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Platelets are anucleate cytoplasmic fragments derived from the fragmentation of medullary
megakaryocytes. Activated platelets adhere to the damaged endothelium by means of
glycoproteins on their surface, forming the platelet plug. Activated platelets can also secrete
the contents of their granules, notably the growth factors contained in the a-granules, which
are involved in platelet aggregation and maintain endothelial activation, but also contribute
to vascular repair and angiogenesis. Platelets also have a major inflammatory and immune
function in antibacterial defence, essentially through their Toll-like Receptors (TLRs) and
Sialic acid-binding immunoglobulin-type lectin (SIGLEC). Platelet activation also contributes
to the extensive release of anti- or pro-inflammatory mediators such as IL-1b, RANTES
(Regulated on Activation, Normal T Expressed and Secreted) or CD154, also known as the
CD40-ligand. Platelets are involved in the direct activation of immune cells, polynuclear
neutrophils (PNNs) and dendritic cells via the CD40L/CD40 complex. As a general rule, all of
the studies presented in this review show that platelets are capable of covering most of the
stages of inflammation, primarily through the CD40L/CD40 interaction, thus confirming their
own role in this pathophysiological condition.

Keywords: platelets, innate immunity, transfusion, cytokine/chemokine, inflammation, CD40L/CD40 pathway
INTRODUCTION

Blood platelets are anucleate cells produced by the fragmentation of megakaryocytes (MK). These
small, disc-shaped cells circulate at a rate of 150,000 to 350,000 platelets per ml of blood. They have a
life span of 7-10 days. Following injury to the vascular wall, they interact very quickly with the
subendothelium and are activated to prevent bleeding. They lose their discoid shape and become
spherical, emitting long filopodia to facilitate their adhesion. They then spread and aggregate,
forming a platelet plug to stop bleeding from capillaries and small vessels (1). The study of platelet
morphology by electron microscopy has highlighted three major components: i) the plasma
membrane with an open canalicular system (OCS), ii) the cytoskeleton and iii) the various
intracellular organelles (1). The OCS corresponds to deep invaginations of the plasma membrane
and runs continuously along the cell surface. It contributes to the uptake of external elements into
org February 2022 | Volume 13 | Article 8258921
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the platelets and to the release of granule contents upon
activation. This system serves mainly as a membrane reservoir
as the platelets change shape (1, 2).

The plasma membrane is supported by a highly developed
cytoskeleton, consist ing of microtubules and actin
microfilaments (1). It plays an important role in platelet
biology and, more specifically, in maintaining and changing
the shape of platelets during activation and aggregation. It also
helps to release the contents of the granules. Platelet cytoplasm
contains numerous organelles, in particular some mitochondria,
glycogen grains, alpha and dense granules and lysosomes.
During platelet activation, the contents of the granules are
secreted and a number of granule-specific proteins are detected
on the platelet surface. They are used as secretion markers in flow
cytometry (3–5).
PLATELET FUNCTIONS

Haemostasis is a physiological process that maintains the fluidity
of the blood and prevents bleeding during vascular injury. The
key role of platelets in haemostasis and thrombosis has been
documented for many years (6, 7). Multiple therapeutic targets
have been identified and used in the development of anti-
thrombotic drugs. However, work published in recent years
shows that the role of platelets is not confined to maintaining
vascular integrity and thrombosis as they play an important role
in inflammation, cancer dissemination, wound healing and the
separation of blood and lymphatic vessels during development.
Platelets impact inflammation and the innate immune response
on several levels (8–14). They express toll-like receptors (TLRs)
involved in the innate immune response and may thereby
contribute to the response to infections by secreting a number
of inflammatory mediators (8, 13, 15–17). Furthermore, several
receptors on the platelet surface recognise ligands present on
monocytes and neutrophils, resulting in the formation of
circulating leuko-platelet aggregates (14). Activated platelets
can secrete chemokines that contribute to monocyte
recruitment (18–20) or macrophage differentiation (21). The
interaction of platelets with neutrophils via PSGL-1, a P-selectin
ligand, is key in initiating the innate inflammatory response and
neutrophil extravasation (22–24). Platelet interactions with
endothelial cells during infection also condition monocyte
migration to the site of inflammation (25).

The CD40 ligand (CD40L) produced by platelets induces an
inflammatory response in the endothelium (26–29). Indeed,
CD40L can cause endothelial cells to produce reactive oxygen
species and express adhesion molecules, chemokines and tissue
factor (26, 29). Unlike CD40L, which is stored in platelets, IL-1b
is synthesised during platelet activation (30, 31). IL-1b
production is sufficient to induce endothelial cells to express
genes involved in leukocyte adhesion (32). IL-1b activates
endothelial cells causing increases in chemokine secretion and
in the expression of molecules that trigger neutrophil and
monocyte adhesion to the endothelium (25).
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Thus, the involvement of platelets in inflammation is a
dynamic process involving various mechanisms. It is important
to note that this phenomenon is reciprocal since reference has
been made to the pleiotropic role of leukocytes in haemostasis
and thrombosis known as “immunothrombosis” (33). The
importance of the intimate relationship between platelets and
inflammatory cells is found in several diseases, including
neurodegenerative diseases, atherosclerosis, acute coronary
syndrome, rheumatoid arthritis and lupus (13, 34–37).
PLATELET GRANULES

Correct platelet function is largely determined by soluble factors
that are secreted by alpha and dense granules as well as by
lysosomes (38–42). Indeed, platelets store small molecules in
their dense granules and several hundred different proteins in
their alpha granules. The granules are generated in the
megakaryocytes and/or collected in the circulating plasma (like
a sponge) by mechanisms that are still not fully understood.

Alpha Granules
In platelets, alpha granules account for approximately 10% of the
platelet volume and are present at a rate of 50 to 80 alpha
granules per platelet. They are spherical or oval in shape, and
200-500 nm in diameter (43). These granules contain a wide
variety of adhesive proteins that are important for primary
haemostasis, such as von Willebrand factor (vWF), fibrinogen,
fibronectin, vitronectin and thrombospondin (41). These
proteins are important to the adhesive properties of platelets
and the formation of a stable thrombus. Alpha granules also
contain molecules that play a role in coagulation (factors V, XI,
XIII) as well as in wound healing, inflammation and angiogenesis
(41). These molecules include PF4 (platelet factor 4), IL-8
(interleukin 8), PDGF (platelet derived growth factor), TGF-b
(transforming growth factor-b) and VEGF (vascular endothelial
growth factor) (41). PF4, b-thromboglobulin (or CXCL7) and
Rantes (or CCL5) are the most abundant chemokines in the
alpha granules. Some platelet alpha granule components, such as
fibrinogen or albumin, are internalised while others are
synthesised in the megakaryocyte and then loaded into the
granules (2). The theory that alpha granules represent a
homogeneous population of organelles has been challenged by
several groups. Italiano’s team in particular showed that pro- and
anti-angiogenic proteins are distributed to varying degrees in the
alpha granules and are secreted differently and independently
(44–46).

Dense Granules
Dense granules (or d granules) are found solely in platelets (47–
49). These granules are fewer in number (3-8 per platelet) and
smaller (100-300 nm in diameter) than the alpha granules (50).
They contain high concentrations of cations, polyphosphates,
ADP, ATP, serotonin, calcium and polyphosphates, giving them
an opaque appearance on examination under an electron
February 2022 | Volume 13 | Article 825892
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microscope (47). Their membranes contain the lysosome
markers LAMP2 and CD63 but not LAMP1 (47–53).

Despite their relevance for haemostasis, inflammation and
thrombosis, the biogenesis of alpha and dense granules has not
been entirely elucidated.

Granule Release Mechanisms
Exocytosis of platelet granule contents occurs by mechanisms
similar to those used by other secretory cells such as neurons.
Exocytosis involves reorganisation of the cytoskeleton,
movement of the granules to the plasma membrane, fusion
between the plasma membrane and the granule membrane and
the release of the intracellular contents (3, 40, 54, 55).

Phospholipase C and G-protein-coupled receptor signalling
pathways activate different isoforms of Protein kinase C which,
in turn, phosphorylate several molecules involved in exocytosis.
Although the mechanism of platelet secretion has not been
explained in full, it is thought to be similar to that of neurons.
Indeed, the active secretory machinery comprises the soluble N-
ethylmaleimide sensitive factor(NSF) in the nucleus and soluble
NSF-associated protein receptor complexes (SNAREs) located
on the surface of vesicles (vSNAREs, vesicular SNAREs) and
target membranes (tSNARES, target membrane SNAREs) (3, 5,
40, 55, 56). The interaction between vSNAREs and tSNAREs
forms a stable complex that brings the two membranes into close
proximity and prompts their fusion. Platelets express SNAREs
proteins, including (i) vSNAREs which correspond to vesicle-
associated membrane proteins (VAMPs) -2, -3 and -8 (ii) and
tSNAREs which include soluble NSF-associated proteins
(SNAPs) -23, -25 and -29 and syntaxins 2, 4, 7 and 11 (3, 57, 58).

Similarly, platelets express SNARE regulatory proteins such
as Sec1 and Rab. Under basal conditions, the platelet Sec1
protein (PSP) prevents SNARE complex formation by binding
to tSNAREs, thereby inhibiting membrane-vesicle fusion.
Following platelet activation and PKC activation, the platelet
Sec1 protein is phosphorylated and NSF is activated.At the same
time, Rab GTPase (Rab27a) links with Munc13-4 and SLP4
(Synaptotagminlike protein 4), attaching the granules to the OCS
or plasma membrane. This interaction and assembly process
triggers vSNARE-tSNARE association and facilitates vesicular
attachment to the OCS, forming a SNARE complex that precedes
membrane fusion. Finally, NSF modulates SNARE conformation
in a zipper-like manner, causing granule fusion with the OCS
and releasing the contents of the granules (5, 57, 59–64).
CD40L

CD40L, also known as CD154, is a type II transmembrane
protein belonging to the TNF (Tumour Necrosis Factor)
superfamily. This protein was originally identified as a ligand
of the CD40 receptor with a molecular weight ranging from 32 to
39 kDa due to post-translational changes. Since the CD40L-
CD40 axis was first discovered in immune cells, the first signals
to be identified were immunological in nature (65–67).
Numerous additional studies have revealed the expression of
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the CD40L-CD40 axis in non-immune cells and the presence of
other CD40L receptors such as aIIbb3, a5b and Mac-1. These
studies led to the discovery of the thrombo-inflammatory role of
CD40L by ensuring the interaction between platelets and the
immune system (9, 28, 66, 68–70).

CD40L is expressed by several haematopoietic and non-
haematopoietic cells such as B cells, activated T cells,
macrophages, neutrophils, dendritic cells (DCs), activated
platelets, endothelial cells and smooth muscle cells. In contrast
to neutrophils, cells constitutively expressing CD40L, such as B
lymphocytes, macrophages and DCs, increase the expression of
this ligand in response to cytokines (71–78). Four CD40L
receptors have been identified to date, namely the classical
CD40 receptor and the three integrins: aIIbb3, a5b1 and
aMb2 or Mac-1 (29). However, only CD40, aIIbb3 and a5b
are expressed on platelets.

While CD40L is intracellularly localised in inactivated
platelets, activated platelets express CD40L on their surface,
allowing them to interact with CD40-expressing cells such as
other platelets or endothelial cells, in addition to lymphocytes
and DCs. Platelet-derived CD40L has been shown to induce the
differentiation of monocytes into DCs and their maturation, in
addition to positively regulating the expression of their
costimulatory molecules (71–75, 78). This function of platelet-
derived CD40L may be highly relevant for systemic lupus
erythematosus (SLE), an autoimmune disease in which
platelets have been shown to induce DC differentiation and
IFN release, thereby promoting antibody secretion by B
lymphocytes (79–82). Platelets expressing CD40L have also
been identified in different diseases where they directly activate
the endothelium (26, 28, 68, 83) or contribute to the recruitment
of neutrophils and T lymphocytes to the damaged endothelium,
especially in the intima and plaques in atherosclerosis. Thus, in
accordance with in vivo and in vitro investigations that have
highlighted the role of platelet CD40L in B lymphocyte isotype
switching and increased CD8+ T lymphocyte function during
infection, these multiple studies suggest that platelets, via
CD40L, may impact on lymphocytes and DCs in key stages of
adaptive immunity (18, 84–86).
INVOLVEMENT OF THE CD40L/CD40 AXIS
IN PLATELET FUNCTIONS

In the Context of Thrombo-Inflammation
Henn and colleagues (26, 87) were the first to attribute a
physiological modulatory role to the CD40L/CD40 axis
showing that it temporally regulates undesirable inflammation
during thrombogenesis. In particular, they demonstrated that
platelets activated by an agonist express CD40L which triggers an
inflammatory response in CD40 expressing endothelial cells.
Increased aggregation then allows platelet interactions between
CD40L and CD40, which leads within a few minutes to a few
hours to the cleavage of CD40L (87), which becomes soluble
sCD40L. Langer et al. (88) showed that platelet CD40 has a
primary haemostatic role. The work of Danese et al. (27, 89–93)
February 2022 | Volume 13 | Article 825892
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was among the first to demonstrate the direct inflammatory
effect of platelets via the CD40L/CD40 axis. They showed that
lymphocytes expressing CD40L activate platelet CD40, which
triggers the release of RANTES (CCL5) that binds to endothelial
cells to enhance T lymphocyte recruitment (89, 92, 93). Similarly,
Inwald et al. showed that the binding of sCD40L to CD40
induces P-selectin expression and partially activates aIIbb3
without inducing platelet aggregation (94, 95). Moreover,
Gerdes and colleagues (96–99) showed that platelet CD40 is
involved in atherosclerosis by triggering platelet-leukocyte
aggregate formation and endothelial cell activation.

There is considerable evidence to suggest that platelet
transcription factors play a key role in regulating inflammatory
and haemostatic functions (100). Yacoub et al. (101, 102)
demonstrated that platelets express TRAF-1, -2 and -6 and
that binding of sCD40L induces recruitment of TRAF-2 to
CD40. The sCD40L/CD40/TRAF2 axis was also shown to
induce activation of Rac1 and p38 MAPK, leading to P-selectin
expression and a change in platelet shape (103). In addition, this
same axis allowed for increased platelet aggregation ex vivo and
thrombus formation in vivo in the presence of suboptimal doses
of platelet agonists. Hachem et al. (103) showed that sCD40L
induces phosphorylation of IkBa, the inhibitory subunit of NF-
kB which, unlike nucleated cells, is involved in elusive functions
not affecting the genome. The activation of NF-kB induced by
sCD40L was also found to be independent of the sCD40L/CD40/
TRAF2/Rac1/p38 MAPK axis and essential for the expression of
P-selectin as well as for the potentiation of platelet aggregation in
response to low doses of platelet agonists (103). The study
conducted by Kojok and colleagues (104) then demonstrated
that both the activation of NF-kB induced by sCD40L and the
potentiation of aggregation occur exclusively downstream from
the activation of the CD40 receptor. A second study by the same
research group (105) demonstrated that acetylsalicylic acid
(ASA) reduces sCD40L-enhanced platelet TxA2 secretion and
sCD40L-potentiated platelet aggregation by inhibiting platelet
agonist-induced phosphorylation of the Myosin Light Chain. It
should be noted that the two platelet priming axes activated by
the sCD40L/CD40 axis (p38 MAPK and NF-kB) were not
affected by ASA (105). This indicates that sCD40L may be
responsible for the reduced efficacy of regular antiplatelet
therapy in some patients with coronary artery disease (105).
These studies conducted by Merhi and colleagues (102, 104)
contradict an earlier study by André et al. (106–108) which
showed that the sCD40L/CD40 axis is not thrombogenic since
thrombus formation in CD40-/- mice is intact, in contrast to
CD40L-/- mice which develop delayed thrombogenesis. In
parallel, they also showed that sCD40L binds to aIIbb3 as
strongly as fibrinogen, and that this binding is more likely to
stimulate platelet activation. However, the mechanisms involved
in platelet activation by the sCD40L/aIIbb3 axis have not been
sufficiently explained. These contradictions may suggest that
CD40 and aIIbb3 are, respectively, the high and low affinity
receptors for sCD40L.

Data have implicated sCD40L in endothelial dysfunction and
angiogenesis. Napoleao et al. showed that the concentration of
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sCD40L increased over time after the onset of myocardial
infarction, associated with endothelial NOS (eNOS)
polymorphism and Vascular Endothelial Growth Factor
(VEGF) concentration (109). These results indicate that
sCD40L should not only be considered involved in haemostasis
and inflammation, but also plays an important role in vascular
and endothelial dysfunction (109–113). Although most studies
confirm the important role of the various platelet sCD40L/CD40
axes in thrombo-inflammation, further studies are needed to
describe their complete signalling pathways and the precise
molecular effects they have on platelet functions.

In an Infectious Context
The role of platelets is not limited to the haemostatic response. In
an infectious context, platelets express many members of the
TLR family. TLRs 1-10 and their signalling pathways, adaptor
molecules and transcription factors have been identified in
humans and are all expressed by platelets (8, 15–17, 114–119).
These TLRs allow the platelet to play a critical role in innate
immunity through the recognition of PAMPs and DAMPs. TLR
4 recognises LPS, a major component of the wall of Gram-
negativebacteria (17, 117, 118, 120).ThebindingofLPSbyTLR4 is
not direct, but involves two accessory plasma proteins, namely
LBP-LPS binding protein and CD14. CD14 is present on the
surface of cells, but not on the surface of platelets - hence its
soluble form (sCD14) present in blood allows interaction with two
TLR 4-MD-2 (myeloid differentiation factor 2) complexes and
leads to their dimerization (121–124).Humanplatelets can discern
various isoforms of bacterial LPS via TLR 4, resulting in distinct
cytokine secretion profiles and a modulated response to different
pathogen species (125, 126). Platelets in contact with LPS are
thought to play a significant role in the production of TNF-a (116),
TF (127) and sCD40L (128) in addition to increasing the
phagocytosis of platelets linked to auto-antibodies (129).
Furthermore, it was observed that septic patients with
thrombocytopenia had higher levels of TLR4 expressed on the
surface of platelets and more sCD40L in the bloodstream,
indicating high levels of blood platelet activation (130).

Stimulation of human platelet-rich plasma (PRP) by R.
africae (and also stimulation of TLR2 in PRP by its synthetic
ligand, Pam3Cys) has been shown to increase sCD40L levels,
whereas the use of TLR2-blocking antibodies could block this
effect (131). As activated platelets are considered the principal
source of sCD40L (93, 106), these effects result from TLR2-
mediated platelet activation. Several studies characterise the role
of platelet TLR2 in infections due to periodontal pathogens such
as A. actinomycetemcomitans and P. gingivalis, demonstrating
positive, TLR2-dependent regulation of CD40L membrane
expression on the platelet surface (122, 132). Our team also
demonstrated that the increased release of sCD40L from platelets
was mediated by TLR2 and NF-kB signalling (133).

Platelets also act as immune cells when it comes to binding
and internalizing viruses (8, 9, 16, 134).

Morris Madzime et al. have published a review (135) and
discussed, the role of neutrophils and platelets in HIV
transmission and disease. They have also considered the
February 2022 | Volume 13 | Article 825892
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impact of HIV and the most commonly used antiretroviral drugs
on the number and function of both cell types, as well as on their
interactions with each other. They have the importance of the
pro-adhesive interactions between platelets and neutrophils
involving CD40 and ICAM-2, on the former, and CD40L and
LFA-1 on the latter. Authors suggest that HIV infection induces
platelet activation that fuels neutrophil activation, adhesion,
endothelial transmigration and NET formation. Moreover,
studies have focused on the potential for primary interactions
between platelets and HIV env proteins (136) and the secretory
response of healthy platelets upon exposure to recombinant
HIV-1MN gp120 or gp41 peptides has been investigated.
Indeed, in the presence of two out of ten peptides, there was a
small but significant decrease in RANTES production, which was
restored by using blocking monoclonal antibodies to gp41. It has
also been shown that, despite the fact that hyperresponsive,
stimulated platelets from HIV-infected patients with HAART
release moderate amounts of RANTES and no additional
sCD62P, they retain their ability to release additional sCD40L
and GRO-alpha, which may aid immune system activation (137).
Interestingly, Daniele Pastori et al. have described that increased
platelet oxidative stress is associated with HIV-1 infection,
related to NOX2 activation. Platelet NOX2 activation plasma
and HIV-1 infection were correlated with sCD40L levels in vivo
suggesting an association between HIV-1 infection, platelet
oxidative stress and platelet activation (138).

Recently, several studies uncovered the role of platelet
dysfunction in inflammation associated with severe COVID-19
patients and the potential underlying mechanisms leading to this
event. Although patients with severe COVID-19 present several
clinical manifestations, thromboembolic events constitute a
common significant cause of morbidity and mortality in
patients infected. Severe COVID-19 is also associated with
hyperinflammation, especially in pre-existing cardiovascular
disease. Platelet dysfunction is frequently observed in COVID-
19 patients, indicating a loss of homeostasis in platelet function,
vascular integrity and the induction of coagulation cascade.
Annabel Blasi et al. (139) have showed that plasma levels of
activated factor VII were lower in COVID patients while levels of
the platelet activation marker soluble CD40 ligand were similar
in patients and controls. In contrast, Hind Hamzeh-Cognasse,
et al. (83) have described that the CD40L plasma level was
significantly elevated in the early stages of the disease.
Interestingly they observed that the soluble CD40L plasma
level decreased overtime while that of sCD62P increased
significantly, highlighting the importance of the inflammatory
kinetics in COVID-19. Finally, Tianyang Li et al. (140) have
defined a mechanism that may be a potential therapeutic target
in severe COVID-19. They showed that hypercoagulation and
the cytokine storm in severe COVID-19 were linked through the
Spike-CD42b interaction that activates platelets, the CD40L-
CD40 and the P-selectin-PSGL-1 interactions that bind them
to monocytes, and the strong induction of IL-1b in monocytes.

In a Transfusion Context
sCD40L is mainly produced by platelets after their activation. Its
concentration is increased during the storage of platelet
Frontiers in Immunology | www.frontiersin.org 5
concentrates. Studies have reported that sCD40L levels can be
linked to genetic markers. Indeed, our team has identified
polymorphism in the ITGA2 gene (coding region of the
platelet collagen receptor), which is associated with a
significant change in sCD40L secretion (141).

Platelet storage lesions include the appearance of platelet
activation markers, morphological changes, mitochondrial
dysfunction, loss of GPIba expression and a-granule secretion
(142). The storage of platelet concentrates can lead to the
secretion of several BRMs (Biological response modifiers), such
as sCD40L, PDGFAA, RANTES, IL1b, IL6, IL7, IL8, PF4, IL13,
OX40L, IL27 and TGFb (9, 70, 143). Generally, prolonged
storage of platelet concentrates is accompanied by increased
BRM production. This may be related to an increase in the
percentage of Recipient Adverse Events (RAEs) observed as a
function of the platelet concentrate storage period. Platelet
concentrates should preferably be transfused as early as
possible in order to limit RAEs. However, this conclusion
should be considered in line with the constraints of platelet
concentrate production and delivery by blood banks, and the
demand for products by health care institutions. In particular,
from the third day of storage of platelet concentrates, our team
highlighted a significant increase in the concentration of these
BRMs, particularly sCD40L (144). These observations suggest
that storage lesions play a role in the inflammation induced by
platelet concentrates. Indeed, sCD40L triggers the production of
Reactive Oxygen Species (ROS) during the storage of platelet
concentrates, leading to an increase in the production and release
of proinflammatory molecules (145).

Storage damage triggered by extrinsic (preparation methods)
or intrinsic (plasma and platelet factors, residual leukocytes)
factors could be largely responsible for a decrease in the
therapeutic efficacy of platelet concentrate transfusions, and
also for the induction of RAEs (146). The BRMs contained in
platelet concentrates are also transfused to the recipient, in
addition to blood platelets.

Among these molecules, sCD40L has been described as
partly responsible for Febrile Non-Haemolytic Transfusion
Reactions (FNHTR) after platelet transfusions (147, 148). In
addition to its role in inflammation, CD40L appears to be
involved in RAEs. Indeed, sCD40L is present in platelet
concentrates and its concentration increases during storage
(144). Numerous studies have shown that sCD40L is involved
in reactions after PC transfusion (28, 149, 150). We have also
shown that other soluble factors, such as IL27 and sOX40L, were
involved in FNHTR (151, 152). Several soluble factors with a
high predictive value for the occurrence of RAEs were
identified by mathematical machine learning models, such as
sCD40L, IL13 and MIP1a (153). Indeed, this study shows a
correlation between the concentration of sCD40L and IL13
and the occurrence of RAEs. Furthermore, MIP1a present
in RAE-inducing supernatants seems capable of distinguishing
the type of RAE, FNHTR or allergies, depending on
its concentration.

In this study, 9,206 platelet concentrate samples were
collected at the time of preparation, of which 2,850 were
sampled on the day on which the platelet concentrates
February 2022 | Volume 13 | Article 825892
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were delivered. The concentration of sCD40L was assessed for all
these samples. In conjunction with haemovigilance services, we
collected 140 PCs that had induced RAEs. A mathematical model
identified a threshold above which there was a significant
association between sCD40L levels and RAEs, allowing entropy
to be removed from a large data set. These results indicate that
sCD40L in PCs is not always responsible for pathogenicity in
patients (RAEs). The thresholds are more discriminating for
PPCs than for APCs (154).

Platelet storage lesions are referred to as structural and
biochemical changes in platelets. These storage lesions depend
on production methods, additive solutions, method of pathogen
inactivation, and storage time, etc. Sut C et al. (155) investigated
the concentration of sCD40L and sCD62P in apheresis platelet
concentrates (APCs) and buffy coat pooled platelet concentrates
(PPCs). Nearly 9,000 samples were studied, depending on
preparation and storage period. Soluble factors were quantified
in platelet supernatants using the Luminex technique. APCs
appeared to be more activated than PPCs at the end of the
preparation stage, i.e. before storage. However, soluble
proinflammatory factors, including sCD40L, are higher during
storage in PPCs compared to APCs. Our data highlight the
importance of processing and storing platelet concentrates (155).
In a study by Sut C et al., nearly 4,000 samples of apheresis
platelet concentrates were investigated for donor-related
parameters in addition to the preparation and storage
processes. Soluble CD40L and CD62P were quantified in
platelet concentrate supernatants after preparation and during
storage, using Luminex technology. We noted an increase in
soluble factors over time. However, the different parameters
studied in relation to either the donors or the donations, such
as: i) the donor’s gender, ii) the donor’s blood type, iii) the time
of collection and iv) the type of apheresis separator, do not
appear to significantly impact the platelet activation state and the
release of soluble CD40L and CD62P (156).

Post-transfusion dyspnoea (TRALI - Transfusion‐Related
Acute Lung Injury) is acute respiratory distress occurring
within 24 hours of transfusion. TRALI has a very complex
pathogenesis involving various inflammatory cells, such as
neutrophils, platelets and endothelial cells (157–160). Some
even suggest the involvement of other cells, such as monocytes
or (161) pulmonary macrophages (162). Although no consensus
has been reached as to which cells are actually involved
(neutrophils vs. monocytes vs. pulmonary macrophages vs.
blood platelets), there is a common denominator between all
these cells, namely the involvement of the CD40L/CD40 protein
complex. This immune relationship actively participates in
establishing innate and adaptive immunity and, more
generally, inflammation (29). By targeting this protein
complex, we assumed inhibition of the onset of TRALI,
characterised by an unregulated inflammatory state, induced in
a murine model by successive injections of LPS and anti-CMH I
antibodies. Rather than cell activation, the migration of
neutrophils and blood platelets from the vascular compartment
to the alveolar space was inhibited. Indeed, in the blood
compartment, inflammation is not limited during treatment
Frontiers in Immunology | www.frontiersin.org 6
with neutralising anti-CD40L antibodies, but the action of
neutrophils and platelets in the lung is perceptibly reduced.
Inhibition of the CD40L/CD40 relationship in this study also
appears to have an impact on monocytes. This particular
parameter warrants further investigation. This study highlights
the long and underestimated role of the CD40L/CD40 protein
complex in the pathophysiology of TRALI (163).

TRALI is considered to be one of the post-transfusion reactions
with the highest mortality rate (164). This condition, as seen
previously, is characterised by severe pulmonary repercussions,
which explains the high mortality rate. The pathogenesis of
TRALI is similar to that of several inflammatory diseases, such as
pancreatitis or inflammatory bowel syndrome. A similar
mechanism is involved in pancreatitis - duly orchestrated by the
migration of neutrophils into the damaged tissue (165). We
assumed that deeper organs, such as the pancreas, may be a
secondary target during the onset of TRALI. As both diseases,
namely pancreatitis and TRALI, are closely linked, we investigated
the involvement of the CD40L/CD40 protein interaction in the
regulation of pancreatitis immediately following the onset of
TRALI. Using an animal model of TRALI induced by successive
injection of LPS and anti-CMH I antibodies and preventive
treatment based on anti-CD40L antibodies, we were able to
demonstrate that the pancreatic damage observed in our ALI
model is prevented to a significant extent when the CD40L/CD40
immune complex is inhibited (166).
CONCLUSION AND FUTURE DIRECTIONS

Given i) the large blood platelet count, taking all vascular cellular
elements into consideration, ii) their wide range of immune
receptors, iii) the ability of platelets to interact with/promote
immune cells and endothelial cells, and iv) their active
participation in immunity and inflammation, blood platelets
have been the subject of numerous investigations into the
physiological processes related to inflammation. As a general
rule, all of the studies presented in this review show that platelets
are capable of covering most of the stages of inflammation,
primarily through the CD40L/CD40 interaction, thus confirming
their own role in this pathophysiological condition.

Several original reviews have studied “platelet physiology” as an
immune cell concept (143, 167), and a significant number of articles
(17, 69, 168–172) have recently confirmed this idea. It is now clear
that, in addition to their role in haemostasis and thrombosis,
platelets have a wide range of other functions. These include key
roles in the inflammatory process and immune responses (10, 143,
173). Future research will focus on the critical role of platelets as an
immune cell in the host immune response. The key message of this
review is that platelets are fully involved in inflammatory processes,
particularly via the CD40L/CD40 complex, in relation to both
exogenous and endogenous stress. Future challenges for
therapeutic intervention in disease processes will be to identify
medicinal products that block specific targets involved in the
complex contribution of platelets to inflammation/immunity
without affecting their haemostatic function.
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