulations

During the simulation, monitoring the protein’s RMSD can provide insight into its
structural conformation. The RMSD analysis can identify if the fluctuations at the end of the
simulation are centred on some thermal average structure if the simulation has equilibrated.
For tiny, spherical proteins, changes on the order of 1–3 are perfectly acceptable. Larger
changes, on the other hand, imply that the protein is significantly changing form during
simulation. It’s also crucial that your simulation converges, which means the RMSD
values settle around a fixed number. If the average RMSD of the protein is still increasing
or dropping at the end of the simulation, your system has not equilibrated, and your
simulation may not be lengthy enough to do a thorough analysis. Ligand RMSD (right
Y-axis): the ligand RMSD (right Y-axis) shows how stable the ligand is in relation to the
protein and its binding pocket.

When the protein–ligand complex is aligned on the reference protein backbone first,
and then the RMSD of the ligand-heavy atoms is measured, the RMSD of the ligand is
plotted. If the observed values are significantly greater than the RMSD of the protein, the
ligand has most likely diffused away from its initial binding site.

The above-mentioned diagram is the triple run result of Root Mean Square Divisions
(RMSD) MD simulation trajectory analysis. The RMSD plot of the LSD–compound 1
complex (Figure 3) indicates that the complex stabilizes at about 20 ns. After that, for the
length of the simulation, swings in RMSD values for target remain within 0.5, which is
absolutely acceptable. The ligand fit-to-protein RMSD values fluctuate within 0.7 Angstrom
after they have been equilibrated. These findings indicate that the ligands stayed firmly
connected to the receptor’s binding site throughout the simulation period. The RMSD
values for ligand fit to protein do not change much during the simulation duration, showing
that the ligands remain securely attached to the receptor’s binding site, as shown in
Figure 15.
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Figure 15. MD simulation trajectory analysis of Root Mean Square Divisions (RMSD) of compound 1
bound with LSD; 150 ns time frame in triplicate displayed.

Figure 16 shows the average hydrogen bonds established throughout the 150 ns triple
simulation between compound 1 and the various proteins. From 0 to 150 ns, an average of
four hydrogen bonds are observed for LSD, and the same is true for triple MD simulations
of compound 1 and LSD (Figure 16). Throughout the simulation, two hydrogen bonds
were established, as shown by the 2D ligand binding figure. The number of hydrogen
bonds between LSD and compound 1 has increased, making the binding stronger and more
robust over simulation.
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Figure 16. MD simulation trajectory analysis of Hydrogen-bonding (H-bonding) of compound 1
bound with LSD 150 ns time frame in triplicate displayed.

On the RMSF plot, peaks represent portions of the protein that fluctuate the most
during the simulation. Protein tails (both N- and C-terminal) typically change more than
any other part of the protein. Alpha helices and beta strands, for example, are usually
stiffer than the unstructured component of the protein and fluctuate less than loop sections.
According to MD trajectories, the residues with greater peaks belong to loop areas or N-
and C-terminal zones (Figure 17). Although there is some instability between 400 and
600 residues, the stability of ligand binding to the protein is demonstrated by stable RMSF
values of binding site residues.
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Figure 17. MD simulation trajectory analysis of Root Mean Square Fluctuations (RMSF) of com-
pound 1 bound with LSD with their triplicate runs.

The compactness of proteins is measured by the radius of gyration. The Radius of
Gyration of LSD proteins bound to compound 1 was reduced (Figure 18). Compound 1
bonded to the protein targets posthumously in the binding cavities and plays a substantial
role in the stability of the proteins, according to the overall quality analysis using RMSD
and Rg.
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Figure 18. MD simulation trajectory analysis of Radius of Gyration (RoG) of compound 1 bound
with LSD with their triplicate runs.

Protein interactions with the ligand can be detected throughout the simulation. These
interactions can be categorized and summarized by type, as shown in the graphs below. The
four types of protein–ligand interactions (or ‘contacts’) are hydrogen bonds, hydrophobic,
ionic, and water bridges. The ‘Simulation Interactions Diagram’ panel in Maestro can be
used to analyse the subtypes of each interaction type. Over the course of the trajectory,
the stacked bar charts are standardised; for example, a value of 0.7 indicates that the
specific interaction is maintained for 70% of the simulation duration. Values exceeding 1.0
are possible because some protein residues may have several interactions with the same
subtype of ligand. The majority of the important ligand–protein interactions found by
MD are hydrogen bonds and hydrophobic interactions, as shown in Figure 19. In terms of
H-bonds, the LSD–compound 14 complex residues VAL 4288, GLY 290, TYR 571, ASP 754,
and SER 760 are the most essential. Over the course of the trajectory, the stacked bar charts
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were standardised; for example, a value of 1.0 signifies that the specific interaction was
maintained for 100% of the simulation duration. Values exceeding 1.0 are possible because
some protein residues may have several interactions with the same subtype of ligand.
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The presence of protein secondary structural elements (SSE) such as alpha helices and
beta strands is checked throughout the simulation to guarantee that they are not present.
The plot above shows the distribution of SSE by residue index over the entire protein
structure, and it includes all residues. The graphs at the bottom illustrate the evolution of
each residue and its SSE assignment throughout the experiment, in contrast to the charts
below, which show a summary of the SSE composition for each trajectory frame during the
simulation (as shown in Figure 21).
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Red indicates alpha helices, and blue indicate beta-strands of; LSD-compound 1.

In comparison to the 0 ns structure, the positional change was obvious in the stepwise
trajectory analysis of every 25 ns of compound 1 simulation with LSD (Figure 22). In
order to achieve conformational stability and convergence, the ligand, compound 1, was
discovered to exhibit structural angular mobility at the end frame.

The ligand torsions graphic depicts the conformational evolution of each rotatable
bond (RB) in the ligand throughout the simulation trajectory (0.00 through 150.00 ns). The
top panel shows a two-dimensional schematic of a ligand with color-coded rotatable bonds.
Each rotatable bond torsion is accompanied with a dial plot and a bar plot of the same
colour. The structure of the torsion during the simulation is depicted by dial (or radial)
charts. The simulation begins in the radial display’s centre, and the time evolution is
plotted radially outwards.

In the bar charts, which summarize the data from the dial plots, the probability density
of the torsion is shown. If torsional potential data is provided, the graphic also displays
the potential of the rotatable bond (by summing the potential of the related torsions). The
potential values are given in kcal/mol and are displayed on the chart’s left Y-axis. The
correlations between the histogram and torsion potential can reflect the conformational
strain that the ligand undergoes in order to maintain a protein-bound shape (See Figure 23).
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Molecular Mechanics Generalized Born and Surface Area (MMGBSA) calculations.
The MMGBSA method is often used to determine the binding energy of ligands to protein
molecules. The binding free energy of each protein–compound 1 complex was calculated,
as well as the influence of the other non-bonded interactions energies (Table 1). The binding
energy of ligand compound 1 with LSD is −59.78 kcal/mol. Gbind is governed by non-
bonded interactions such as GbindCoulomb, GbindCovalent, GbindHbond, GbindLipo,
GbindSolvGB, and GbindvdW. The GbindvdW, GbindLipo, and GbindCoulomb energies
contributed the most to the average binding energy across all types of interactions. These
conformational alterations result in improved binding pocket acquisition and engagement
with residues, resulting in increased binding energy and stability. Thus, the binding energy
obtained from docking results was well justified by MM-GBSA calculations. Furthermore,
the last frame (150 ns) of MMGBSA displayed the positional change of compound 1 as
compared to the 0 ns trajectory, indicating a better binding pose for best fitting in the
protein’s binding cavity (see Figure 24).

Table 1. Binding energy calculation of compound 1 with LSD and non-bonded interaction energies
from MMGBSA trajectories. (star indicates mean of all th energy value).

Energies (kcal/mol) Mean * LSD1 + Comp-1

∆Gbind −42.18 ± 7.60
∆GbindLipo −07.62 ± 4.78
∆GbindvdW −15.63 ± 7.77
∆GbindCoulomb −12.54 ± 4.07
∆GbindHbond −11.68 ± 2.00
∆GbindSolvGB 31.53 ± 9.70
∆GbindCovalent 10.22 ± 4.00
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4. Materials and Methods
4.1. Preparation of Data Sets/Modeling Set Preparation from ChEMBL Data

Only compounds having experimental LSD1 inhibitory potency tested against a range
of LSD1 inhibition assays were used in the ChEMBL [9] database. A limited data set
of 84 LSD1 inhibitors with accurate EC50 values (0.38–89500 nM) was created from a
crude dataset of 191 compounds with experimental EC50 values after removing structural
duplicates, multi-component compounds or salts, and compounds with imprecise EC50
values. The EC50 values in nanomolar (nM) units were converted to molar units first (M).
For the sake of data set handling, EC50 (M) values for each molecule were transformed to
pEC50 (pEC50 = −logEC50). SMILES notations for all 84 substances with experimental EC50
and pEC50 values are listed in Table S1 in Supplementary. Figure 25 shows a representative
example of the five least active and five most active LSD1 inhibitors.
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4.2. Calculation of Molecular Descriptors and Objective Feature Selection (OFS)

Using Open Babel 3.1, the SMILES notations were translated to 3D structures [15].
The most stable conformation is found in the geometry optimized molecule. As a result,
calculating molecular descriptors on a dataset of optimized molecules assures that all
physico-chemical attributes for all molecules in the dataset are uniform. Prior to calculating
molecular descriptors, all of the compounds in the current dataset were optimized using
TINKER (force field MMFF94). An appropriate calculation of many molecular descriptors
is required in QSAR analysis to improve mechanistic understanding. A huge collection of
more than 30,000 unique 1D- to 3D-molecular descriptors may be found in PyDescriptor, a
PyMOL plugin [16]. Data trimming was performed to prevent the risk of overfitting due
to noisy duplicated descriptors. Then, using QSARINS-2.2.4 [17], objective feature selec-
tion (OFS) was used to exclude near-constant, constant, and significantly inter-correlated
(|R| > 0.90) molecular descriptors. Despite the fact that only 1733 molecular descriptors
were accepted into the contracted molecular descriptor pool, it nevertheless has a wide
range of descriptors that cover a wide chemical spectrum.
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4.3. Splitting of the Data Set Molecules into Training and External Sets and Subjective
Feature Selection

To avoid information leaking, it is critical to divide the entire data set into training
and prediction sets with correct configuration and sizes prior to rigorous subjective feature
selection [18]. To avoid bias, the entire data set was arbitrarily divided into two sets:
training (an 80%, or 67 molecules) and prediction (20%, or 17 molecules). The sole objective
of a training set is to select an acceptable number of molecular descriptors for developing
QSAR models, whereas the prediction set is used to validate these models externally
(Predictive QSAR). The genetic algorithm-reinforced multilinear regression (GA-MLR)
method, as implemented in QSARINS-2.2.4, was used to pick acceptable descriptors using
Q2

LOO as a fitness parameter for subjective feature selection.
To construct a good QSAR model, it is critical to avoid overfitting and to choose an

appropriate number of molecular descriptors in order to provide satisfactory interpretability.
As a result, a graph of the number of molecular descriptors (X-axis) involved in the models
against R2tr and Q2

LOO values (Y-axis) has been plotted in the current communication to
achieve breaking point, with the number of molecular descriptors corresponding to the
breaking point being an optimum number of descriptors in QSAR model building. Because
the graph in Figure 3 shows a breaking point at five variables, QSAR models with more
than five descriptors were eliminated (See Figure 26).
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and Leave-One-Out Coefficient of Determination Q2 to identify the optimum number of descriptors.

4.4. Model Development and Validation

The robustness of the created models was determined using a variety of validation
criteria reported in the literature. Internal predictability and statistical quality of the
developed model were tested using parameters such as the coefficient of determination (r2),
leave-one-out cross-validation (Q2

LOO), and leave-many-out cross-validation to achieve
this (Q2

LMO). In addition, for each developed model, the standard error of estimate(s) was
defined. For the given QSAR models for the stated dataset, RMSE (Root Mean Squared of
Errors) for the training (RMSETR) and external prediction sets (RMSEext) that denote the
complete error of the model that was predicted as an extra portion of the accuracy [5,18]
were used.

The QUIK rule (Q Under the Influence of K) was used to examine the inter-correlation
between descriptors. To reduce inter-correlation among descriptors, the QUICK rule was
set to 0.05. The fit of the randomly reordered Y-data was checked using Y-randomization
with 2000 iterations to ensure the trustworthiness of the created QSAR model. The de-
pendent variables (pEC50 value) of the training set were shuffled, and new coefficients of
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determination were produced for the randomization of the constructed QSAR model. The
new models’ coefficients of determination are significantly low, indicating that the reported
model in this QSAR research was not acquired by chance correlation [19].

All models were externally validated using the following validation criteria: r2ext
(external determination coefficient), Q2

F1, Q2
F2, Q2

F3, Concordance Correlation Coefficient
(CCC), CCCex, r2m, and r2m. The R2m (overall) parameter penalizes a model when there
are big disparities between observed and predicted values of all the compounds in the
collection (considering both training and test sets). The difference between the values of the
expected and the resultant experimental activity data was assessed using the r2m (pEC50
value). It has been suggested that the observed value for the r2m should be lower than 0.2
if the r2m value is more than 0.5. To validate model reliability and robustness, all QSAR
models were examined for validation parameters such as Golbraikh and Tropsha’s criterion.

In general, the created QSAR model’s predictive ability is determined by how well
the anticipated value matches the observed (experimental biological activity) value. Even
the presence of a single outlier reduces the generated QSAR model’s prediction ability. Fol-
lowing that, we attempted to identify the outliers based on compound with a considerably
high residual value in GA-MLR QSAR models. Furthermore, by comparing the predicted
value to the standardized residual values, we were able to identify the outlier compounds.
Similarly, the leverage effect in Williams’ plot revealed structural variation in database
compounds. The created QSAR model’s applicability domain is determined by combining
the leverage and standard residuals [20–23].

4.5. Molecular Docking Analysis

The protein data bank (https://www.rcsb.org/structure/2DW4, accessed on 24 May 2022)
was used to obtain the pdb file for the LSD1 receptor. The pdb 2dw4 [24] was chosen because of
its X-ray resolution and sequence completion. The health of the protein was evaluated before
actual docking simulations by plotting Ramchandran’s plot [25] (See Figure 27). For docking
analysis, the optimized protein is acceptable. Although all of the compounds were docked into
the active site, the docking pose for the most active compound 1 as a representative has been
shown below for convenience.
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The software NRGSuite [26] was utilized for molecular docking analysis. This open-
source software is accessible as a PyMOL plugin (www.pymol.org, accessed on 7 July 2022).
With the help of FlexAID [27], it can detect the surface cavities in a protein and use them as
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target-binding sites for docking simulations. It models ligand and side-chain flexibility, as
well as covalent docking, and employs a genetic algorithm for conformational search. To
gain the best performance using NRGsuite, we used a flexible-rigid docking technique with
the following default settings: Side chain flexibility—no; ligand flexibility—yes; ligand pose
as reference—no; constraints- no; HET groups- included water molecules; van der Walls
permeability—0.1; solvent types—no type; number of chromosomes—1000; number of
generations—1000; fitness model—share; reproduction model—population boom; number
of TOP complexes—5. The native ligand, a known tranylcypromine inhibitor of LSD1 [24],
was used to validate the docking technique for molecular docking.

4.6. Molecular Dynamic Simulation

Desmond, a package from Schrödinger LLC [28], was used to simulate molecular
dynamics for 150 nanoseconds. Docking experiments provided the earliest step of protein
and ligand complexes for molecular dynamics simulation. In static settings, Molecular
Docking Studies can predict the ligand binding state. Because docking provides a static view
of a molecule’s binding pose in a protein’s active site [29], MD simulations tend to compute
atom movements over time by integrating Newton’s classical equation of motion. The
ligand binding status in the physiological milieu was predicted using simulations [30,31].

Protein Preparation Wizard or Maestro was used to preprocess the protein–ligand
complex, which included complex optimization and minimization. The System Builder
tool was used to prepare all of the systems. TIP3P was chosen as a solvent model with
an orthorhombic box (Transferable Intermolecular Interaction Potential 3 Points). In the
simulation, the OPLS 2005 force field was used [32]. Counter ions were added to the models
to make them neutral. A total of 0.15 M salt (NaCl) was added to replicate physiological
circumstances. For the entire simulation, the NPT ensemble with 300 K temperature
and 1 atm pressure was chosen. Before the simulation, the models were loosened. After
every 100 ps, the trajectories were saved for analysis, and the simulation’s stability was
determined by measuring the root mean square deviation (RMSD) of the protein and ligand
over time.

4.7. Molecular Mechanics Generalized Born and Surface Area (MMGBSA) Calculations

During MD simulations of LSD complexed with complex 1, the binding free energy
(Gbind) of docked complexes was calculated using the premier molecular mechanics
generalized born surface area (MM-GBSA) module (Schrodinger suite, LLC, New York,
NY, USA, 2017-4). The binding free energy was calculated using the OPLS 2005 force
field, VSGB solvent model, and rotamer search methods [16–18]. After the MD run, 10 ns
intervals were used to choose the MD trajectories frames. The total free energy binding
was calculated using Equation (1):

∆Gbind = Gcomplex − (Gprotein + Gligand) (1)

where, ∆Gbind = binding free energy, Gcomplex = free energy of the complex,
Gprotein = free energy of the target protein, and Gligand = free energy of the ligand. The
MMGBSA outcome trajectories were analyzed further for post-dynamics structural modifications.

5. Conclusions

Pharmacophoric traits responsible for improved LSD1 inhibition unraveled by present
QSAR evaluation are interconnected and thus easy to incorporate to optimize present LSD1
inhibitors towards more potent analogues; for example, a higher number of Nitrogen atoms
precisely at six bonds and a lower number of Hydrogen atoms at three bonds from the ring
Carbon atom can be introduced at the same time to optimize the LSD1 inhibitors towards
better activity, and a higher number of non-ring Oxygen atoms precisely at nine bonds
from the amide Nitrogen and a less frequent occurrence of sp2 Oxygen within 4Å boosts
the LSD1 inhibitory activity. Likewise, the hydrogen bond donor atom at two bonds and
amide Nitrogen at four bonds from sp3 hybridized Carbon atoms enhances the desired
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activity. Two of the five descriptors in the split-set model emphasize the relevance of the
ring carbon atom, whereas one descriptor represents the importance of the ring Sulphur
atom, indicating that there is room for modification of dataset compounds for greater LSD1
inhibition. On the other hand, two out of five descriptors emphasize the relevance of amide
nitrogen, suggesting that the current dataset compounds might be optimized for improved
LSD1 inhibition. Lipophilic atoms, such as ring carbon atoms, were identified as a possible
center for the optimization of LSD1 inhibitors for anticancer efficacy by certain chemical
descriptors. As a result, the created QSAR model may be used to improve compounds
for better LSD1 inhibition and cancer prevention. The docking results revealed that the
descriptors, fdonsp3C2B and lipo_ringS_8Bc, played important roles in the inhibition of
the LSD1 receptor, which was consistent with the QSAR findings. The MD simulation
results display that the ligands were tightly bound to the binding site of the receptor
during the simulation. The ligands are still firmly connected to the receptor’s binding
site, as evidenced by the fact that the RMSD values for the ligand fit-to-protein does not
significantly vary over the course of the simulation. Compound 1’s position was altered in
the last 150-ns frame of the MMGBSA simulation, compared to the 0-ns trajectory, indicating
a more advantageous binding pose for the binding cavity of the protein. Therefore, the MD
simulation and MMGBSA analysis strengthens the outcome of the QSAR and Molecular
docking studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
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molecular descriptors present in QSAR models.
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