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Brain-computer interfaces (BCIs) based on rapid serial visual presentation (RSVP)
have been widely used to categorize target and non-target images. However,
it is still a challenge to detect single-trial event related potentials (ERPs) from
electroencephalography (EEG) signals. Besides, the variability of EEG signal over time
may cause difficulties of calibration in long-term system use. Recently, collaborative
BCIs have been proposed to improve the overall BCI performance by fusing brain
activities acquired from multiple subjects. For both individual and collaborative BCIs,
feature extraction and classification algorithms that can be transferred across sessions
can significantly facilitate system calibration. Although open datasets are highly efficient
for developing algorithms, currently there is still a lack of datasets for a collaborative
RSVP-based BCI. This paper presents a cross-session EEG dataset of a collaborative
RSVP-based BCI system from 14 subjects, who were divided into seven groups.
In collaborative BCI experiments, two subjects did the same target image detection
tasks synchronously. All subjects participated in the same experiment twice with an
average interval of ∼23 days. The results in data evaluation indicate that adequate signal
processing algorithms can greatly enhance the cross-session BCI performance in both
individual and collaborative conditions. Besides, compared with individual BCIs, the
collaborative methods that fuse information from multiple subjects obtain significantly
improved BCI performance. This dataset can be used for developing more efficient
algorithms to enhance performance and practicality of a collaborative RSVP-based
BCI system.

Keywords: brain-computer interfaces (BCI), rapid serial visual presentation (RSVP), collaborative BCI, cross-
session transfer, event related potentials (ERP), electroencephalogram (EEG)
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INTRODUCTION

Brain-computer interfaces (BCIs) establish a communication
channel between human brain and the external world (Wolpaw
et al., 2002; Gao et al., 2014). As one of the well-known BCI
paradigms, rapid serial visual presentation (RSVP)-based BCIs
have been usually used for target image detection. Although
computer vision (CV) has become a major method to deal with
the image recognition problem recently, it consumes a large
amount of resource (image source, training time, computing
power, etc.) to get a good performance, and is still lack of
generalization ability. By contrast, human vision (HV) can
achieve general purposes of object recognition. HV can cope
with more difficult tasks and detect targets with different
characteristics (e.g., scale, lighting, background, etc.; Mathan
et al., 2008; Sajda et al., 2010; Pohlmeyer et al., 2011). Human
visual system can recognize objects with just a glance (Oliva,
2005) and detect targets in under 150 ms (Thorpe et al., 1996).
However, manual image analysis is slow because of the motor
response time, and the variability of response time makes it
difficult to locate the target images in RSVP tasks (Gerson et al.,
2005; Mathan et al., 2008; Sajda et al., 2010). Therefore, RSVP-
based BCIs, which have stronger generalization ability and are
faster than behavioral response, have become a useful method to
detect targets by using the human brain activities. By presenting
multiple images sequentially in a high presentation rate (e.g., 10
images per second), the RSVP-based BCI can enhance the target
detection performance of HV (Lees et al., 2018).

In earlier times, RSVP was often used to do behavioral research
focusing on attentional blink (AB; Broadbent and Broadbent,
1987; Chun and Potter, 1995; Jolicoeur, 1998) and manual
target detection (Lawrence, 1971; Broadbent and Broadbent,
1987). With the rapid development of computer technology
and electroencephalography (EEG)-based BCIs, RSVP was
introduced to design BCI systems for target detection. The
RSVP-based BCI is realized by single-trial event related potential
(ERP) detection. ERPs typically contain multiple components
with different temporal and spatial characters. In an RSVP-based
BCI system, the P300 component, which occurs approximately
300 ms after the target stimulation, is the major ERP component
used for target detection (Picton, 1992; Chun and Potter, 1995).
Since the system performance of RSVP-based BCIs can be
influenced by many factors such as presentation rate (Sajda
et al., 2003; Acqualagna et al., 2010; Lees et al., 2019), target
probability (Cecotti et al., 2011), stimulus onset asynchrony and
stimulus repetition (Cecotti et al., 2014a), image size (Rousselet
et al., 2004; Serre et al., 2007), type of targets (Lees et al.,
2019), saccadic eye movements (Bigdely-Shamlo et al., 2008),
attention blink (Broadbent and Broadbent, 1987; Chun and
Potter, 1995; Jolicoeur, 1998), and other subjective or objective
factors (Jolicoeur, 1998; Acqualagna et al., 2010; Touryan et al.,
2011), the experimental paradigm should be carefully designed.

Besides the design of system paradigm, the main challenge
in RSVP-based BCIs is single-trial ERP detection. In the RSVP-
based BCI system, multi-channel EEG recording leads to a
high dimensionality of features, and the small number of trials
is always not sufficient for solving the classification problem

toward accurate ERP detection (Huang et al., 2011). To deal
with the problem of single-trial ERP detection, suitable signal
processing and classification algorithms are required to extract
discriminative information from single-trial data and improve
the performance in classifying target and non-target trials.
Various algorithms have been proposed and developed for the
RSVP-based BCIs (Lees et al., 2018; Lotte et al., 2018). Major
feature extraction algorithms include xDAWN (Rivet et al.,
2009), signal-to-noise ratio (SNR) maximizer for ERP (SIM; Wu
and Gao, 2011), common spatial pattern (CSP; Ramoser et al.,
2000), independent component analysis (ICA; Makeig et al.,
1996), and etc. Typical classification algorithms include spatially
weighted fisher’s linear discriminant (FLD)-principal component
analysis [PCA; spatially weighted FLD-PCA (SWFP); Alpert et al.,
2013], support vectors machine (SVM; Burges, 1998), linear
discriminate analysis (LDA; Blankertz et al., 2011), hierarchical
discriminant component analysis (HDCA; Sajda et al., 2010),
convolutional neural network (CNN; Cecotti and Graser, 2010;
Cecotti et al., 2014b), and etc. Since real targets can only appear
once in the RSVP paradigm, averaging across multiple trials
is not practical in the RSVP-based BCIs. By combining brain
activities of multiple subjects, collaborative BCIs can improve
the performance of single-trial ERP detection (Wang and Jung,
2011). A series of studies have demonstrated collaborative BCIs
for target detection and decision making (Wang et al., 2011;
Yuan et al., 2012; Matran-Fernandez et al., 2013; Cecotti and
Rivet, 2014; Poli et al., 2014; Touyama, 2014; Valeriani et al.,
2015, 2016, 2017; Bhattacharyya et al., 2019). For both individual
and collaborative RSVP-based BCIs, system calibration remains
another big challenge in practical applications. It has been
claimed that high variability of EEG makes it difficult to transfer
models across different sessions (Krauledat et al., 2008). Besides,
the training session in system calibration is time-consuming
and the system performance may probably decrease over time
(Bigdely-Shamlo et al., 2008; Huang et al., 2011; Zhao et al.,
2019). Therefore, it is of great significance to develop efficient
algorithms to solve the cross-session classification problem in the
RSVP-based BCIs.

Recently, open BCI datasets have pushed forward the
development of data processing algorithms. However, there are
very few freely available datasets for the RSVP-based BCIs
(Acqualagna and Blankertz, 2013; Matran-Fernandez and Poli,
2017). To our knowledge, a benchmark dataset for collaborative
RSVP-based BCIs is still missing. Besides, the existing datasets
only provide data recorded from a single session, which is not
suitable for studying the problem of cross-session transfer. This
paper therefore presents a cross-session dataset for collaborative
RSVP-based BCIs. The dataset has the following characteristics:
(1) EEG data from two subjects were recorded simultaneously
with a collaborative BCI where two subjects performed the same
target detection tasks synchronously, (2) two separate sessions
were recorded for each of seven groups (14 subjects) on two
different days with an average interval of ∼23 days, and (3)
whole-head 62-channel EEG data were recorded and the raw data
were provided without further processing. Note that, all event
triggers for target and non-target images were synchronously
marked in the EEG data. Therefore, the data epochs extracted
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from both subjects could be precisely synchronized. During the
experiments, subjects were asked to find target images with
human in street images sequences presented at 10 Hz (10 images
per second). The experiment included three blocks, and each
block contained 14 trials. Each trial had 100 images, including 4
target images. In total, the dataset contains 84 blocks (1,176 trials)
of data recorded from 14 subjects. The dataset can be especially
useful for studying cross-session ERP detection algorithms for
both individual and collaborative RSVP-based BCI systems.

The rest of this paper is organized as follows. Section
“Methods” explains the experimental paradigm, data acquisition,
the algorithms in data analysis, and the criterion in performance
evaluation. Section “Data Record” describes the data record
and other relevant information. Section “Data Evaluation”
presents results of BCI performance in data evaluation.
Section “Conclusion and Discussions” concludes and
discusses future works.

METHODS

Participants
Fourteen healthy subjects (10 females, mean age: 24.9 ± 1.5 years,
all right-handed) with normal or corrected-to-normal vision
participated in the experiments. The subjects were divided into
seven groups with two subjects in each group. For each group, the
experiments contained two sessions recorded on different days.
For all groups, the average time interval between two sessions was
∼23 days. All subjects were asked to read and sign an informed
consent form before the experiment. This study was approved by
the Ethics Committee of Tsinghua University.

Collaborative System
Figure 1 illustrates the diagram of the online collaborative
BCI system. The system consists of four major components:

Stimulation module, Operation module, Data Acquisition
module, and Command and Data Analysis module. The system
performs the following steps: (1) The Command and Data
Analysis module waits for keypress information from the
Stimulation modules to start a trial; (2) The Command and Data
Analysis module sends synchronous commands to the Operation
and Stimulation modules; (3) The Stimulation modules present
the RSVP stimuli to the subjects and (4) send event triggers
to the Data Acquisition modules; (5) The Operation modules
send control commands to the Data Acquisition modules and
(6) record EEG data from the subjects; (7) The Operation
modules receive EEG data from the Data Acquisition modules
and (8) transfer to the Command and Data Analysis module;
(9) The Command and Data Analysis module analyzes data
and outputs online collaborative decisions. Data packages and
commands are sent using transmission control protocol/internet
protocol (TCP/IP) and triggers are sent using parallel ports. In
the collaborative experiment, two subjects watched the same
RSVP stimuli synchronously, and EEG data from them were
fused to improve the overall detection performance. The same
stimulations were presented to the two subjects using two
separate computers. To synchronize EEG data from the two
subjects, event triggers from the two stimulation computers were
sent separately. The Command and Data Analysis module sent
messages to synchronize the other modules. Therefore, although
the Stimulation, Operation, and Data Acquisition modules were
separated for each subject, the Command and Data analysis
module fused the EEG data from two subjects and performed
collaborative target detection in real time.

Collaborative Experiment Design
The stimulation pattern of the RSVP paradigm is shown in
Figure 2. The stimulation is presented by a 24.5-inch liquid
crystal display (LCD) monitor with a resolution of 1,920 × 1,080
and a vertical refresh rate of 60 Hz. The images were downloaded

FIGURE 1 | System diagram of the collaborative brain-computer interfaces (BCI) system.
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from the internet. The stimulation was generated using the
Psychophysics Toolbox Ver. 3 (PTB-3; Brainard, 1997). Street
scene images were presented at 10 Hz (10 images per second) in
the center of the screen within a 1,200 × 800-pixel square. The
images containing human were regarded as target images.

The procedures of the collaborative experiments are depicted
as follows. Subjects were asked to sit comfortably approximately
70 cm in front of the screen. When the subjects were ready,
both of them were supposed to press keys to start one trial.
The stimulation would not begin until both subjects pressed
keys. If one subject pressed the key first, he or she had to wait
for the second subject’s keypress to start the trial at the same
time. After receiving two keypresses, the command module sent
commands to the stimulation modules to start the same image
sequence presentation synchronously to two subjects. As shown
in Figure 2, a cross symbol appeared at the center of the screen
for 500 ms to make subjects fix their sights, then the RSVP
stimulation began. Each trial contained 100 images (10 s at the
rate of 10 Hz), including four target images. The images shown
in the first and last 1 s in one trial were all non-target images
to avoid the target from appearing during the onset or offset of
steady-state visual evoked potentials (SSVEP) evoked by RSVP.
The interval of two target images was at least 500 ms to reduce
the influence of the attention blink (Broadbent and Broadbent,
1987; Chun and Potter, 1995; Lees et al., 2018). Subjects were
asked to press keys immediately after they detected a target.
The keypress task was used to make subjects concentrate on
target detection. Since there was a time delay between the target
image and keypress, the keypress within 500ms after a target
image was considered a correct response to the target image
during the experiments. In the experiments, subjects needed to
find four targets from 100 images and made four keystrokes. If
the subjects missed some targets, the system would show the
missed targets at the end of the trial. For the same group of
subjects, the experiments included two sessions on different days,
where the stimulation paradigms were totally same. The RSVP
stimulation was presented in blocks. Each session consisted of
three blocks and each block contained 14 trials (1,400 images,

FIGURE 2 | The overview of rapid serial visual presentation (RSVP)
stimulation. The images are presented at 10 Hz. Subjects were asked to press
the key immediately when finding a target. The sample of target is highlighted
with a red frame.

including 56 targets). Subjects were allowed to take a short rest
after each block. During the experiment, the first block was
used for training, while the second and the third blocks were
used for testing. In the testing blocks, online classification results
were provided by the Command and Data Analysis module. The
online visual feedback was a 3 × 3 image matrix including nine
images with the highest scores among the 100 images in each trial.

Data Acquisition
The EEG data from two subjects were simultaneously recorded by
two Neuroscan Synamps2 systems. 64-electrode EEG caps based
on the 10–20 system were used to record 62-channel EEG data
(M1 and M2 were not used) from two subjects. The reference
electrode was at the vertex. The impedances of the electrodes
were kept under 10 k�. The sample rate was 1,000 Hz. A notch
filter at 50 Hz was used to remove the common power-line noise.
The pass-band of the amplifier was set to 0.15–200 Hz. All the
event triggers were transmitted and marked on the EEG data by
parallel ports. Two stimulation computers sent triggers separately
to the two EEG systems. The dataset provides raw data from the
experiments without any processing.

Data Preprocessing
To validate the quality of the data through performance
evaluation, data preprocessing was performed as follows. The
EEG data were first down-sampled to 250 Hz. After that, epochs
corresponding to all images were extracted according to the
event triggers. Each epoch began at 0.2 second before the event
trigger, and ended at 1 second after the event trigger. The epochs
were band-pass filtered within 2–30 Hz. For the analysis of EEG
characteristics, the EEG data were re-referenced to the average
of all electrodes [i.e., common average reference (CAR)], and the
ERP waveforms were plotted using data at Cz. For performance
evaluation, the time window 0–500 ms after the event trigger of
each epoch was extracted for feature extraction and classification.

Data Analysis
Individual Data Analysis
In this paper, several existing algorithms were utilized for feature
extraction and classification. The HDCA algorithm, which can
extract both spatial and temporal features, has been widely used
in the RSVP-based BCIs (Lees et al., 2018; Zhao et al., 2019;
Sajda et al., 2010). In our previous study, the combination of SIM
and HDCA was employed to deal with the cross-session transfer
problem (Zhao et al., 2019). SIM can extract the EEG components
that maximize the SNR of ERPs (Wu and Gao, 2011). In this
paper, several other feature extraction algorithms including CSP,
task-related component analysis (TRCA), and PCA whitening
were employed for comparison. CSP can build a spatial filter to
extract features from two classes toward the best discrimination
(Ramoser et al., 2000). TRCA is a method to extract task-related
components by maximizing the reproducibility of repetitive tasks
(Nakanishi et al., 2018). PCA whitening is usually used before
ICA to reduce the complexity of the classification problem
(Hyvärinen and Oja, 2000). To estimate performance for each
subject, the first block of data was used for training and the other
two blocks were used for testing.
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Collaborative Data Analysis
The diagrams of collaborative data analysis are depicted in
Figure 3. For the collaborative experiments, the EEG data of two
subjects were fused by three methods: ERP averaging, feature
concatenating, and voting (Wang and Jung, 2011). ERP averaging
and feature concatenating are centralized methods, which fuse
the data before further feature extraction and classification
algorithms. Voting is a distributed method, which analyzes data
of each subject first and then fuses the scores generated by
the individual classifiers. In the ERP averaging method, the
synchronous data epochs of two subjects were averaged. In
the feature concatenating method, data epochs of two subjects
were concatenated for further analysis. In the voting method,
the weighted sum of the output scores of the classifiers of two
subjects were used for classification, and the weights were the
performance [i.e., area under curve (AUC)] of each subject
from the training procedure. During the experiments, the online
feedback, which consisted of nine images with the highest output
scores, was calculated using the voting method.

Cross-Session Data Analysis
For the cross-session data analysis, the algorithms used for
evaluation were the same as the separate experiments. However,
the number of components extracted by the feature extraction
algorithms (e.g., spatial filtering methods such as CSP, TRCA, and
SIM) was optimized separately for each algorithm. The number of
components can influence the cross-session performance because
of the cross-session variability of EEG data. To estimate the cross-
session performance, the first block of data on Day 1 was used for
training and the second and third blocks on Day 2 were used for
testing. The validation strategy was the same for individual and
collaborative data analysis.

Metric
This paper used the area under receiver operating characteristic
(ROC) to evaluate the BCI performance. This metric is suitable
for the RSVP paradigm where the class distribution is unbalanced
(Lees et al., 2018). AUC can reflect the relationship between true

positive rate (TPR) and false positive rate (FPR). In the RSVP-
based BCI system, higher AUC indicates better performance.

DATA RECORD

EEG Data
The dataset is freely available at https://doi.org/10.6084/m9.
figshare.12824771.v1. The dataset is about 6.58 GB including
collaborative and cross-session data from 14 subjects. All data are
saved as MATLAB MAT files. The sample rate is 1,000 Hz and
all data are raw data without any processing. Each file is named
as “Group index + Session index” (i.e., G1D1.mat, G1D2.mat,
. . ., G7D2.mat). “Gn” is the nth group (totally seven). “D1” and
“D2” indicate the first and second sessions respectively. Each file
contains two cells named “Sa” and “Sb” indicating two subjects
in the group. Each 1 × 3 cell array (“Sa” and “Sb”) contains
three blocks of data recorded in one session. Each element in
the cell array corresponds to one block of data. Each element is
a matrix with a dimension of [63, N], which indicates 62-channel
EEG data and a trigger channel with a length of N. N of each
matrix is different because of the different experiment duration,
but N of a group of subjects in the same block is the same. For
the trigger channel, the onset of target image is defined as “1”
and the onset of non-target image is defined as “2.” Since each
element corresponds to one block, each matrix contains data of
14 trials (1,400 image events, including 56 targets). Details of data
information are also summarized in a “Readme.txt” file.

Supplementary Information
Three supplementary files are provided including subject
information and channel location, and the image set. Subject
information is saved in a “sub_info.txt” file, which includes the
gender, age, handedness, group, and the interval between the
two sessions. Channel locations are saved in a “62-channels.loc”
file, in which the information for each channel consists of four
columns: channel index, degree, radius, and label. The origin
is at Cz (i.e., the radius is 0). The image set used for RSVP
stimulation is also included in the supplementary files and

FIGURE 3 | (A) Centralized and (B) distributed diagrams of collaborative data analysis.
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saved in a “Image.zip” file. Target and non-target images are
saved in two folders.

DATA EVALUATION

Individual BCI Performance
Within-Session Individual Performance
Figure 4 shows the EEG characteristics on Day 1 (D1) and
Day 2 (D2) related to targets and non-targets using the average
data of all subjects. Figure 4A shows the time course of scalp
map series of average ERP amplitudes. It is clearly shown that
the P300 component peaked around 400 ms and was mainly
distributed at the central-parietal areas. Figure 4B shows the
average ERP waveform at Cz. The waveform shows large N2
and P3 components after the target onset, which are obviously
higher than other ERP components. Figure 4C shows the
spectrum of ERPs at Cz calculated by fast Fourier transform
(FFT). The EEG power mainly focuses at a low frequency range
under 10 Hz with a peak around 4 Hz. It should be noted
that there are frequency peaks at 10 Hz and its harmonic

frequencies, which means there are SSVEP components in ERPs.
Figures 4D–F show the EEG characteristics related to the non-
target images. Figure 4D shows the average topographic map
series, which indicate significant distribution of SSVEPs mainly
focused at the occipital area. The average EEG waveform at Cz
in Figure 4E indicates strong SSVEP components evoked by
the 10 Hz RSVP stimulation. Figure 4F shows the spectrum of
the average EEG waveform at Cz with peaks at 10 Hz and its
harmonic frequencies. In summary, EEG signals are different
when subjects watch target and non-target images. During the
RSVP task, SSVEP components are dominant when there are
no targets, while the ERP components (i.e., N2 and P3) are
evoked when detecting a target. For target images, the amplitude
of ERPs are significantly higher than SSVEPs (Figure 4C). The
amplitudes of SSVEPs for target and non-target images are close
(Figures 4C,F).

The within-session BCI performance of individual
classification is illustrated in Figure 5. For each subject, the
first block of data is used for training and the other two blocks
are used for testing. Four feature extraction methods are
combined with HDCA for comparison: (1) CSP, (2) TRCA, (3)

FIGURE 4 | Electroencephalogram (EEG) characteristics averaged across subjects corresponding to two sessions (Day 1 and Day 2). (A) Time course of
topographic maps of average event related potentials (ERPs) related to target images. (B) Average ERP waveform for targets at Cz. (C) Spectrum of ERPs for
targets at Cz. (D) Time course of topographic maps of average EEG waveforms related to non-target images. (E) Average EEG waveform for non-target images at
Cz. (F) Spectrum of the average EEG waveform for non-target images at Cz.
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PCA, and (4) SIM. Because the number of components (i.e.,
the number of spatial filters) can influence the performance,
all the component numbers are calculated, and the number
of components with the maximum AUC values is shown in
Figure 5. For each feature extraction method, the numbers
of used components in the within-session conditions (D1–
D1, D2–D2) and the cross-session condition (D1–D2) are
different (CSP: 50, 50, 13; TRCA: 7, 3, 3; PCA: 24, 36, 14;
SIM: 24, 36, 21). For the within-session classification, the
combination methods cannot outperform the standard HDCA
algorithm. Feature extraction algorithms can help to enhance
the average performance (e.g., max 1AUC = 0.018 when using
the SIM + HDCA method on Day 1), but the improvement is
not substantial.

Cross-Session Individual Performance
The cross-session variances of EEG are illustrated in Figure 4.
In Figure 4A, ERP scalp map series for the two sessions (Day
1 and Day 2) show similar spatial and temporal trends, but
also indicate different amplitudes and spatial distributions. In
Figure 4B, differences in amplitudes and latencies of ERP
components (i.e., N2 and P3) can be observed. The correlation
of two average ERP waveforms in the two sessions still obtains
a high correlation coefficient of 0.90. The spectral distributions
shown in Figure 4C are consistent for the two sessions. The
cross-session differences of SSVEPs related to the non-target
images can be observed in Figures 4D–F. There are cross-
session differences in terms of spatial distributions, amplitudes
and latencies. The correlation coefficient of waveforms is 0.82.
Although peaks of the spectra in both sessions are at 10 Hz
and its harmonic frequencies, the peak amplitudes in the
two sessions seem different in Figure 4F. The consistency
of ERP characteristics across sessions suggests it is possible
to transfer information from a previous session to facilitate
system calibration.

The cross-session BCI performance of individual experiments
is illustrated in Figure 5. Compared with the within-session

FIGURE 5 | Receiver operating characteristic (ROC) performance of different
feature extraction and classification algorithms in cross-session analysis with
individual classification. The color bars of each method indicate performance
of within-session (Day 1 and Day 2) and cross-session classification. The error
bars indicate standard deviations.

performance, the cross-session performance decreases sharply
due to the non-stationarity of EEG over time. For example,
the AUC for HDCA decreases from 0.90 (Day 1 and Day
2) to 0.67. As described above, feature extraction algorithms
do not improve the within-session performance, but the PCA
and SIM algorithms significantly improve the cross-session
classification performance. As shown in Figure 5, AUC values
of the SIM + HDCA (0.86 ± 0.06) and PCA + HDCA
(0.86 ± 0.06) methods are significantly better than HDCA
(0.67 ± 0.11), CSP + HDCA (0.69 ± 0.11) and TRCA + HDCA
(0.71 ± 0.13; p < 0.001). There is no significant difference
between SIM + HDCA and PCA + HDCA (p > 0.05). Figure 6
shows an example of the relationship between AUC and the
number of components when using the combination of SIM
and HDCA algorithms. For the within-session condition, AUC
increases as the number of components in SIM increases until
AUC saturates when the number of components increases
to about 30. However, for the cross-session condition, AUC
first increases from 0.74 with 1 component, reaches a peak
value of 0.87 with 21 components, and then decreases to
0.67 with 62 components. This finding indicates that not all
spatial filters are suitable for cross-session transfer. Figure 7
shows averaged waveforms of the 1st–20th components from
one subject extracted by SIM in the cross-session condition.
It is clear that the first several components show strong ERP
components. When the spatial filters obtained from Day 1
are directly applied to Day 2, the first several components
have high cross-session correlation coefficients. For example,
for the 1st–5th components, the correlation coefficients are
0.98, 0.98, 0.93, 0.93, and 0.73 respectively. However, the
correlation coefficients decrease at the latter components (e.g.,
the correlation coefficients are less than 0.5 for the 9th–
20th components). Therefore, the first several components
that show stable ERP characters in both sessions contribute
most to the cross-session classification. The involvement of
latter components that exhibit large difference between two
sessions cannot improve the classification performance. On
the contrary, the increase of feature dimension might increase

FIGURE 6 | Number of components-area under curve (AUC) curve of the
SIM + hierarchical discriminant component analysis (HDCA) algorithm in
cross-session individual data analysis. The x axis indicates the number of
components selected from the spatial filters calculated by the SIM algorithm.
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FIGURE 7 | Average waveforms of components extracted by the SIM algorithm of one subject. The waveforms indicate the 1st–20th components of Day 1 and Day
2 extracted by the spatial filters obtained from data on Day 1.

the risk of overfitting and thereby deteriorates the cross-
session performance.

Collaborative BCI Performance
Within-Session Collaborative Performance
Example data recorded on Day 1 from subject 1 (Sub1) and
subject 2 (Sub2) are used to analyze the EEG features for different
subjects. The preprocessing procedures were the same as those
in Figure 4. Figure 8 illustrates the common and different
characters of EEG signals for Sub1 and Sub2. Specifically,
Figures 8A–C show the ERP characteristics related to target
images. As shown in Figure 8A, the time courses of topographic
map series for both subjects show generally similar patterns.
During about 200–400 ms after the target onset, N2 and
P3 components are dominant over the central-parietal areas.
There is clear difference in amplitudes and latencies for ERP
waveforms at Cz (Figure 8B), which leads to a correlation
coefficient of 0.83. Figure 8C shows the spectral distributions
of ERPs at Cz. EEG powers for the two subjects are mainly
under 10 Hz with slight difference, and the amplitudes of
SSVEP components are very different. Figures 8D–F show the
EEG characteristics related to non-target images. For SSVEP
components evoked by non-target images, individual difference
can be observed regarding to scalp topographic maps, amplitudes
and latencies, as well as spectral distributions. As shown in
Figure 8E, the correlation coefficient of EEG waveforms is 0.45.
The low correlation can be attributed to the amplitude and
latency difference of the fundamental and harmonic SSVEP
components shown in Figures 8E,F. These results suggest

that, as expected, the collaborative classification will improve
the individual classification by fusing useful information from
multiple subjects. However, the individual difference should be
carefully considered in designing the data fusion method.

The results of collaborative BCI performance are illustrated
in Figure 9. For each group, the first block of data is used
for training and the other two blocks are used for testing. The
classification algorithm is SIM + HDCA (m = 30, according to
the individual results in Figure 6). The feature fusion methods
include ERP averaging, feature concatenating, and voting. As
shown in Figure 9, all feature fusion algorithms can significantly
improve the average individual performance (Single subject:
0.91 ± 0.03, ERP averaging: 0.94 ± 0.04, Feature concatenating:
0.94 ± 0.03, Voting: 0.94 ± 0.02, p < 0.001). The voting method
achieves the highest AUC value. The performance of multi-
subject collaborative experiments can be simulated by regrouping
the subjects into new groups with more members. In addition
to the individual condition and the collaborative condition with
two subjects, all 14 subjects are regrouped to groups with 3–14
subjects. Since the number of random combinations is too large
to compute, the maximum number of random groups with a fixed
number of subjects in one group is set to 100. The simulation
results in Figure 10 show that AUC increases significantly when
the number of subjects is small, but AUC saturates (over 0.99 for
both sessions) when the number of subjects reaches 5.

Cross-Session Collaborative Performance
The results of collaborative BCI performance in the cross-
session condition are illustrated in Figure 11. The classification
algorithm is SIM + HDCA (m = 21, according to the
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FIGURE 8 | Electroencephalogram (EEG) characteristics for a group of subjects (Subject 1 and Subject 2) on Day 1. (A) Time course of topographic maps of
average event related potentials (ERPs) related to target images. (B) Average ERP waveform for targets at Cz. (C) Spectrum of ERPs for targets at Cz. (D) Time
course of topographic maps of average EEG waveform related to non-target images. (E) Average EEG waveform for non-target images at Cz. (F) Spectrum of the
average EEG waveform for non-target images at Cz.

individual results in Figure 6). As shown in Figure 11, all
feature fusion algorithms can significantly improve the average
performance of single subject (Single subject: 0.85 ± 0.06, ERP
averaging: 0.87 ± 0.05, Feature concatenating: 0.90 ± 0.05,
Voting: 0.90 ± 0.06, p < 0.05), and the voting method
obtains the best performance. The ERP averaging method
may be affected by the individual difference of amplitude
and latency of ERPs, while the feature concatenating method
increases the feature dimension which might increase the risk
of overfitting. The voting method can avoid these problems by
fusing the output scores together instead of fusing the EEG
features. With the voting method, the cross-session collaborative
performance is only slightly lower than the within-session
collaborative performance and the difference is not significant
(AUC: 0.90 ± 0.06 vs. 0.94 ± 0.02, p> 0.05). These results suggest
that the cross-session method is efficient for the collaborative
BCI. The simulated cross-session performance of a multi-subject
BCI system is further shown in Figure 10. By increasing
the number of subjects, the collaborative performance for the
cross-session condition can also be significantly improved. The
cross-session condition achieves similar performance to the
within-session condition (Day 1) when the number of subjects
increases to 10.

FIGURE 9 | Area under curve (AUC) of different feature fusion methods in the
collaborative data analysis. The classification algorithm is SIM + hierarchical
discriminant component analysis (HDCA; m = 30). The asterisks indicate that
the performance of the fusion method is significantly higher than the single
subject (***:p < 0.001). The error bars indicate standard deviations.

CONCLUSION AND DISCUSSION

This study presents a cross-session dataset of a collaborative
RSVP-based BCI. The results illustrate the distinct spatial and
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FIGURE 10 | Simulated performance of multi-subject collaborative data
analysis. The x axis indicates the number of subjects in each group. The
feature fusion method is voting. The error bars indicate standard deviations.

FIGURE 11 | Cross-session area under curve (AUC) of different feature fusion
methods in the collaborative data analysis. The classification algorithm is
SIM + hierarchical discriminant component analysis (HDCA; m = 21). The
asterisks indicate that the performance of the fusion method is significantly
higher than the single subject (*: p < 0.05, **: p < 0.01, ***: p < 0.001). The
error bars indicate standard deviations.

temporal features of ERPs related to target and non-target
images. The comparison between different feature extraction
and classification algorithms indicates that the combination of
spatial filtering algorithms and HDCA can achieve good BCI
performance in the individual condition, and the collaborative
method can further improve the system performance by
fusing information from multiple subjects. In the cross-session
validation, the system performance can be optimized by selecting
the number of components in the process by SNR maximizer for
ERPs (SIM) algorithm. With the voting method, the cross-session
collaborative performance is very close to the within-session
collaborative performance (AUC: 0.90 vs 0.94). Although the
cross-session AUC is still lower than the within-session AUC, the
cross-session transfer can totally eliminate the system calibration
procedure, which can substantially improve the practicality of the
RSVP-based BCIs.

Since single-trial EEG data are recorded by multiple electrodes
with various spatial and temporal features, suitable feature
extraction and classification algorithms play important roles
for ERP detection. In this paper, the SIM + HDCA algorithm

achieves the best performance, but there is still room for
improvement. First, the SSVEP component might contribute to
ERP detection. As shown in the results, the single-trial EEG
in RSVP tasks includes both ERPs and SSVEPs. However, the
existing algorithms focus on the ERP components and ignore
the SSVEP components in target detection. The difference
of SSVEPs between target and non-target images requires
further investigation by dissociating SSVEPs and ERPs (Zhang
et al., 2018). Second, the number of components after spatial
filtering was selected manually toward the highest AUC averaged
across subjects and groups. The performance could be further
improved by optimizing the number of components for each
individual or group. In addition, the best number of components
can be determined automatically by the algorithm toward a
practical application.

The collaborative BCI method can be further improved by
considering the following three directions. First, the feature
fusion method can be improved by considering new features
such as subject-to-subject synchronization or the response time
of subjects (Poli et al., 2014; Valeriani et al., 2017). For instance,
the EEG data of multiple subjects can be aligned by dynamic
time warping (DTW) or canonical time warping (CTW) to
synchronize the brain activities (Zhou and Torre, 2009). Second,
the efficiency of the collaborative system can be optimized. For
example, the BCI performance can be improved by collaborative
paradigms with more subjects. However, a tradeoff between
performance improvement and costs, which include equipment
and labor costs in simultaneous EEG recording from multiple
subjects, should be considered. When an individual subject
achieves a high AUC value, the collaborative system can only
obtain a minor improvement. Instead of the collaborative
paradigm where the subjects perform the same detection tasks,
another paradigm is to assign different tasks to each subject.
This mode of division can improve the total efficiency of
target detection tasks by reducing total time, but the individual
performance remains the same. Third, CV can be combined with
the RSVP-based BCI system. By optimally combining CV and
HV, the system performance can be further improved (Sajda et al.,
2010; Pohlmeyer et al., 2011).

In addition to the validation of collaborative and cross-session
BCI performance in this study, this dataset can be used to
study the following topics: (1) brain dynamics of ERPs and
SSVEPs in the RSVP-based BCI paradigm, (2) data analysis
algorithms for single-trial ERP detection, (3) data fusion methods
for collaborative BCIs, and (4) transfer learning algorithms for
the cross-session ERP-based BCIs.

DATA AVAILABILITY STATEMENT

The dataset analyzed in this study can be downloaded at https:
//doi.org/10.6084/m9.figshare.12824771.v1.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Tsinghua University. The

Frontiers in Neuroscience | www.frontiersin.org 10 October 2020 | Volume 14 | Article 579469

https://doi.org/10.6084/m9.figshare.12824771.v1
https://doi.org/10.6084/m9.figshare.12824771.v1
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-579469 October 17, 2020 Time: 20:10 # 11

Zheng et al. Cross-Session Dataset for Collaborative BCIs

patients/participants provided their written informed consent to
participate in this study.

AUTHOR CONTRIBUTIONS

LZhe performed the data collection, data analysis, and wrote
the manuscript. SS developed the experimental system and
performed the data collection. HZ performed the data analysis.
WP, HC, LZha, and XG revised the manuscript. YW supervised
the study. All authors contributed to the article and approved the
submitted version.

FUNDING

This work was supported by the National Key R&D
Program of China under grant 2017YFA0205903, the
National Natural Science Foundation of China under

grant 61671424, and the Strategic Priority Research
Program of Chinese Academy of Sciences under grant
XDB32040200.

ACKNOWLEDGMENTS

The authors would like to thank the subjects for participating
in the experiments, S. Zhang and B. Liu for offering advice on
the manuscript, and C. Yang and H. Wu for building the website
for data download.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2020.579469/full#supplementary-material

REFERENCES
Acqualagna, L., and Blankertz, B. (2013). Gaze-independent BCI-spelling using

rapid serial visual presentation (RSVP). Clin. Neurophysiol. 124, 901–908. doi:
10.1016/j.clinph.2012.12.050

Acqualagna, L., Treder, M. S., Schreuder, M., and Blankertz, B. (2010). “A
novel brain-computer interface based on the rapid serial visual presentation
paradigm,” in 2010 Annual International Conference of the IEEE Engineering
in Medicine and Biology, Buenos Aires: IEEE, 2686–2689. doi: 10.1109/IEMBS.
2010.5626548

Alpert, G. F., Manor, R., Spanier, A. B., Deouell, L. Y., and Geva, A. B. (2013).
Spatiotemporal representations of rapid visual target detection: a single-trial
EEG classification algorithm. IEEE Trans. Biomed. Eng. 61, 2290–2303. doi:
10.1109/TBME.2013.2289898

Bhattacharyya, S., Valeriani, D., Cinel, C., Citi, L., and Poli, R. (2019).
“Collaborative brain-computer interfaces to enhance group decisions in an
outpost surveillance task,” in 2019 41st Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin: IEEE,
3099–3102. doi: 10.1109/EMBC.2019.8856309

Bigdely-Shamlo, N., Vankov, A., Ramirez, R. R., and Makeig, S. (2008). Brain
activity-based image classification from rapid serial visual presentation. IEEE
Trans. Neural Syst. Rehabil. Eng. 16, 432–441. doi: 10.1109/TNSRE.2008.
2003381

Blankertz, B., Lemm, S., Treder, M., Haufe, S., and Müller, K. R.
(2011). Single-trial analysis and classification of ERP components—
a tutorial. NeuroImage 56, 814–825. doi: 10.1016/j.neuroimage.2010.
06.048

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vis. 10, 433–436. doi:
10.1163/156856897X00357

Broadbent, D. E., and Broadbent, M. H. (1987). From detection to identification:
response to multiple targets in rapid serial visual presentation. Percept.
Psychophys. 42, 105–113. doi: 10.3758/BF03210498

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition.
Data Min.Knowl. Discov.2, 121–167. doi: 10.1023/A:1009715923555

Cecotti, H., Eckstein, M. P., and Giesbrecht, B. (2014a). Single-trial classification
of event-related potentials in rapid serial visual presentation tasks using
supervised spatial filtering. IEEE Trans. Neural Netw. Learn. Syst. 25, 2030–
2042. doi: 10.1109/TNNLS.2014.2302898

Cecotti, H., Eckstein, M. P., and Giesbrecht, B. (2014b). “Single-trial classification
of neural responses evoked in rapid serial visual presentation: effects
of stimulus onset asynchrony and stimulus repetition,” in 2014 36th
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Chicago, IL: IEEE, 1282–1285. doi: 10.1109/EMBC.2014.69
43832

Cecotti, H., and Graser, A. (2010). Convolutional neural networks for P300
detection with application to brain-computer interfaces. IEEE Trans. Pattern
Anal. Mach. Intell. 33, 433–445. doi: 10.1109/TPAMI.2010.125

Cecotti, H., and Rivet, B. (2014). Subject combination and electrode
selection in cooperative brain-computer interface based on event
related potentials. Brain Sci. 4, 335–355. doi: 10.3390/brainsci4020
335

Cecotti, H., Sato-Reinhold, J., Sy, J. L., Elliott, J. C., Eckstein, M. P., and Giesbrecht,
B. (2011). “Impact of target probability on single-trial EEG target detection in
a difficult rapid serial visual presentation task,” in 2011 Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, Boston,
MA: IEEE, 6381–6384. doi: 10.1109/IEMBS.2011.6091575

Chun, M. M., and Potter, M. C. (1995). A two-stage model for multiple target
detection in rapid serial visual presentation. J. Exp. Psychol. Human. 21, 109–
127. doi: 10.1037/0096-1523.21.1.109

Gao, S., Wang, Y., Gao, X., and Hong, B. (2014). Visual and auditory brain–
computer interfaces. IEEE Trans. Biomed. Eng. 61, 1436–1447. doi: 10.1109/
TBME.2014.2300164

Gerson, A. D., Parra, L. C., and Sajda, P. (2005). Cortical origins of response
time variability during rapid discrimination of visual objects. Neuroimage 28,
342–353. doi: 10.1016/j.neuroimage.2005.06.026

Huang, Y., Erdogmus, D., Pavel, M., Mathan, S., and Hild, K. E. II (2011).
A framework for rapid visual image search using single-trial brain evoked
responses. Neurocomputing 74, 2041–2051. doi: 10.1016/j.neucom.2010.12.
025

Hyvärinen, A., and Oja, E. (2000). Independent component analysis: algorithms
and applications. Neural Netw. 13, 411–430. doi: 10.1016/S0893-6080(00)
00026-5

Jolicoeur, P. (1998). Modulation of the attentional blink by on-line response
selection: evidence from speeded and unspeeded Task 1 decisions. Mem. Cogn.
26, 1014–1032. doi: 10.3758/BF03201180

Krauledat, M., Tangermann, M., Blankertz, B., and Müller, K. R. (2008). Towards
zero training for brain-computer interfacing. PLoS One 3:2967. doi: 10.1371/
journal.pone.0002967

Lawrence, D. H. (1971). Two studies of visual search for word targets with
controlled rates of presentation. Percept. Psychophys. 10, 85–89. doi: 10.3758/
BF03214320

Lees, S., Dayan, N., Cecotti, H., Mccullagh, P., Maguire, L., Lotte, F., et al. (2018).
A review of rapid serial visual presentation-based brain–computer interfaces.
J. Neural. Eng. 15:021001. doi: 10.1088/1741-2552/aa9817

Lees, S., McCullagh, P., Payne, P., Maguire, L., Lotte, F., and Coyle, D. (2019). Speed
of rapid serial visual presentation of pictures, numbers and words affects event-
related potential-based detection accuracy. IEEE Trans. Neural Syst. Rehabil.
Eng. 28, 113–122. doi: 10.1109/TNSRE.2019.2953975

Frontiers in Neuroscience | www.frontiersin.org 11 October 2020 | Volume 14 | Article 579469

https://www.frontiersin.org/articles/10.3389/fnins.2020.579469/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2020.579469/full#supplementary-material
https://doi.org/10.1016/j.clinph.2012.12.050
https://doi.org/10.1016/j.clinph.2012.12.050
https://doi.org/10.1109/IEMBS.2010.5626548
https://doi.org/10.1109/IEMBS.2010.5626548
https://doi.org/10.1109/TBME.2013.2289898
https://doi.org/10.1109/TBME.2013.2289898
https://doi.org/10.1109/EMBC.2019.8856309
https://doi.org/10.1109/TNSRE.2008.2003381
https://doi.org/10.1109/TNSRE.2008.2003381
https://doi.org/10.1016/j.neuroimage.2010.06.048
https://doi.org/10.1016/j.neuroimage.2010.06.048
https://doi.org/10.1163/156856897X00357
https://doi.org/10.1163/156856897X00357
https://doi.org/10.3758/BF03210498
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1109/TNNLS.2014.2302898
https://doi.org/10.1109/EMBC.2014.6943832
https://doi.org/10.1109/EMBC.2014.6943832
https://doi.org/10.1109/TPAMI.2010.125
https://doi.org/10.3390/brainsci4020335
https://doi.org/10.3390/brainsci4020335
https://doi.org/10.1109/IEMBS.2011.6091575
https://doi.org/10.1037/0096-1523.21.1.109
https://doi.org/10.1109/TBME.2014.2300164
https://doi.org/10.1109/TBME.2014.2300164
https://doi.org/10.1016/j.neuroimage.2005.06.026
https://doi.org/10.1016/j.neucom.2010.12.025
https://doi.org/10.1016/j.neucom.2010.12.025
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.1016/S0893-6080(00)00026-5
https://doi.org/10.3758/BF03201180
https://doi.org/10.1371/journal.pone.0002967
https://doi.org/10.1371/journal.pone.0002967
https://doi.org/10.3758/BF03214320
https://doi.org/10.3758/BF03214320
https://doi.org/10.1088/1741-2552/aa9817
https://doi.org/10.1109/TNSRE.2019.2953975
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-579469 October 17, 2020 Time: 20:10 # 12

Zheng et al. Cross-Session Dataset for Collaborative BCIs

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy,
A., et al. (2018). A review of classification algorithms for EEG-based brain–
computer interfaces: a 10 year update. J. Neural Eng. 15:031005. doi: 10.1088/
1741-2552/aab2f2/meta

Makeig, S., Bell, A. J., Jung, T. P., and Sejnowski, T. J. (1996). “Independent
component analysis of electroencephalographic data,” in Advances in Neural
Information Processing Systems 8, eds D. Touretzky, M. Mozer, and M.
Hasselmo (Cambridge MA: MIT Press), 145–151.

Mathan, S., Erdogmus, D., Huang, Y., Pavel, M., Ververs, P., Carciofini, J.,
et al. (2008). “Rapid image analysis using neural signals,” in CHI’08 Extended
Abstracts on Human Factors in Computing Systems, Florence, 3309–3314. doi:
10.1145/1358628.1358849

Matran-Fernandez, A., and Poli, R. (2017). Towards the automated localisation of
targets in rapid image-sifting by collaborative brain-computer interfaces. PLoS
One 12:e0178498. doi: 10.1371/journal.pone.0178498

Matran-Fernandez, A., Poli, R., and Cinel, C. (2013). “Collaborative brain-
computer interfaces for the automatic classification of images,” in 2013 6th
International IEEE/EMBS Conference on Neural Engineering (NER), San Diego,
CA: IEEE, 1096–1099. doi: 10.1109/NER.2013.6696128

Nakanishi, M., Wang, Y., Chen, X., Wang, Y. T., Gao, X., and Jung, T. P. (2018).
Enhancing detection of SSVEPs for a high-speed brain speller using task-
related component analysis. IEEE Trans. Biomed. Eng. 65, 104–112. doi: 10.
1109/TBME.2017.2694818

Oliva, A. (2005). “Gist of the scene,” in Neurobiology of Attention, eds L. Itti, G.
Rees, and J. Tsotsos (Cambridge, MA: Academic Press), 251–256. doi: 10.1016/
B978-012375731-9/50045-8

Picton, T. W. (1992). The P300 wave of the human event-related potential.
J. Clin. Neurophysiol. 9, 456–479. doi: 10.1097/00004691-199210000-
00002

Pohlmeyer, E. A., Wang, J., Jangraw, D. C., Lou, B., Chang, S. F., and Sajda,
P. (2011). Closing the loop in cortically-coupled computer vision: a brain–
computer interface for searching image databases. J. Neural. Eng. 8:036025.
doi: 10.1088/1741-2560/8/3/036025

Poli, R., Valeriani, D., and Cinel, C. (2014). Collaborative brain-computer interface
for aiding decision-making. PLoS One 9:e102693.

Ramoser, H., Muller-Gerking, J., and Pfurtscheller, G. (2000). Optimal spatial
filtering of single trial EEG during imagined hand movement. IEEE Trans.
Rehabil.Eng. 8, 441–446. doi: 10.1109/86.895946

Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009). xDAWN algorithm
to enhance evoked potentials: application to brain–computer interface.
IEEE Trans. Biomed. Eng. 56, 2035–2043. doi: 10.1109/TBME.2009.20
12869

Rousselet, G. A., Thorpe, S. J., and Fabre-Thorpe, M. (2004). How parallel is
visual processing in the ventral pathway? Trends Cogn. Sci. 8, 363–370. doi:
10.1016/j.tics.2004.06.003

Sajda, P., Gerson, A., and Parra, L. (2003). “High-throughput image search
via single-trial event detection in a rapid serial visual presentation task,”
in First International IEEE EMBS Conference on Neural Engineering, 2003.
Conference Proceedings, Capri Island: IEEE, 7–10. doi: 10.1109/CNE.2003.11
96297

Sajda, P., Pohlmeyer, E., Wang, J., Parra, L. C., Christoforou, C., Dmochowski, J.,
et al. (2010). In a blink of an eye and a switch of a transistor: cortically coupled
computer vision. Proc. IEEE 98, 462–478. doi: 10.1109/JPROC.2009.2038406

Serre, T., Oliva, A., and Poggio, T. (2007). A feedforward architecture accounts
for rapid categorization. Proc. Natl. Acad. Sci. U.S.A. 104, 6424–6429. doi:
10.1073/pnas.0700622104

Thorpe, S., Fize, D., and Marlot, C. (1996). Speed of processing in the human visual
system. Nature 381, 520–522. doi: 10.1038/381520a0

Touryan, J., Gibson, L., Horne, J. H., and Weber, P. (2011). Real-time measurement
of face recognition in rapid serial visual presentation. Front. Psychol. 2:42.
doi: 10.3389/fpsyg.2011.00042

Touyama, H. (2014). “A collaborative BCI system based on P300 signals as a new
tool for life log indexing,” in 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), San Diego, CA: IEEE, 2843–2846. doi: 10.1109/
SMC.2014.6974360

Valeriani, D., Cinel, C., and Poli, R. (2017). Group augmentation in realistic visual-
search decisions via a hybrid brain-computer interface. Sci. Rep. 7, 1–12. doi:
10.1038/s41598-017-08265-7

Valeriani, D., Poli, R., and Cinel, C. (2015). “A collaborative brain-computer
Interface to improve human performance in a visual search task,” in 2015
7th International IEEE/EMBS Conference on Neural Engineering (NER),
(Montpellier: IEEE), 218–223. doi: 10.1109/NER.2015.7146599

Valeriani, D., Poli, R., and Cinel, C. (2016). Enhancement of group perception
via a collaborative brain–computer interface. IEEE Trans. Biomed. Eng. 64,
1238–1248. doi: 10.1109/TBME.2016.2598875

Wang, Y., and Jung, T. P. (2011). A collaborative brain-computer interface for
improving human performance. PLoS One 6:e0020422. doi: 10.1371/journal.
pone.0020422

Wang, Y., Wang, Y. T., Jung, T. P., Gao, X., and Gao, S. (2011). “A collaborative
brain-computer interface,” in 2011 4th International Conference on Biomedical
Engineering and Informatics (BMEI), Vol. 1, Shanghai: IEEE, 580–583. doi:
10.1109/BMEI.2011.6098286

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,
T. M. (2002). Brain–computer interfaces for communication and control. Clin.
Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Wu, W., and Gao, S. (2011). “Learning event-related potentials (ERPs) from
multichannel EEG recordings: a spatio-temporal modeling framework with a
fast estimation algorithm,” in 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Boston, MA: IEEE, 6959–6962.
doi: 10.1109/IEMBS.2011.6091759

Yuan, P., Wang, Y., Wu, W., Xu, H., Gao, X., and Gao, S. (2012). “Study on an
online collaborative BCI to accelerate response to visual targets,” in 2012 Annual
International Conference of the IEEE Engineering in Medicine and Biology
Society, San Diego, CA: IEEE, 1736–1739. doi: 10.1109/EMBC.2012.6346284

Zhang, S., Han, X., Chen, X., Wang, Y., Gao, S., and Gao, X. (2018). A study
on dynamic model of steady-state visual evoked potentials. J. Neural Eng.
15:046010. doi: 10.1088/1741-2552/aabb82/meta

Zhao, H., Wang, Y., Sun, S., Pei, W., and Chen, H. (2019). “Obviating
session-to-session variability in a rapid serial visual presentation-based brain–
computer interface,” in 2019 9th International IEEE/EMBS Conference on
Neural Engineering (NER), San Francisco, CA: IEEE, 171–174. doi: 10.1109/
NER.2019.8716892

Zhou, F., and Torre, F. (2009). Canonical time warping for alignment of human
behavior. Adv. Neural Informat. Process. Syst. 22, 2286–2294.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Zheng, Sun, Zhao, Pei, Chen, Gao, Zhang and Wang. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 October 2020 | Volume 14 | Article 579469

https://doi.org/10.1088/1741-2552/aab2f2/meta
https://doi.org/10.1088/1741-2552/aab2f2/meta
https://doi.org/10.1145/1358628.1358849
https://doi.org/10.1145/1358628.1358849
https://doi.org/10.1371/journal.pone.0178498
https://doi.org/10.1109/NER.2013.6696128
https://doi.org/10.1109/TBME.2017.2694818
https://doi.org/10.1109/TBME.2017.2694818
https://doi.org/10.1016/B978-012375731-9/50045-8
https://doi.org/10.1016/B978-012375731-9/50045-8
https://doi.org/10.1097/00004691-199210000-00002
https://doi.org/10.1097/00004691-199210000-00002
https://doi.org/10.1088/1741-2560/8/3/036025
https://doi.org/10.1109/86.895946
https://doi.org/10.1109/TBME.2009.2012869
https://doi.org/10.1109/TBME.2009.2012869
https://doi.org/10.1016/j.tics.2004.06.003
https://doi.org/10.1016/j.tics.2004.06.003
https://doi.org/10.1109/CNE.2003.1196297
https://doi.org/10.1109/CNE.2003.1196297
https://doi.org/10.1109/JPROC.2009.2038406
https://doi.org/10.1073/pnas.0700622104
https://doi.org/10.1073/pnas.0700622104
https://doi.org/10.1038/381520a0
https://doi.org/10.3389/fpsyg.2011.00042
https://doi.org/10.1109/SMC.2014.6974360
https://doi.org/10.1109/SMC.2014.6974360
https://doi.org/10.1038/s41598-017-08265-7
https://doi.org/10.1038/s41598-017-08265-7
https://doi.org/10.1109/NER.2015.7146599
https://doi.org/10.1109/TBME.2016.2598875
https://doi.org/10.1371/journal.pone.0020422
https://doi.org/10.1371/journal.pone.0020422
https://doi.org/10.1109/BMEI.2011.6098286
https://doi.org/10.1109/BMEI.2011.6098286
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1109/IEMBS.2011.6091759
https://doi.org/10.1109/EMBC.2012.6346284
https://doi.org/10.1088/1741-2552/aabb82/meta
https://doi.org/10.1109/NER.2019.8716892
https://doi.org/10.1109/NER.2019.8716892
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	A Cross-Session Dataset for Collaborative Brain-Computer Interfaces Based on Rapid Serial Visual Presentation
	Introduction
	Methods
	Participants
	Collaborative System
	Collaborative Experiment Design
	Data Acquisition
	Data Preprocessing
	Data Analysis
	Individual Data Analysis
	Collaborative Data Analysis
	Cross-Session Data Analysis

	Metric

	Data Record
	EEG Data
	Supplementary Information

	Data Evaluation
	Individual BCI Performance
	Within-Session Individual Performance
	Cross-Session Individual Performance

	Collaborative BCI Performance
	Within-Session Collaborative Performance
	Cross-Session Collaborative Performance


	Conclusion and Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


