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Accurate prediction of the short time series with highly irregular behavior is a challenging task found in many areas of modern
science. Such data fluctuations are not systematic and hardly predictable. In recent years, artificial neural networks have widely
been exploited for those purposes. Although it is possible to model nonlinear behavior of short time series by using ANNs, very
often they are not able to handle all events equally well. -erefore, alternative approaches have to be applied. In this study, a new,
concurrent, performance-based methodology that combines best ANN topologies in order to decrease the forecasting errors and
increase the forecasting certainty is proposed. -e proposed approach is verified on three different data sets: the Serbian Gross
National Income time series, the municipal traffic flow for a particular observation point, and the daily electric load consumption
time series. It is shown that the method can significantly increase the forecasting accuracy of the individual networks, regardless of
their topologies, which makes the methodology more applicable. For quantitative comparison of the accuracy of the proposed
methodology with that of similar methodologies, a series of additional forecasting experiments that include a state-of-the-art
ARIMA modelling and a combination of ANN and linear regression forecasting have been conducted.

1. Introduction

Prediction is a process that uses data from the present and
the past in order to estimate future. -e result of this process
is the information about probable events in the future and
their effects and outcomes. Making good forecasts is es-
sential for making good decisions and planning in all areas of
life. Although it does not have to reduce uncertainties and
difficulties of the future, it can increase the certainty and the
level of the preparedness for challenges and environmental
changes that future events bring.

-e need for development of prediction methods occurs
in almost every area of life—technology, engineering, in-
dustry, science, politics, economy, business, sport, medicine,
etc. Good forecasts can ensure lower cost of the services and
products, increased customer/client satisfaction, and sig-
nificant competitive advantage [1].

Every daily activity begins with planning. -e planning
begins with a prediction [2]. Prediction errors may have
crucial implications on decision-making, profits and in-
vestment justification, risk assessment, alerting events, hard
real-time systems’ actions, timely handling of emergency
health and medical conditions, etc. [3]. Because of that,
decreasing the error of the prediction is an essential task for
every forecasting expert, regardless of the applied prediction
methods.

Prediction methods described in the literature can be
roughly categorized into two large groups: traditional and
modern. Each of them has advantages and disadvantages.
None of them is superior to all others if we consider all
possible criteria of evaluation [4]. Traditional prediction
methods try to extrapolate time series data using different
modelling: exponential smoothing [5], linear or nonlinear
regression [6–8], simple (AR) or more complex autoregressive
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models (ARMA, ARIMA, and double seasonal ARIMA) [6, 9].
On the other hand, modern predictionmethods exploiting the
artificial intelligence (AI) behavior can model both nonlinear
and linear structures of time series [10] and can produce good
accuracy of the forecasting. Such techniques use different
topologies of artificial neural network, fuzzy modelling, vector
machines, and genetic-simulated annealing algorithms to
predict time series data [4, 11–14]. Different authors have
shown that AI-based models frequently express better pre-
dictive characteristics compared to models using standard
multilinear regression [14]. Finally, both theoretical and
empirical findings in the literature show that combination of
two ormore different methods can be an effective and efficient
way to improve forecasts and decrease the error [10]. Such
hybrid methods are studied in [2, 3, 10, 15–17].

Despite numerous ways to predict the future mathe-
matically, there are many cases of variables that could not
reliably be predicted. Causes for this limitation could be
found in the randomness of the events and the lack of
significant relationship in data. When factors considered
during forecasting of a certain variable are not well known or
understood, prediction becomes imprecise or mistaken.
Sometimes, there is simply not enough data about every-
thing that affects the forecasted variable. -e prediction
process relies on some specific hypothesis. If they are set
wrong, due to bad judgment, i.e., human error, the pre-
diction will be mistaken. Although the forecasting is based
on past events, no one can guarantee that the history will
repeat every time in the same way. -erefore, forecasts are
subject to human error.

A time series can be defined as a sequence of numerical
data occurring in regular intervals over a period of time,
collected in a successive order. Short time series are
characterized by a lack of trend information, randomness
and periodicity, and demands for such forecasting repre-
sent a challenging problem [18]. Usually, time series cases
where the sample length N is very small are not applicable
for generating statistically reliable variants of forecasting.
In this paper, we will focus on such time series and their
forecasting. We will propose a new methodology that can
be applied to irregular series. -e methodology is appli-
cable to all types and topologies of neural networks, or
similar AI based forecasting methods, in order to improve
their accuracy.

-e usual step in development of forecasting ANN is to
train many networks, while changing the number of
neurons in some particular layer. -e ANN with the most
accurate forecasting wins. Nevertheless, if we observe the
forecasts of all obtained networks, we can conclude that
sometimes different networks predict different directions
of the trend change in the next forecasting step. In this
point, one cannot determine which one is the correct. -is
is particularly noticeable when dealing with volatile data
series. -erefore, incorporating more than one network in
the forecasting decision could make better predictions of
the future events.-emethodology that is suggested in this
paper improves the forecasting accuracy of the ANN in the
sense that it concurrently exploits several most accurate
networks instead of the winner one. In this way, the

forecasting accuracy can be significantly improved, as well
as the confidence of the prediction. -e performance of the
proposed method is verified on an example of Serbian
Gross National Income (GNI) data series, using Feed
Forward Accommodated for Prediction (FFAP) neural
networks’ topology. -e results demonstrate higher
forecasting accuracy compared to individual FFAP
networks.

-e rest of the paper is organized in the following
manner. In Section 2, the structure of the FFAP neural
network topology is presented. -e section that follows
describes in detail the concurrent best-performance-based
methodology for increasing the accuracy of the short time
series FFAP forecasting. -ree case studies are performed
and analyzed: Serbian Gross National Income time series,
the municipal traffic flow for a particular observation point,
and the daily based electric load consumption time series;
the forecasting results of the proposed methodology and
other state-of-the-art forecasting techniques and their
combinations are given in Section 4.-e obtained results are
discussed in Section 5, while conclusions are summarized in
the last section.

2. FFAP Neural Networks

In general, neural network-based computational and
forecasting methods developed from the desire to reveal,
realize, and emulate the capability of the brain to process
information [14]. -e entire brain is composed of many
neural networks that receive information from the sur-
roundings, extract and recombine their relevant parts, and
make the decisions about the needs of the organism. Ar-
tificial neural networks (ANN) emulate such abilities of the
brain in order to realize complex nonlinear input-output
transformations.

Consider a time series denoted by yi, i � 1, 2, . . . , m. It is
a set of observables of an undefined function y � f(t), that
are taken at regular time intervals Δt, where ti+1 � ti + Δt. In
the forecasting process, the historical data are used to de-
termine the direction of future trends, while one-step-ahead
forecasting implies the mathematical search for such a
function f that can accurately perform the following
mapping:

ym+1 � f tm+1(  � ym+1 + ε, (1)

where the term ym+1 represents the desired response, while ε
is the acceptable error.

In the past decades, ANNs have been developed as a
tool that has great capabilities for recognizing and mod-
elling data patterns that are not easily identifiable by tra-
ditional methods. However, one may notice a common
feature in all existing ANN applications in forecasting. It is
the necessity for a relatively long time series in order to
achieve high accuracy. Usually, there should be at least 50
data points to consider [19]. Because of this and due to
previous research in short-term forecasting [20–22], we
have chosen the FFAP neural network topology, as a base to
be used throughout this study. -is structure will briefly be
explained next.
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General structure of a feed forward neural network is
illustrated in Figure 1. It has just one hidden layer, since it is
confirmed to be sufficient enough to solve univariate fore-
casting problems [23]. In this figure, indices “in,” “h,” and
“o” denote input, hidden, and output layers of the ANN,
respectively. Weights are labeled with w(k, l), where con-
nections of the input and the hidden layer are designated
with k� 1, 2, . . ., min, l� 1, 2, . . ., mh, while connections of
the hidden and output layer are designated with k� 1, 2, . . .,
mh, l� 1, 2, . . ., mo. -e thresholds are denoted with θx,r,
r� 1, 2, . . ., mh or mo, depending on the layer. -e neurons
in the input layer distribute the input signals, while neurons
in the hidden layer are activated by a sigmoid function.
Finally, linear function activates neurons in the output layer.
A modified version of the steepest-descent minimization
algorithm is applied as a learning method [24]. -e problem
of initialization was solved using the method described in
[25].

In the case of short time series prediction problem, a set
of observables (samples) is given (per time instant) meaning
that only one input signal is available, the discretized time
[18]. To enable mathematical solution for the forecasting
problem, in most cases, both values for time variable and the
response need to be transformed, as shown in the following
equation:

t � t
∗ − t0. (2)

Having in mind that t∗ stands for the time instant, this
reduction gives the value of 1 to the time of the first sample
(t0). Samples are normalized in the following way:

y � y
∗ −M, (3)

where y∗ stands for the current value of the target function
and M is a constant, selected so as to reduce the relative
difference between output values, if necessary. When
implementing the architecture in Figure 1, the following
series would have to be learned: (ti, f(ti)), i� 1, . . ., m.

Exploiting the basic topology shown in Figure 1, in
[26, 27], better forecasting solutions were suggested for the
problem of short prediction base period. -is architecture
is referred to as feed forward accommodated for prediction
(FFAP) and depicted in Figure 2. -e main idea during the
FFAP architecture development was to force the neural
network to learn the same mapping several times simul-
taneously but shifted in time. In that way, it is supposed
that previous responses of the function will have larger
influence on the f(t) mapping.-is also forces the network
to identify complex intertwined deterministic relations
existing between phenomena that influence the observed
variable.

-e FFAP architecture is depicted in Figure 2. -e input
set (ti) is brought to the input terminal. -e future terminal
at the Output3, approximates yi+1. Output3 may also be seen
as a vector when a multiple-step prediction is required. -e
present value yi is obtained at terminal Output2. Finally,
Output1 should learn the past value, i.e., yi-1. Although it is
not explicitly stressed out, this may also be seen as a vector of
past values of the response (since multiple samples from the
past responses were used).

We can express the functionality of the network as

yi+1, yi, yi−1, yi−2, yi−3(  � f ti( , i � 4, ..., m, (4)

where Output1 � yi−1, yi−2, yi−3 , meaning that one future,
one present, and three previous responses are to be learned.

Our task here was to do one-step-ahead prediction.
Using the already predicted value as input data for
multistep-ahead prediction leads to accumulation of the
prediction error what we demonstrated in [21].

In this way, an efficient network topology is created, that
uses in the test phase, only matrix win in combination with
single column/row of matrix wo, and the outputs corre-
sponding to different moments, for evaluation of weighs in
win and thresholds in hidden layer.

3. Concurrent Best-Performance-Based
Prediction Methodology

-e methodology for increasing the accuracy and certainty
of short time series ANN forecasting that we are suggesting
is depicted in Figure 3. -e aim of this procedure is to
establish tools and procedure that will increase the accuracy
of the existing individual forecasting FFAP networks,
exploiting the best of them, in a concurrent manner.
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Figure 2: FFAP—feed forward accommodated for prediction ANN
structure.
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Figure 1: Basic fully connected feed forward neural network (one
hidden layer and multiple outputs in the output layer).
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We start with a turbulent short time series, expressing a
certain variable for a given period of time. In order to fa-
cilitate their learning, these data sets have to be properly
adjusted (shifted and/or normalized). After that, we evaluate
the effect of changing the number of neurons in the hidden
layer of the FFAP on the forecast accuracy. We begin with
generating and training the FFAP network that has 3
neurons in the hidden layer. -e experiment repeats with
increasing number of hidden neurons. -e construction of
networks ends when FFAP with 10 neurons in the hidden
layer is obtained and trained. -is gives 8 different neural
networks.

When a single network is trained, it requires a minimal
learning set of first 13 samples (in our case, this is shown to
be enough) in order to create the first forecast at the
output, that is the extrapolated value of the trend curve.
Since this is still training, one can also calculate the first
forecasting error for the particular network. By entering
every further sample, the network can better learn and
predict the trend and its change for the input variable. As
already mentioned, this process repeats for the entire
group of networks. At the end of this process, all networks
are trained with the entire time series, representing the past
and the present. -e result of this process can be sys-
tematized in a form of a forecasting matrix, with columns
representing the number of neurons in a particular net-
work, while rows represent time instances for which the
forecast were made. -e number of columns goes from
three to ten, while number of rows is equal to the number
of input samples.

In the next step, we analyze the forecasting matrix and
search for three topologies that have the best performance
measures. -e reason for choosing three topologies lies in
the fact that the time series can be irregular. Two best
networks can predict totally opposite trend change for the
next predicting step.

Because no one can tell which one is more correct, we
introduce the forecast of the third best network to perform a
kind of arbitration. In this way, the confidence of the pre-
diction as well as its accuracy can be improved. In this analysis,
we calculate mean average error (MAE), mean square error
(MSE), root-mean-squared error (RMSE), and mean absolute
percentage error (MAPE), for each column, using equations
(5)–(8). -e least three values of a particular error correspond
to three most accurate ANN forecasting topologies:

MAE �


N
i�1 yi − yi
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, (5)
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MAPE � 100 ·
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N
, (8)

where N denotes the number of sample cases, yi represents
the individual predicted value, and ̂yi is the target value for
the sample i.

-e process ends by adopting the final prediction on a
test set data calculated using three best topologies simul-
taneously. Four cases of concurrent forecasting were in-
vestigated. First, we simply calculate an average of the
forecasts for three most accurate networks. Namely, if the
two of three predictions are supporting each other in
forecasting the future trend, they make the largest impact to
the final prediction, decreasing the importance of the third
that predicts the opposite change of the trend. In that way,
none may be qualified as the better one. So, the average is the
best representative.
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Figure 3: Algorithm for obtaining high-accuracy predictions.
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Nevertheless, from our experience, creating a linear
combination of three best forecasts, where weights or a
multiplying factor for each network, corresponds to a re-
ciprocal of its forecasting error, can further improve the
forecasting accuracy. -e one that was the closest to the
correct value gets the largest weight in the equation for the
final forecast, as shown in the following equations:

yfinal � w1 · yf1 + w2 · yf2 + w3 · yf3,

w1 : w2 : w3 � ε3 : ε2 : ε1,

w1 + w2 + w3 � 100%,

(9)

where ε can be of any error types that are calculated (MAE,
MSE, or RMSE). In these equations yfinal denotes the final
forecast value, while yf1, ε1; yf2, ε2; and yf3, ε3 denote forecasts
of the first, second, and third most accurate networks and
their corresponding errors, respectively.

4. Case Studies

4.1. Prediction of the Serbian Gross National Income.
Gross National Income (GNI) is defined as an estimate of
the income from goods and services produced by an
economy and received by a country both domestically and
from abroad. -is measure of the size of an economy is
highly important and has large economic, political, and
social implications. For politically and economically tur-
bulent developing countries, it is very difficult to predict it
due to mutual influence of many known or unknown
factors. -e methodology that can be considered for such
predictions exploits artificial neural networks. -is kind of
time series appears superb for verifying the methodology
that we propose. In this study, we will try enhancing the
neural network approaches, described in Section 2, for
short -term forecasting of the Serbian GNI, by decreasing
the forecasting error and increasing the confidents of the
predictions in the next term, using its historical data. -e
same data set will be used for ARIMA forecasting in order
to create a feeling about the order of accuracy of the
proposed methodology.

For the analyzed series, time is discretized at year long
periods and reduced by 1989, as given by (2), while the
value of the GNI is given in billions of Dollars, like in
original data. In this case, there was no need for nor-
malization of data. However, in our experience, these
transformations can make the training process numerically
better conditioned.

Although this time series covers a long period of time
(1990–2017), the GNI is the economic variable that is ob-
tained annually. It was first introduced by economic sci-
entists in 1990s. Because of that, this time series can be
considered as a very short. -e time series data are obtained
from the World Bank National Accounts data and OECD
National Accounts data files.

After the initial training of 8 networks using the test set
that contains GNI data for a period 1990–2012, we have
calculated their performance measures, i.e., MAE, RMSE,
andMSE.-ree most accurate FFAP networks have 7, 9, and
10 neurons in the hidden layer. Corresponding weights were

calculated based on the values of the networks’ errors in
order to be used in combined predictions of the test set
(2013–2017). Values are listed in Table 1, while Figure 4 gives
their graphical representation.

Table 2 contains prediction results obtained for 5
successive time instants of the test set, starting from 2013,
as well as the true value of the GNI. Figure 5 visualizes
three best GNI predictions from Table 2, while Figure 6
illustrates different GNI predictions, i.e., true, averaged,
MAE-weighted, RMSE-weighted, and MSE-weighted
values.

As a final measure of performances, for the proposed
methodology, we have calculated MAE, MSE, RMSE, and
MAPE for all GNI predictions of the test set for the period
2013–2017, and these are shown in Table 3. All types of
errors obtained after applying our forecasting algorithm are
better than any particular FFAP. For example, the best FFAP
that has 7 neurons in the hidden layer had a RMSE for the
entire predicted period of 6.85, while the best improvement
in forecasting is achieved when MSE-weighted concurrent
linear combination of three best FFAP is applied. RMSE in
this case is 2.60. -e error reduction in this case is almost
65%.

An economic variable that is very similar to the GNI is
the GNI per capita. It is an economy measure that is ob-
tained when the value of the GNI is divided by the number
of residents in a country. It should be emphasized that
values for the GNI and the GNI per capita show very similar
trends for particular time interval in the case of the Re-
public of Serbia. -is could be explained by the fact that the
natality for the Republic of Serbia is varying very slow over
time. -e authors have performed the similar forecasting
procedure on a GNI per capita time series for the same time
period, and it has shown very similar forecasting perfor-
mance measures.

To the best of our knowledge, analyzing GNI time series
in the case of Serbian economy is the task that has not been
studied or published yet, and no comparative analysis of the
forecasting accuracies with some alternative forecasting
methods can be conducted. To overcome this problem al-
ternative state-of-the-art, i.e., autoregressive integrated
moving average forecasting methodology (ARIMA) was
performed on the same data set. -e theoretical background
on this topic as well as its implementation strategies can be
found in the literature [28, 29].

-e model fitting process for GNI training set will be
very briefly explained here, since this task is out of the scope
of this study. To achieve the adequate ARIMA(p, d, q) model,
GNI series was tested for stationarity by applying the unit
root tests: Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test
and augmented Dickey–Fuller test (ADF). -ey indicated
that the GNI series is nonstationary. Since the null hy-
pothesis of nonstationarity is not rejected, the series needs to
be transformed. After the first difference, the autocorrelation
coefficients led to a conclusion that this new series is now
stationary. Second differencing over the data led to over-
differenced series and was discarded from further analysis.
In this way, the order of I term, d, in ARIMA(p, d ,q), has
been identified (here, 1). -e analysis of autocorrelation
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function ACF and partial autocorrelation function PACF
confirmed the stationarity of differenced data set and helped
in selecting the candidates for the best ARIMA model and
determining whether the pattern of autocorrelation can be
better explained by autoregressive AR terms, moving av-
erage MA terms or a combination of both. Selection of the
best model, among few suitable, is achieved based on

Akaike’s Information Criterion (AIC) and Schwarz Bayesian
Information Criterion (BIC). -e ARIMA(0, 1, 1) model
with minimal value of BIC was selected as the best,
expressing the smallest error variance.

In forecasting the Serbian GNI over the period of five
years (2013–2017), using the obtained ARIMA(0, 1, 1)
model, values for MAE, RMSE, MSE, and MAPE were 5.98,
6.52, 42.51, and 14.92, respectively.

We believed that it would be interesting to extend
existing experiments with additional predictions that
combine ANNweights with those obtained if an appropriate
weight for linear regression of the observed time series is
added into a final linear combination.We have constructed a
new forecasting system that exploits the performance
measures of both most accurate individual ANN topologies
with most accurate linear regression model. According to
their performances, new weights have been calculated in
order to obtain modified forecasting linear combinations of
four terms.-e newly obtained forecasting results are shown
in Figure 7.

Corresponding performance measures in GNI fore-
casting in the case of linearly combined best ANN topologies
and their extensions with linear regression models, out-
performed the traditional ARIMA modelling. -is is sys-
tematized in Table 4.

4.2. Prediction of the Municipal Traffic Flow. We define the
traffic flow as the number of vehicles that pass a particular
observation point per unit of time (usually 15minutes).
-ere can be various ways to “measure” the volume of the
traffic and various sources of data such as simulations,
sensors, taxi GPS, floating cars, and similar. In short-term
prediction, which is our goal, the traffic is predicted in the
next moments (usually 15minutes) on the basis of real-time
historical data.

-e traffic flow time series consists of about 70 mea-
surements, collected in collaboration with the Faculty of
Transport and Traffic Engineering of the University of
Belgrade, for one of the Belgrade’s busiest roundabouts. -is
time series can also be considered as short. Here, we assume
that the traffic from the immediate past has the greatest
impact on the future value which, in turn, is produced for a

Table 1: Forecasting weight coefficients based on the networks’
training set accuracy in GNI forecasting.

Weight
coefficients

7 neurons, 1st

most accurate
9 neurons, 2nd

most accurate
10 neurons, 3rd

most accurate
Averaged 33.33 33.33 33.33
MAE-based 40.63 31.03 28.34
RMSE-based 51.26 28.83 19.91
MSE-based 42.14 31.60 26.26
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Figure 4: Combined weights of three best networks predicting
GNI, corresponding to particular error types.

Table 2: GNI ANN forecasting for three most accurate FFAPs.

Year True value 7 neurons 9 neurons 10 neurons
2013 43.64 56.45 30.17 15.42
2014 42.42 49.20 50.12 28.56
2015 35.33 38.33 42.30 34.45
2016 36.06 36.97 37.33 30.28
2017 38.55 34.73 55.25 35.57
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moment in the near future. In that sense, a large series of
consecutive values, we believe, can obscure the information
needed for prediction.-at stands especially for specific days
such as state holidays (very low urban traffic) or football
matches (very high urban traffic) for which the information
older than several hours (at most 24 or so) has no signifi-
cance. -is is the reason for shortening the initial time series
to 70 samples of interest.

Traffic data are accommodated and constant M (here,
140) selected so as to reduce the relative difference between
output values. Although this transformation creates negative
values in the training set, it is also the way to make the
training process numerically better conditioned.

-e initial training of 8 networks using the test set was
performed. We have calculated their performance measures,
i.e., MAE, RMSE, and MSE. -ree most accurate FFAP
networks have 5, 3, and 4 neurons in the hidden layer. Based
on the values of the networks’ errors, corresponding weights
were calculated for the combined predictions of the test set.
Combined weights of three best networks, corresponding to

particular error types, are shown in Table 5, while Figure 8
gives their graphical representation.

Table 6 contains the prediction results obtained for 11
successive time instants. Previous instants were used for
ANN trainings and its forecasting of the first sample in the
table. -is matrix also required 8 FFAP-ANNs to be trained
with rising number of hidden neurons. -e best perfor-
mance measures are obtained for ANNs with 3, 4, and 5
neurons in the hidden layer. Figure 9 visualizes three best
traffic flow predictions from Table 6, while Figure 10 il-
lustrates different predictions of the traffic density, i.e., true,
averaged, MAE-weighted, RMSE-weighted, and MSE-
weighted values.

We have again calculated errors (MAE,MSE, RMSE, and
MAPE), i.e., performance measures of most accurate net-
works and of the concurrent, performance-based pre-
dictions for the next 11 time instances, and these are shown
in Table 7. All types of errors obtained after applying our
forecasting algorithm are again better than any particular
FFAP. For example, the best FFAP that has 5 neurons in the
hidden layer had a MAE for the entire predicted period of
20.46, while the best improvement in forecasting is achieved
when RMSE-weighted concurrent linear combination of
three best FFAP is applied. MAE in this case is 16.44, which
is the improvement of almost 20%.

We have again performed an ARIMA fitting process in
order to get the best forecasting model. -e ARIMA(8,1,2)
model appeared to have minimal values of AIC and BIC.

In forecasting the municipal traffic flow for 11 samples
from the test set with 95% confidence limits, using
ARIMA(8,1,2) model, values obtained for MAE, RMSE,
MSE, and MAPE were 47.20, 24.00, 575.83, and 389.60,
respectively. Corresponding performance measures in the
case of linearly combined best ANN topologies and their
extensions with linear regression model performed better
than the traditional ARIMA modelling, considering differ-
ent types of forecasting errors. -is is systematized in Ta-
ble 8. Introducing the linear regression into the suggested
ANN based forecasting model additionally improved the
accuracy of the prediction. -ese predictions are shown in
Figure 11.

4.3. Prediction of the Daily Electric Load Consumption.
We define values of the electric load consumption as an
average power consumed (in kWh) for a period of one day,
at a particular suburban measuring point. Data for the
implementation of the method are acquired from the
EUNITE 2001 competition file [30]. -e electric load con-
sumption time series consists of about a hundred mea-
surements and is considered short.

Table 3: GNI forecasting errors of different ANN approaches.

Error type 7 neurons FFAP 9 neurons FFAP 10 neurons FFAP Aver. FFAP MAE weighted RMSE weighted MSE weighted
MAE 5.47 9.22 10.34 3.47 3.00 2.95 2.36
RMSE 6.85 10.68 14.36 4.78 3.70 3.20 2.60
MSE 46.92 114.02 206.23 22.84 13.68 12.27 6.77
MAPE 13.26 23.12 24.71 8.60 7.47 7.39 5.99
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Figure 7: Combined ANN and linear regression models for
predictions of the GNI: true, MAE-weighted, RMSE-weighted, and
MSE-weighted values.

Table 4: GNI forecasting performances of different approaches.

Method Error type
MAE RMSE MSE MAPE

Single ANN 5.47 6.85 46.92 13.26
Combined ANN
Averaged 3.47 4.78 22.84 8.60
MAE weighted 3.00 3.70 13.68 7.47
RMSE weighted 2.95 3.20 12.27 7.39
MSE weighted 2.36 2.60 6.77 5.99

Combined ANN-LIN.REG.
MAE weighted 2.71 3.64 13.30 6.78
RMSE weighted 2.62 3.40 11.54 6.60
MSE weighted 2.24 2.51 6.29 5.73

ARIMA 13.26 23.12 24.71 8.60
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Using the training set data, 8 FFAP ANNs were trained
with rising number of hidden neurons. -e best perfor-
mance measures are obtained for ANNs with 3, 5, and 7
neurons in the hidden layer. Combined weights of three best
networks, corresponding to particular error types, are listed
in Table 9, while their graphical distributions are shown in
Figure 12.

Table 10 contains the prediction results obtained for 11
successive time instants of the test set. Figure 13 visualizes
three best traffic flow predictions from Table 8 while Fig-
ure 14 illustrates different predictions of the consumption,
i.e., true, averaged, MAE-weighted, RMSE-weighted, and
MSE-weighted values.

For this forecasting process, we have introduced addi-
tional accuracy metric, i.e., maximal error of estimate-M
[30, 31]. It can be determined using the following equation:

M � max yi − yi


 , (10)

where N again denotes the number of samples, yi is the
individual predicted value, and ̂yi is the true value for the
sample i.

Calculated errors (MAE, MSE, RMSE, MAPE, and
maximal error of estimate) for prediction of the test set with
11 time instances are shown in Table 11. Errors obtained
after applying our forecasting algorithm are again better
than particular ANNs. For example, the best ANN that has 3
neurons in the hidden layer had a MAE for the entire
predicted period of 34.42, while the best improvement in
forecasting is achieved when MSE-weighted concurrent
linear combination of three best ANN is applied. MSE in this
case is 29.72, which is the improvement of about 13%.

We have now performed a seasonal ARIMA fitting
process in order to get the best forecasting model. -e
SARIMA(2, 0, 2) (1, 1, 1)7 model had minimal BIC value.

In forecasting, the municipal traffic flow for 11 samples
from the test set with 95% confidence limits, using SAR-
IMA(2, 0, 2) (1, 1, 1)7 model, values were obtained for MAE,
RMSE, MSE, and MAPE, and maximal error of estimate were
28.27, 35.13, 1234.13, 42.38, and 85.18, respectively. Corre-
sponding performance measures in the case of linearly
combined best ANN topologies and their extensions with
linear regression model did not outperform the traditional

Table 5: Forecasting traffic flow weight coefficients based on the
networks’ training set accuracy.

Weights
coefficients

5 neurons, 1st

most accurate
3 neurons, 2nd

most accurate
4 neurons, 3rd

most accurate
Averaged 33.33 33.33 33.33
MAE based 35.34 33.73 30.93
RMSE based 39.07 34.33 26.60
MSE based 44.73 34.54 20.73

0

10

20

30

40

50

Averaged MAE RMSE MSE

W
ei

gh
ts 

(%
)

Types of errors

1st most accurate (5 neurons)
2nd most accurate (3 neurons)
3rd most accurate (4 neurons)

Figure 8: Combined weights of three best networks predicting
traffic flow, corresponding to particular error types.

Table 6: Traffic ANN forecasting for three most accurate FFAPs.

Sample number True value 3 neurons 4 neurons 5 neurons
1 12.00 13.20 16.27 −23.84
2 3.67 –26.15 9.22 1.16
3 2.67 26.61 –34.38 −25.58
4 –5.33 –92.84 –13.90 −34.12
5 –7.00 –2.21 26.67 −40.55
6 –12.67 –14.42 –7.51 −37.49
7 –11.67 –18.03 –25.44 –17.15
8 –19.67 –17.49 –22.77 3.46
9 –30.00 –59.27 –72.45 –55.44
10 –40.33 –94.37 –94.53 –49.01
11 –42.33 –37.72 –91.69 –33.72
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Figure 9: Traffic flow forecasting of three most accurate ANNs.

–100

–80

–60

–40

–20

0

20

1 2 3 4 5 6 7 8 9 10 11

A
cc

om
od

at
ed

 tr
af

fic
 d

at
a

Sample 

True value
Averaged error
Weighted MAE

Weighted MSE
Weighted RMSE

Figure 10: Predictions of the traffic density: true, averaged, MAE-
weighted, RMSE-weighted, and MSE-weighted values.
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SARIMAmodelling, considering different types of forecasting
errors.-is is systematized in Table 12. Introducing the linear
regression into the suggested ANN-based forecasting model
did not improve the accuracy of the prediction. -ese pre-
dictions are graphically represented in Figure 15.

5. Discussion

Results obtained using neural networks in predicting the
GNI for the Republic of Serbia have multiple qualities.

Specifically, the use of mathematical methods and models
in the prediction of future economic trends in the Balkan
region at the Southeast Euro zone, encompassing the
Republic of Serbia, is very ungrateful. GNI is particularly
vulnerable to turbulent changes and numerous of non-
economic factors to a great extent. Observing different
types of forecasting performance measures in suggested
ANN methodology just confirm the quality of the achieved
results.

-e results in predicting the movement of the GNI are
of extreme importance for candidates for full membership
in the European Union, such as Serbia. -e size of the GNI
determines the obligations of membership in this in-
tegration as well as the benefits that can be granted from
numerous funds. -e EU budget is financed by its own
system of resources whose amount is limited to 1.23% of
EU GNI (for the period 2014–2020). -ese funds are to be

Table 7: Traffic flow forecasting errors of different ANN approaches.

Error type 5 neurons FFAP 4 neurons FFAP 3 neurons FFAP Aver. FFAP MAE weighted RMSE weighted MSE weighted
MAE 20.46 23.38 22.32 16.60 16.53 16.44 18.17
RMSE 23.39 30.20 34.37 21.32 21.02 20.54 22.31
MSE 547.34 911.99 1181.01 454.45 441.86 421.84 497.88
MAPE 266.59 253.19 341.13 186.23 186.41 204.37 187.39

Table 8: Traffic flow forecasting performances of different
approaches.

Method Error type
MAE RMSE MSE MAPE

Single ANN 20.46 23.39 547.34 266.59
Combined ANN
Averaged 16.60 21.32 454.45 186.23
MAE weighted 16.53 21.02 441.86 186.41
RMSE weighted 16.44 20.54 421.84 204.37
MSE weighted 18.17 22.31 497.88 187.39

Combined ANN-LIN.REG.
MAE weighted 10.21 13.00 168.67 102.84
RMSE weighted 10.22 12.39 153.41 98.40
MSE weighted 9.67 11.35 128.84 105.95

ARIMA 47.20 24.00 575.83 389.60

–100

–50

0

50

100

150

1 2 3 4 5 6 7 8 9 10 11El
ec

tr
ic

 lo
ad

co
ns

um
pt

io
n 

pe
r d

ay
(k

W
h)

Sample

True value
Weighted MAE

Weighted RMSE
Weighted MSE

Figure 11: Combined ANN and linear regression models for
predictions of traffic flow: true, MAE-weighted, RMSE-weighted,
and MSE-weighted values.

Table 9: Electric load consumption forecasting weight coefficients
based on the networks’ training set accuracy.

Weights
coefficients

3 neurons, 1st

most accurate
5 neurons, 2nd

most accurate
7 neurons, 3rd

most accurate
Averaged 33.33 33.33 33.33
MAE based 34.12 33.99 31.89
RMSE based 35.13 33.91 30.95
MSE based 36.93 34.41 28.66
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Figure 12: Combined weights of three best networks predicting
electric load consumption, corresponding to particular error types.

Table 10: Electric load consumption ANN forecasting for three
most accurate FFAPs.

Sample number True value 3 neurons 5 neurons 7 neurons
1 131.54 149.29 138.41 146.25
2 107.41 136.26 145.27 143.92
3 65.44 100.88 97.84 104.24
4 115.08 63.43 78.41 80.12
5 118.29 24.84 29.32 82.51
6 122.52 69.39 54.85 206.74
7 92.98 109.1 92.36 91.51
8 51.89 88.85 141.45 145.32
9 50.12 51.37 40.14 9.38
10 54.35 91.64 57.9 78.68
11 88.39 81.68 59.03 88.35
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filled from the budged of each member country with the
amount of 0.73% from its own GNI value. With the
amount of about 80 billion Euros per year, these resources
represent the largest source of budget revenue, reaching

69% of all revenues. On the other hand, each member can
expect from the EU budget the maximal amount of 4% of
its national GNI. In some situations, a small difference in
the amount of the GNI can significantly change the ratio of
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Figure 14: Predictions of the electric load consumption: true, averaged, MAE-weighted, RMSE-weighted, and MSE-weighted values.
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Figure 13: Electric load consumption forecasting of three most accurate ANNs.

Table 11: Electric load consumption forecasting errors of different ANN approaches.

Error type 3 neurons FFAP 7 neurons FFAP 5 neurons FFAP Aver. FFAP MAE weighted RMSE weighted MSE weighted
MAE 34.42 36.82 36.68 30.67 30.55 30.53 29.72
RMSE 42.31 46.35 48.02 38.18 38.05 38.00 37.28
MSE 1789.95 2148.44 2305.90 1457.48 1448.13 1443.75 1389.59
MAPE 39.00 49.23 44.11 39.66 39.57 38.43 39.52

Table 12: Electric load consumption forecasting performances of different approaches.

Method Error type
MAE RMSE MSE MAPE Maximal error

Single ANN 34.42 42.31 1789.95 39.00 93.45
Combined ANN
Averaged 30.67 38.18 1457.48 39.66 73.15
MAE weighted 30.55 38.05 1448.13 39.57 72.93
RMSE weighted 30.53 38.00 1443.75 38.43 72.85
MSE weighted 29.72 37.28 1389.59 39.52 72.49

Combined ANN-LIN.REG.
MAE weighted 35.49 41.59 1729.46 50.78 87.10
RMSE weighted 35.83 41.94 1759.12 51.42 87.45
MSE weighted 37.58 43.49 1897.06 54.26 87.63

SARIMA 28.27 35.13 1234.13 42.38 85.18
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liabilities and benefits of new members. Future GNI values
are also important for creating a budget revenues and
expenditures, due to restrictions in monetary and fiscal
policy. Finally, the design of GNI forecasting system is
crucial for making decisions on large investment projects
because one gets a realistic picture of the capacity of the
national economy. -is reduces risks of illiquidity and
even insolvency.

On the other hand, with the intention to preserve sus-
tainable future, the importance of prediction of local traffic
in large cities comes in for many reasons such as envi-
ronmental and pollution monitoring; fuel usage reduction;
journey planning; traffic control; urban planning; real-time
route guidance; and ITS (intelligent transport system). In
this analysis, ANN-based forecasting systems were de-
veloped enabling prediction of travel times, travel speeds,
and traffic volumes on transportation networks using his-
toric and real-time data.

At the end, we can also conclude that electric power load
forecasting is the foundation of planning, development, and
the assurance of operation efficiency and reliability of
electric power systems. Because of the inherent character-
istics of uncertainty, randomness, and nonlinearity, the load
forecast has always been a forefront and hot issue. In the case
of this forecasting task, we have achieved results using
different types of forecasting performance measures in
treated ANN models in order to confirm their quality.

6. Summary and Conclusion

In this paper, a novel methodology for increasing the pre-
dictions accuracy of different ANN-based systems has been
suggested. -roughout analysis of three different time series
of important everyday parameters, we have introduced some
efficient improvements for prediction of short time series.
-e proposed method has been verified on GNI forecasting
at national economy level, municipal traffic volume fore-
casting, and suburban daily electric load consumption
forecasting. ANN-based models have been trained, and the
performance of the models has been analyzed by applying
various performance evaluation criteria and statistical tests
that includedMAE, RMSE, MSE, MAPE, and maximal error
of estimate. Based on their accuracy, best performing ANN
topologies, considering number of the neurons in the hidden

layer, have been selected and implemented into a new
forecasting system that linearly combines the forecasts of
most accurate individual networks. More accurate one has
been assigned a greater weight value in the linear combi-
nation. -e same forecasting accuracy tests have been re-
peated for a test set data in order to conclude which model is
superior. We have concluded that results of these three case
studies reveal that linear combination of three most accurate
ANN forecasts could predict trend of the future changes
more accurately and with more confidence and that in most
cases outperforms individual ANN forecasts, ARIMA
forecasts, and hybrid ANN-linear regression forecasts.
Moreover, we have determined the that accuracy im-
provement in these three particular cases ranges from 13% in
the case of the electric load prediction and up to 65% in the
case of Serbian GNI prediction. Based on the analysis
presented in the paper, we can anticipate that the applica-
bility of the method can be extended to other AI forecasting
and modelling methods, as well as different types of ANN
topologies. Our future research would also be oriented to-
ward further error reductions and the discussion on the
smallest number of the neurons in ANN layers in order to
achieve this goal.
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