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Abstract

Motivation: Reproducibility is of central importance to the scientific process. The difficulty of consistently replicating
and verifying experimental results is magnified in the era of big data, in which bioinformatics analysis often involves
complex multi-application pipelines operating on terabytes of data. These processes result in thousands of possible
permutations of data preparation steps, software versions and command-line arguments. Existing reproducibility
frameworks are cumbersome and involve redesigning computational methods. To address these issues, we devel-
oped RepeatFS, a file system that records, replicates and verifies informatics workflows with no alteration to the ori-
ginal methods. RepeatFS also provides several other features to help promote analytical transparency and reprodu-
cibility, including provenance visualization and task automation.

Results: We used RepeatFS to successfully visualize and replicate a variety of bioinformatics tasks consisting of over
a million operations with no alteration to the original methods. RepeatFS correctly identified all software inconsis-
tencies that resulted in replication differences.

Availabilityand implementation: RepeatFS is implemented in Python 3. Its source code and documentation are
available at https://github.com/ToniWestbrook/repeatfs.

Contact: anthony.westbrook@unh.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The foundation of science is built upon the acquisition and analysis
of empirical evidence. The formulation and testing of hypotheses are
rooted in these observations. This methodology provides the cap-
ability not only to understand the world around us but also to make
effective predictions given specific conditions. As such, accurate
forecasts require a reproducible experimental design; repetition of a
deterministic process with differing results indicates a lack of rigor
and eliminates the confidence in the prediction. Given the import-
ance of repeatability, the enterprise of science currently faces a sig-
nificant struggle. A 2016 Nature survey completed by over 1500
researchers found that more than 70% have attempted to reproduce
another scientist’s findings without success (Baker, 2016, 500), and
more than half were unable to replicate their own results.
Subsequently, numerous supporting studies have been performed
across a range of biological disciplines, including genomics (Kanwal
et al., 2017), biomedical sciences (Coiera et al., 2018) and computa-
tional biology (Garijo et al., 2013), each noting challenges involved
in ensuring reproducibility.

While many factors in the research process can result in a devi-
ation from the original experimental methods, each study notes in-
formatics as especially problematic, often responsible for
introducing unintended variation into replication studies.
Respondents of the Nature survey corroborate this concern, with
over 82% noting that ‘insufficient computer code or protocol infor-
mation’ is at least sometimes involved, if not very often or always.
Reasons for this stem from the vast number of available software
applications and reference databases (Davis-Turak et al., 2017); dif-
ferences in versions, parameters and configuration files (Kim et al.,
2018); and a wide variety of data formats and conversion techniques
(Lewis et al., 2016). As a typical informatics workflow has the po-
tential for thousands of combinations of these attributes, it quickly
becomes apparent that provenance for recording the exact environ-
ment and steps performed by a researcher is critical in replicating
results.

Informatics software has attempted to address this reproducibil-
ity issue with limited success. Virtual environments, such as Docker
(Docker, 2020) and Anaconda (Anaconda Software Distribution,
2020), ensure the versions of software match between original and
repeated analyses, but cannot verify these programs are executed
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using the same parameters, reference databases or other runtime
options. Analysis platforms such as Galaxy (Afgan et al., 2018) and
QIIME 2 (Bolyen et al., 2019) require the researcher to operate
within the provided set of tools, forcing methods to be redesigned
and precluding the ability to use many external packages. Generic
pipeline frameworks such as Ruffus (Goodstadt, 2010), Bpipe
(Sadedin et al., 2012), Snakemake (Köster et al., 2012) and SoS
(Wang et al., 2019), while designed to work with any program, re-
quire the researcher to write scripts to migrate their workflow into
the framework. This not only requires learning an additional lan-
guage and rewriting each step of the workflow but potentially intro-
duces new mistakes. Thus, current solutions have limitations that
prevent their widespread adoption.

To provide robust provenance capabilities without requiring the
user to learn new platforms or languages, we developed RepeatFS, a
file system that transparently records process, file and read/write ac-
tivity for every application. Informatics methods may be used with-
out alteration, and the complete provenance history of any file may
be exported, visualized and replicated. Replication supports process
verification, ensuring the same parameters, software versions and
resulting files are produced for each step in the provenance record,
including provenance histories with multiple versions of the same
application. RepeatFS also has the ability to reconstruct script files,
should these be missing or unavailable during the replication
process.

In addition to these provenance services, RepeatFS provides ‘vir-
tual dynamic files’ (VDFs) for commonly performed informatics
tasks, such as converting between file formats or filtering delimited
tables. VDFs are displayed in a directory listing as normal files,
though they do not reside on disk. For each file matching a file type
designated by the user, a corresponding VDF will be shown in the
directory listing. This VDF will be named the same as the source file
but will end in a new extension that indicates the type of data the
VDF contains. When the VDF is accessed, RepeatFS automatically
runs one or more pre-configured programs, such as a file conversion
utility, using the source file as input. The output of this program is
streamed into the VDF. An example configuration would show a
FASTA VDF for each FASTQ file present on disk. If opened, the
FASTA file would contain the sequences from the FASTQ file with
the quality scores removed; RepeatFS automatically runs the conver-
sion utility when the FASTA file is accessed. This process ensures
these tasks are always performed in an identical manner and reduces
the risk of error. Though VDFs are created in this unique way, the
system treats them as normal files, and they may be viewed, copied
and used as input for other applications.

By offering both provenance tracking and VDFs, RepeatFS
reduces the risk of user error and promotes reproducibility.
RepeatFS is written in Python 3, supports all major underlying single
and multiuser file systems (ext4, Lustre, BeeGFS) and is user instal-
lable on Linux (soon available for MacOS). RepeatFS does not cur-
rently support recording provenance across different file systems.

2 Materials and methods

To demonstrate the effectiveness of RepeatFS, we established two
primary goals. The first was to run two common bioinformatics
pipelines on a source computer system, then visualize, replicate and
verify the results on a mix of destination server environments with
differing levels of similarity to the source. The second goal was to
demonstrate a variety of common tasks using VDFs. Widely used
open-source software was utilized for all tests, and no application
employed their own provenance tracking capabilities.

2.1 Evaluating provenance tracking
The reproduction of a target file requires the exact replicated execu-
tion of every program that created or modified that file. All files pre-
viously read by those programs must also be reproduced, and this
process must be recursively repeated until the entire program tree
has been re-created. For this reason, the foundation of the RepeatFS
replication system relies upon a complete and detailed historical

provenance record of every file operation performed on all moni-
tored files. In order to effectively test and demonstrate this function-
ality, two bioinformatics pipelines were constructed and used. These
pipelines were limited in scope to aid verification and visualization
but contained a large volume of different file operations to create a
complex provenance history. No such restrictions are required dur-
ing normal use of RepeatFS.

The first pipeline performed genome annotation using the SRA
toolkit(Leinonen et al., 2011) for obtaining reads, Trimmomatic
(Bolger et al., 2014) for adapter and quality trimming, SPAdes
(Bankevich et al., 2012) for genome assembly and Prokka
(Seemann, 2014) for genome annotation. Nearly one million,
paired-end reads of E.coli were used as input. The resulting GFF file
was used as the target file for replication. The second pipeline per-
formed phylogenetic inference of a 16S gene tree using wget to ob-
tain the SILVA (Quast et al., 2012) reference database, bioawk (Li,
2011) to filter the reference for entries belonging to a particular
taxonomic rank, MAFFT (Katoh, 2002) for multi-sequence align-
ment and RAxML (Stamatakis, 2014) for maximum-likelihood
based phylogenetic inference. The SILVA reference was filtered for
the 718 present members of the Yersinia genus. The resulting
Newick file was used as the target file for replication.

After executing each pipeline on the source server environment
EnvSrc, provenance was exported for each target file. Each export
file was copied to two destination server environments, EnvDst1
and EnvDst2. Neither pipeline shell script was copied from EnvSrc.
EnvDst1 contained identical versions of all software as EnvSrc,
while EnvDst2 was modified to contain different versions of soft-
ware used by each pipeline: BLAST (Altschul et al., 1990), a well-
known application used by Prokka, was upgraded to a later version,
and RAxML was recompiled with different default options. The
exported provenance was then imported into RepeatFS to perform
pipeline script reconstruction, replication and result verification. As
a secondary confirmation, the resulting target file was compared
using diff to the original to note any inconsistencies.

2.2 Evaluating virtual dynamic files
As the purpose of VDFs is to automate commonly executed com-
mands, two classes of tests were designed to demonstrate the effect-
iveness of VDFs across a variety of bioinformatics tasks. The first
class defined VDFs for converting genomics file formats and
instructed RepeatFS to provide a corresponding converted file for
each original file in a directory. This configuration included VDF
FASTA files for FASTQ files via FASTX-Toolkit (Gordon, 2014),
VDF sorted BAM files for SAM files via Samtools (Li et al., 2009)
and VDF Phylip (Felsenstein) files for Clustal (Thompson et al.,
1994) files via BioPython (Cock et al., 2009). The second class
defined VDFs for analysis tasks and included FASTA and SAM file
parsing routines. These VDFs provided FASTA headers via grep,
alignment statistics via Samtools, and taxon abundance via cut, sort
and uniq. Though by no means an exhaustive list of possible func-
tions VDFs can provide, these examples illustrate a representative
sample of typical bioinformatics tasks.

3 Results

Following the execution of both pipelines within EnvSrc, we calcu-
lated and noted metrics relevant to the size and complexity of the
provenance as recorded by RepeatFS (Table 1). Though only com-
prised of fewer than 10 applications, together both pipelines yielded
nearly 1.5 million IO operations. The number of total documented
command-line parameters available across all applications was near-
ly 400. Lastly, the number of different versions and releases that
have been publicly available during the lifetime of each application
was estimated at over 400.

IO operations were recorded as any direct request by an applica-
tion against the RepeatFS file system (e.g. open, read, write), as well
as operations performed indirectly by the operating system as a re-
sult of these requests. Application parameter counts only include
those explicitly documented by the usage output. As Bioawk extends
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Awk, a domain-specific language with all commands available as
parameters, this number was not included in calculations. Releases
were estimated using changelogs, version control repository releases
(Github) and numbering systems. Releases were confined to the ap-
plication only and did not include linked libraries. Each pipeline was
executed under amd64 Debian and CentOS Linux.

Utilizing RepeatFS provenance visualization, we manually con-
firmed the accuracy of the process execution and file access records
(Figs 1 and 2). Each shell script process was expanded to examine
the activity of all child processes and ensure each application exe-
cuted as expected. RepeatFS successfully recorded all operations and
correctly grouped files with identical read/write activity.

Following visualization, we used the exported provenance from
EnvSrc for each target file as the basis of replication in EnvDst1 and
EnvDst2. RepeatFS was able to successfully reconstruct and execute
the original pipeline scripts in both environments, and noted soft-
ware version differences in BLAST and RAxML in EnvDst2.
Comparing the resulting target files for each pipeline revealed that
EnvSrc and EnvDst1 yielded identical results, while the output from
EnvDst2 contained differences for both pipelines caused by the dif-
ference in software versions.

Finally, the contents of the six VDFs were compared with the
results created by manually running the commands associated with
each VDF definition; in all cases, the two files were identical. In add-
ition, each VDF was copied into a separate directory outside of
RepeatFS, confirming the ability to export the results of these files
to an outside environment.

4 Implementation

4.1 Functional overview
To provide a universal and reliable method of recording provenance,
we elected to implement RepeatFS as a file system, providing the
ability to monitor all I/O operations. This avoids reconstructing
provenance through incomplete and ambiguous information derived
from command history logs, process lists or environment variables.
RepeatFS utilizes the popular FUSE interface, allowing the user to
run one or more instances without requiring system administrator
privileges. When accessing disk files, RepeatFS acts as an interface,
receiving applicable system calls, relaying them to the underlying file
system and returning the results (see Operation Processing in Fig. 3).

4.2 VDF processing
Many bioinformatics applications are designed to write output to a
stdout stream so the user may utilize a pipe and relay the results to a
receiving program. This allows the receiving program to immediate-
ly begin processing output before the sending program has finished
execution. Using these standard memory-based POSIX pipes is lim-
ited however, as the data are lost once the receiving program reads
it. Multiple programs may not simultaneously receive the same data

from a pipe, and the sending program must be run again with a new
pipe for each repeated execution.

For programs that write directly to disk files instead of stdout
streams, these issues are solved as multiple applications may read
the output file concurrently. However, the application reading the
data is normally unaware of the total amount to read. While pipes
indicate if all data have been sent, disk files cannot provide this indi-
cation and all data must be written to a file before other programs
may safely access it. The performance improvement of a receiving
program concurrently processing the data are therefore lost. In add-
ition, temporary disk files must be used, decreasing performance
and increasing unnecessary file clutter.

RepeatFS solves the limitations of both pipes and disk files by
providing VDFs. System calls made to VDFs are not relayed to the
underlying file system and are instead routed through RepeatFS’s
custom block cache system, reducing the number of disk accesses
(see Block Cache System in Fig. 3). When a process issues a read re-
quest, if the requested block is present in the memory cache, the
data are immediately retrieved. If the block is present in the disk
cache, it is transferred to the memory cache and then returned. In
the event of the first cache miss, RepeatFS executes the shell com-
mand to populate the VDF as defined in the configuration file.

Table 1. Provenance complexity

Executable IO Ops Parameters Releases

Fastq-dump 268 552 43 48

Trimmomatic 261 775 17 39

SPAdes 609 644 53 32

Prokka 39194 39 25

Pipeline 1 total 1 179 165 152 144

Wget 96 449 148 35

GZip 202 196 18 12

Bioawk 6547 Many* 1

MAFFT 1496 8 177

RAxML 2356 69 68

Pipeline 2 total 309 044 243 293

Combined total 1 488 209 395 437

Fig. 1. A provenance graph was generated by RepeatFS for the target annotation file

(green) for pipeline 1. Relationships between processes (red) and files (blue) are

shown for every causal read or write operation (black arrows) that affected the cre-

ation or modification of the target file. Each pipeline shell script was expanded to

display spawned child processes (red arrows). Files with identical read and write

processes are automatically grouped and counted, greatly reducing the visual com-

plexity of the graph. Though top-level graphs are shown here, we were also able to

further expand and verify sub-process activity under parent programs, such as

SPAdes and Prokka
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These commands may provide output via a stdout stream or writes
to a file, and the user may configure which destination to receive.
RepeatFS will route this output into a buffer and transfer the
requested data to the appropriate location in the block memory
cache, thereby populating the missing block (see Process Output
Handler in Fig. 3). Each subsequent cache miss for the file will cause
RepeatFS to transfer additional output to the next location within
the block memory cache until the application ends and no further
output remains. Should the memory cache size ever exceed the con-
figured maximum, RepeatFS will flush the oldest, unwritten blocks
out to the disk cache.

Since VDFs are presented as disk files and not pipes, multiple
receiving programs may access them concurrently. Unlike normal
disk files however, RepeatFS will pause any reads made to blocks
not yet written by the sending program; once the block is written,
the read will resume, allowing receiving programs to begin reading
data before the sending program has finished. This hybrid approach
offers the benefits of both pipe and disk-based file access.

4.3 Storing and retrieving provenance
After receiving a system call for either disk files or VDFs, RepeatFS
records the operation within a SQL database, noting the time it

occurred, the file targeted by the operation and details about the
process issuing the call. This information includes attributes neces-
sary to subsequently reconstruct provenance, including command-
line parameters, current working directory and the executable’s
checksum. Operation records associated with high throughput oper-
ations such as reads and writes are temporarily cached in memory
and later flushed to the database to improve performance.

When visualizing or replicating the provenance of a file of interest,
RepeatFS iteratively traces through I/O activity within the database
by repeatedly executing two queries. The first query retrieves all the
past write operations made to the file, noting the execution details of
each process that performed a write. For each of these processes, the
second query retrieves any read operations made to other files by the
process prior to the time the process wrote to the file of interest, since
it is likely the data obtained from these reads were used as input for
the internal routines that wrote to the file of interest. A simple ex-
ample of this would be a sorting program which reads words from an
input file and then writes a sorted list of these words to an output file;
the words written are dependent on the words read. In lieu of a com-
putationally expensive analysis of machine code to determine depend-
ence, RepeatFS instead assumes data written by a process is
dependent on all data read earlier by the process.

Finally, each file targeted by these reads then becomes the start of
a new iteration, and the entire process is continually repeated. An
additional constraint ensures that only files written before the second
query’s read time are included in the next iteration. This recursively
reconstructs the provenance tree while accounting for temporal cor-
rectness; only data read by a process prior to the time the process pro-
duced output could have affected this output. Recursion will end
once no further processes are associated with any provenance branch.
The earliest file in a provenance branch was created by a process that
used input data from outside of RepeatFS, such as from another file
system, a network location or the keyboard.

Fig. 2. A provenance graph was generated by RepeatFS for the target tree file (green)

for pipeline 2. Relationships between processes (red) and files (blue) are shown for

every causal read or write operation (black arrows) that affected the creation or

modification of the target file. Each pipeline shell script was expanded to display

spawned child processes (red arrows). Files with identical read and write processes

are automatically grouped and counted, greatly reducing the visual complexity of

the graph.

Fig. 3. RepeatFS structure, outlining the flow of data originating from a system call

issued by a process. The system call is first directed into RepeatFS by FUSE. Once

the operation is received, information necessary to later reconstruct provenance is

stored within a database and then sent for routing. Operations performed on real

files are relayed to the underlying file system, and those performed on VDFs are

handled by the block cache system. Since RepeatFS is a multithreaded file system,

multiple system calls and VDF task processes may be serviced concurrently
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5 Implementation

As shown with the example pipelines, the number of parameters and

versions of the component applications create thousands of potential
runtime combinations, each of which may lead to a different result-

ing output. Though the pipelines consisted of only nine total appli-
cations, the combined number of file system operations was over
one million, illustrating that the number of applications utilized in a

pipeline is a poor predictor of provenance size or complexity.
RepeatFS does not limit the numbers of applications or file opera-

tions used in a pipeline.
Though some attributes associated with execution variability,

such as parameters and configuration files, may be faithfully repro-
duced using careful notetaking, others are potentially unknown to
the user. Applications may reference internal values or proprietary

data files, each of which may vary between versions. Table 1 illus-
trates the magnitude of software versions and file access counts for a

small selection of bioinformatics applications, but this issue is inher-
ent within all software. This problem clearly demonstrates the need
for a record of provenance at the file system level, as well as an auto-

mated way of replicating and verifying the large number of potential
execution variations.

By using the provenance graphs produced by RepeatFS, we were
able to easily ascertain many details about the inner components of
each pipeline that could potentially cause differing outputs in future

executions. We were also able to automatically replicate the results
of both complex pipelines with complete fidelity when run using an

environment identical to the original, even without access to the ori-
ginal pipeline shell scripts. When run in a modified environment,
RepeatFS was able to correctly warn of the potential for different

results due to the mismatch in software versions. Performing the
same level of verification manually would not only require arduous

amounts of work but also require detailed technical knowledge of
each component in the pipeline, creating the potential for human
error. In addition, each of the six tasks we performed using VDFs

resulted in identical results, showing this feature reduces workload
for repeatedly run tasks and strengthens reproducibility.

Most importantly, we were able to accomplish these replication
and verification tasks easily without the need to write scripts or
modify our bioinformatics methods to fit within a custom frame-

work. Thus, RepeatFS avoids introducing variability and errors into
a pipeline caused by misconfiguring the workflow management sys-

tem. As the correct replication of results is still dependent on match-
ing software versions, we recommend utilizing RepeatFS with
software managed by a virtual or container environment, such as

Anaconda or Docker. When used in this manner, RepeatFS is an
easy-to-use tool for ensuring reproducibility for virtually any type of

informatics analysis.
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