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Abstract: Liver metastases are common in pancreatic neuroendocrine tumors (PanNETs) patients
and they are considered a poor prognostic marker. This study aims to analyze the spatiotemporal
patterns of genomic variations between primary and metastatic tumors, and to identify the key related
biomolecular pathways. We performed next-generation sequencing on paired tissue specimens of
primary PanNETs (n = 11) and liver metastases (n = 12). Low genomic heterogeneity between
primary PanNETs and liver metastases was observed. Genomic analysis provided evidence that
polyclonal seeding is a prevalent event during metastatic progression, and may be associated with
the progression-free survival. Besides this, copy number variations of BRCA1/BRCA2 seem to be
associated with better prognosis. Pathways analysis showed that pathways in cancer, DNA repair,
and cell cycle regulation-related pathways were significantly enriched in primary PanNETs and
liver metastases. The study has shown a high concordance of gene mutations between the primary
tumor and its metastases and the shared gene mutations may occur during oncogenesis and predates
liver metastasis, suggesting an earlier onset of metastasis in patients with PanNETs, providing novel
insight into genetic changes in metastatic tumors of PanNETs.

Keywords: pancreatic neuroendocrine tumors; liver metastasis; genomic heterogeneity; tyrosine
kinase; DNA repair

1. Introduction

Pancreatic neuroendocrine tumors (PanNETs) are extremely rare and account for
less than 2% of all pancreatic tumors, with an estimated annual incidence of less than
1/100,000 per year [1,2]. The cell of origin of this disease remains debated, and several re-
cent studies suggest that they are most probably derived from islet cells of the pancreas [3].
According to the World Health Organization (WHO) 2010 Grading System, PanNETs are
categorized into Grade 1 (mitotic counts per 10 HPF < 2, Ki-67 index ≤ 2%), Grade 2
(mitotic counts per 10 HPF 2-20, Ki-67 index 3–20%), and Grade 3 (mitotic counts per
10 HPF > 20, Ki-67 index > 20%). Collectively, PanNETs constitute a heterogeneous group
of tumors with a wide spectrum of clinicopathological features that have unpredictable
clinical manifestations, which often obfuscate unambiguous diagnosis [4]. In order to gain
a better understanding of the molecular ontogeny of this heterogeneous disease, Scarpa
et al. utilized whole-genome sequencing to interrogate the somatic mutation landscape in
102 primary PanNETs, and unraveled a large number of genetic alterations associated with
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aberrant phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR)
signalings, dysregulated cell cycle/proliferation, DNA damage response, chromatin re-
modeling/histone methylation, and telomere alterations [5]. The mutation profiles may
potentially be useful in defining clinically relevant subtypes for the purpose of risk stratifi-
cation. To date, physicians still face challenges in identifying the aggressive subtypes due
to the lack of understanding in the molecular mechanisms underlying disease progression
from primary tumors to distant metastasis. For example, 20% of patients subtyped by high
Ki67 proliferation rate progressed to metastatic disease after treatment [6]. More than 50%
of PanNETs patients are diagnosed at advanced stages with lymph node, liver, or distant
metastasis. The 5-year survival rate for patients with untreated liver metastases ranges
from 20% to 40% [7]. Understanding the genetic basis of disease progression would thus
allow physicians to cater personalized treatments to achieve a more positive outcome.

The genetic diversity in metastatic lesions is generally much less explored compared to
primary tumors. Given that metastasis is a late event during malignant disease progression,
it is typically thought to be seeded by a small founder population from the primary
tumor [8]. However, several models of metastatic progression have been proposed, each
comes with different implications for clinical management of the disease. The prevailing
linear acquisition model posits that primary tumors gradually gain metastatic potential as
they acquire more somatic mutations at later stage of the disease [9], while the alternative
model suggests that some tumors are ‘born-to-be-bad’ with metastatic potential conferred
by specific mutations present early in the primary tumor cells [10]. In addition, metastatic
lesions could be formed by polyclonal seeding from several subclonal populations of
primary tumor cells, or by monoclonal seeding with a single genetic population. Thus, the
mode of metastatic disease progression dictates the resulting genetic heterogeneity and
the underlying driver alterations in the metastatic lesions. Hitherto, the molecular events
driving distant metastasis of PanNETs remain largely unknown. Particularly, it is unclear
whether the fate of metastasis is predestined at the time of tumor initiation in PanNETs,
and whether the metastatic lesions are seeded by a single or multiple genetic population(s)
from the primary site.

In the current study, we leveraged matched primary-metastatic tumors to interrogate
the genetics of metastasis in PanNETs. Herein, we performed targeted next-generation
sequencing (NGS) using a 468-gene panel on the matched tumor pairs from patients who
underwent debulk surgery. We aimed to analyze the spatiotemporal patterns of genomic
variations and to identify the key molecular pathways in the metastatic process. In addition,
we performed whole-exome sequencing (WES) on the primary tumor, liver metastasis, and
ovarian metastasis of one PanNET patient to further elucidate the evolutionary trajectory.

2. Materials and Methods

This study was approved by the institutional review board of Fudan University
Shanghai Cancer Center (FUSCC). Tissue acquisition was carried out in accordance with
Institutional and State guidelines on the experimental use of human tissues.

2.1. Tissue Acquisition

Paired snap frozen or paraffin-embedded tissue specimens of primary PanNETs
(n = 11) and liver metastases (n = 12) were acquired from eleven treatment-naïve patients
with pathologically proven sporadic PanNETs who underwent debulk surgery at FUSCC
from February 2014 to July 2019. In addition, ovarian metastases (n = 2) were obtained
from one patient apart from acquisition of tissue specimens of primary PanNET and
liver metastases.

2.2. DNA Extraction and Sequencing

Six pairs of fresh tissue specimens of primary tumors and liver metastases were
paraffin-embedded according to conventional protocols and stored at room temperature,
and five additional pairs of primary tumors and liver metastases were snap frozen and
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stored at −80 ◦C. DNA was extracted from paraffin-embedded tissues using Biospin FFPF
Tissue Genomic DNA Extraction Kit (BSC24S1, BioFlux, Beijing, China) according to the
manufacturer’s instructions. We extracted DNA from snap-frozen tumors using TIANamp
Genomic DNA Kit (DP180123, TianGEN, Beijing, China). All DNA samples were quantified
using a NanoDrop (ND 1000, Thermo Scientific, Waltham, MA, USA ). Libraries were
generated using NanoPrep™ DNA Library kit (for Illumina®) (1002101C1, Nanodigmbio,
Nanjing, China) according to the manufacturer’s instructions. Gene sequencing was done
using the Illumina NextSeq500 System (Illumina, San Diego, CA, USA). The custom panel
test covers a total of 468 cancer-associated genes, including 35 fusion genes (Genenexus
Technology Corp., Yangzhou, China).

2.3. Quality Control and Single Nnucleotide Variant (SNV) Analysis

Quality of the raw data was assessed by FastQC software (version 1.0) (Available
from: https://qubeshub.org/resources/fastqc, accessed on 28 July 2022). Sequence data
were aligned to the human genome assembly GRCH37 using BWA (version 0.7.17) [11]
and SAMtools (version 1.16) [12] to generate BAMs. Variant calling was performed using
VarDict (version 1.8.2) [13]. Variants were annotated using SNPEff to filter out the common
SNPs that are reported by dbSNP or COSMIC database. The predicted function of mutations
were identified by SNPeff (version 5.1) [14]. All the analyses were performed under
default parameter.

2.4. Structural Variant (SV) and Copy Number Analysis

SVs were determined using Delly (version 0.9.1) [15]. SV breakpoints and potential
consequence of the SVs were determined by annotation against Ensemble known genes
(version 75) using in-house scripts. Copy number was determined using CNVkit (version
0.9.9) [16]. One copy indicated copy number loss (excluding genes on the X chromosome
in male patients), zero copies indicated homozygous deletion, and a copy number ≥ 3
indicated copy gain. All the analyses were performed under default parameters.

2.5. Gene Set Enrichment Analysis

To identify the main signaling pathways mediating tumorigenesis and liver metastasis
of PanNETs, we carried out gene set enrichment analysis based on the categories of gene
ontology (GO, Biological Process) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) using the clusterProfiler enriched category, and the significance threshold was set
as adjusted P value and Q value less than 0.0001. Pathway and network analyses were
performed using Ingenuity Pathway Analysis (IPA).

2.6. Phylogenetic Tree Reconstruction

To reconstruct the phylogeny of paired primary and metastatic tumors from individual
patients based on SNVs and indels, the allele fractions (AF) of SNVs and indels were used as
input to calculate tumor subcloning using Clonality Inference in Tumors Using Phylogeny
(Citup) (version 0.1.2) [17], and all possible results were inferred and the one with the
highest score was selected as the final result.11 Then, the proportion of Citup was used to
find the phylogenetic tree and different subclones in the sample were extracted, and the R
package TimeScape (version 1.20) was used for visualization to generate fish graph. All the
analyses were performed under default parameter.

2.7. Statistical Analysis

Progression-free survival (PFS) was calculated from the date of surgery to the first
evidence of progressive disease or death from any cause, whichever occurred first. For
patients without progressive disease who did not die during the study period, PFS data
were censored on the date of the final tumor assessment. PFS was summarized using
Kaplan–Meier methods. Hazards ratios (HR) and 95% confidence interval (95% CI) were
estimated using a Cox proportional hazards model. Patients were categorized into the high
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and low genomic heterogeneity group using the median percentage of shared mutations in
the primary PanNETs and their liver metastases. Cox proportional hazards model was also
used to compare the results obtained in the two groups and in patients with and without
BRCA1/2 copy number variations (CNVs). The p value of the survival difference was
calculated by the log-rank test. All the analyses were conducted in R-3.6.0.

2.8. Data Availability

The data that support the findings of this study are available on request from the
corresponding author.

3. Results
3.1. Patient Demographic and Baseline Characteristics

Patient demographic and baseline characteristics are shown in Table 1. The study
included a total of eleven patients who had sporadic PanNET with liver metastasis. Their
median age was 53 years (range 33–67 years) and seven patients (63.6%) were female. The
pancreatic tumor was located in the head of the pancreas in four patients, in the body in one
patient, and in the tail in six patients. Two patients were pathologically classified with grade
1 tumors while nine patients had grade 2 tumors. Ten patients underwent pancreatectomy
and hepatectomy simultaneously within one month of diagnosis of PanNETs.

Table 1. Demographic and baseline characteristics of patients with pancreatic neuroendocrine tumors
and liver metastases.

No. Sex Age
Years

Primary PanNET Liver Metastases Positive Lymph
Nodes

Nerve
Invasion

Lymphovascular
Invasion

Outcome
Size (cm) Location Grade Ki67 Size (cm) Grade Months

1 M 42 5.1 × 4.0 × 3.0 Head G2 15% 3.0 × 1.0 G2 4/8 + − PFS: 30 M
2 M 53 8.0 × 7.0 × 4.5 Tail G2 5% 2.0 × 1.8 × 1.8 G2 0/3 − − OS: 19 M
3 M 60 9.0 × 4.5 × 2.8 Tail G2 4% 4.0 × 2.5 × 3.0 G2 3/8 − − PFS: 35 M
4 M 67 3.0 × 1.5 × 1.0 Head G1 2% 0.6 × 1.0 × 1.0 G1 6/18 − + PFS: 37 M
5 F 33 6.0 × 5.0 × 4.5 Tail G2 10% 3.5 × 2.5 × 1.5 G2 1/11 − + PFS: 19 M
6 F 44 4.0 × 2.7 × 2.5 Tail G2 5% 1.5 × 1.2 × 1.0 G2 0/10 − − PFS: 48 M
7 F 47 3.0 × 2.5 × 1.8 Head G1 <2% 2.0 × 1.5 × 2.0 G1 3/7 + − PFS: 49 M
8 F 53 4.5 × 3.0 × 2.5 Tail G2 5% 5.5 × 4.5 × 4.5 G2 0/4 − + PFS: 28 M
9 F 59 5.5 × 4.4 × 2.5 Tail G2 4% 3.5 × 1.0 G2 2/2 − + PFS: 23 M

10 F 61 1.9 × 1.0 × 0.2 Body G2 4%
Multiple

metastasis
(Max: 1.0 × 0.8)

G2 0/3 − − PFS: 24 M

11 F 46 6.0 × 5.0 × 3.5 Head G2 10–
20%

Bilateral: 4.0 ×
3.0 (left) and

3.0 × 2.5 × 2.0
(right)

G3 0/29 − − PFS: 24 M

G1: low grade, G2: intermediate grade, and G3: high grade; “+”: positive, “−”: negative. Abbreviations: OS:
overall survival, PFS: progress-free survival.

3.2. Genomic Landscape of Primary Tumors and Metastases

Eleven pairs of PanNETs and liver metastases were subjected to gene panel sequencing.
The curated data revealed a median of 204 (range 151–405) high-confidence SNVs and
insertion-deletions (Indels) in the primary tumors and 197 (range 149–468) in liver metastases
(Figure 1A). Interestingly, we observed that eight out of eleven patients had significantly
more shared mutations in the tumor pairs than private mutations in either the primary or
the metastatic tumors (range: 9.5–74.2%, median: 60.4%, Figure 1A–C). Taken together, these
results may suggest that: (1) there is limited heterogeneity of pathogenic driver mutations
between paired primary PanNETs and their liver metastases, and (2) the propensity or
potential to metastasize may be acquired early during PanNETs tumorigenesis.
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Figure 1. Genomic heterogeneity in paired primary pancreatic neuroendocrine tumors (PanNETs)
and liver metastases. (A) The number of single nucleotide variants (SNVs) in each tumor tissue
is shown. (B) The percentage of identified SNVs that are shared or private in PanNETs and liver
metastases. (C) Violin plots illustrate the statistical results of the relative percentage of shared,
primary PanNETS-private and metastasis-private SNV. The p value was calculated by Student’s test
(t-test). (D) The Kaplan–Meier curve of progression-free survival (PFS) of the study patients stratified
by a low (n = 5) vs. high (n = 6) proportion of common SNVs and indels. The p value was calculated
by the log-rank test.

To examine if the degree of shared mutations between primary tumors and their metas-
tases affects the progression-free survival (PFS) of patients, we performed a Kaplan–Meier
analysis. Specifically, we defined a patient as having low proportion of shared mutations
if <60% of all detected somatic alterations were shared between the primary tumor and
the matched metastasis to categorize the patients into two groups (Low group, n = 5; High
group, n = 6). Low degree of shared mutations would indicate that the metastatic lesions
had acquired more private mutations that might be necessary to establish niche indepen-
dence. The Kaplan–Meier analysis showed that the degree of common mutations seemed
likely to be associated with the longer PFS(Low group versus high group: 35.0 months,
95% CI, 20.7–49.3 vs. 26.0 months, 95% CI, 20.2–33.5; hazards ratio [HR], 1.346, 95% CI,
0.411–4.411; p = 0.188) (Figure 1D). However, there is no significant statistical difference
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between the two groups, which may be related to the small sample size. Studies with the
larger sample size are needed for further validation.

Next, we aimed to identify recurrently mutated genes that were present in the primary-
metastatic tumor samples in at least two patients. Fourteen SNVs in thirteen genes were
identified, including nine missense mutations, two stop gains, and one frameshift variant:
KMT2C (36.4%, 4/11), GNAQ (27.3%, 3/11), LIMK1 (27.3%, 3/11), CSK (18.2%, 2/11),
EPHA2 (18.2%, 2/11), FLT3 (18.2%, 2/11), KMT2D (18.2%, 2/11), MEN1 (18.2%, 2/11),
NRG3 (18.2%, 2/11), RANBP2 (18.2%, 2/11), ROS1 (18.2%, 2/11), SETD2 (18.2%, 2/11), and
TNK2 (18.2%, 2/11) (Figure 2A and Supplementary Table S1). Among those genes, KMT2C
and MEN1 have been reported to be associated with PanNET [18]. CSK, FLT3, and NRG3,
are involved in RAF/MAP kinase cascade and MAPK1/MAPK3 signaling. Besides this, we
also observed mutations in other 16 reported PanNET-related genes: APC, ARID2, ATM,
BRCA1/2, DAXX, MSH3, MSH6, PALB2, RAD50, RAD51, RB1, SMARCA4, TSC1, and
TSC2 (Table 2) [11]. Many of these genes are involved in DNA damage response and repair,
including homologous recombination repair and DNA repair, indicating that impairment
of multiple DNA damage repair processes in PanNETs and their metastases.
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Figure 2. The mutational landscape in paired primary PanNETs and liver metastases. (A) Poten-
tial driver alterations identified in paired primary PanNETs and liver metastases, a*: HLA−B &
HLA−C & RPL3P2 & USP8P1 & WASF5P & XXbac-BPG248L24.10 & XXbac-BPG248L24.12 & XXbac-
BPG248L24.13. (B) The Kaplan–Meier curve of PFS of the study patients stratified by positive (n = 5)
or negative (n = 6) BRCA1/2 CNV. The p value was calculated by the log-rank test.
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Table 2. Mutations in genes associated with PanNET are known.

Mutations Tissue
(Patient No.)Gene

No.
Mutated
Genes

Mutations
Nucleotide

Mutations
Protein

Mutation Type
Primary Metastases

1 APC c.6973G>A p.Gly2325Ser missense_variant - 5
c.2098G>T p.Asp700Tyr missense_variant 5 -
c.1412G>A p.Gly471Glu missense_variant 7 -
c.3341G>A p.Arg1114Gln missense_variant 7 -
c.6857C>T p.Ala2286Val missense_variant 7 -
c.3949G>C p.Glu1317Gln missense_variant 9 9

2 ARID2 c.4300G>T p.Ala1434Ser missense_variant 10 10
c.1759A>G p.Ser587Gly missense_variant 4 4
c.929G>A p.Arg310His missense_variant 5 -
c.1368G>A p.Met456Ile missense_variant 5 -
c.4300G>T p.Ala1434Ser missense_variant 10 10

3 ATM c.821C>A p.Ser274Tyr missense_variant - 2
c.8120C>G p.Ser2707Cys missense_variant 2 2
c.6115G>A p.Glu2039Lys missense_variant - 6
c.497-4delT - frameshift_variant 3 -

c.2466+7A>G - frameshift_variant 6 6
c.1339C>T p.Arg447* stop_gained 7 -

4 BRCA1 c.5636T>C p.Ile1879Thr missense_variant 7 -
c.3448C>T p.Pro1150Ser missense_variant 4 4
c.1775G>A p.Ser592Asn missense_variant - 5
c.3167C>G p.Ser1056Cys missense_variant 5 -
c.4046C>T p.Thr1349Met missense_variant 6 -
c.2875A>G p.Arg959Gly missense_variant - 8
c.5314C>T p.Arg1772* stop_gained 7 -

5 BRCA2 c.8187G>T p.Lys2729Asn missense_variant 1 1
c.4585G>A p.Gly1529Arg missense_variant 2 -

c.10234A>G p.Ile3412Val missense_variant 3 3
c.1012G>A p.Ala338Thr missense_variant 6 -
c.9836T>C p.Leu3279Ser missense_variant 7 -
c.9139C>T p.Gln3047* stop_gained - 5

6 DAXX c.1111C>T p.Arg371Trp missense_variant 2 2
c.207+1G>A - frameshift 9 9

7 MSH3 c.181_189dupGCAGCGCCC p.Ala61_Pro63dup conservative_inframe_insertion 10/4/6 10/4/6
c.2071G>A p.Glu691Lys missense_variant - 7
c.356C>T p.Ser119Phe missense_variant&splice_region_variant 1 1

c.1764-1G>A - frameshift_variant - 7
8 MSH6 c.4068_4071dupGATT p.Lys1358fs frameshift_variant&stop_gained 4 4

c.3557-4delT - frameshift_variant 5/7 5
9 PALB2 c.925A>G p.Ile309Val missense_variant 2 2

c.1571C>T p.Ser524Leu missense_variant - 5
10 RAD50 c.3697C>A p.Pro1233Thr missense_variant 7 -
11 RAD51 c.88C>T p.Gln30* stop_gained&splice_region_variant 5 -
12 RB1 c.2393G>A p.Arg798Gln missense_variant - 5

c.1597G>A p.Glu533Lys missense_variant 5 -
c.2729G>A p.Arg910Gln missense_variant - 7

c.1422-9_1422-8delTT - frameshift_variant 3/4/5 3/5
13 SETD2 c.3382delA p.Thr1128fs frameshift_variant 3 -

c.578C>T p.Pro193Leu missense_variant 3/6 3/6
c.4162G>T p.Asp1388Tyr missense_variant 7 -

14 SMARCA4 c.113C>G p.Ser38Cys missense_variant - 5
c.2381C>T p.Thr794Met missense_variant 5 -
c.2620C>T p.Arg874Cys missense_variant 6 -

15 TSC1 c.3124_3129delAGCAGC p.Ser1042_Ser1043del conservative_inframe_deletion - 9
c.3114C>A p.Ser1038Arg missense_variant 7 -

c.1438+6G>A - frameshift_variant 5 -
16 TSC2 c.3385C>T p.Arg1129Cys missense_variant 2 2

c.856A>G p.Met286Val missense_variant 3 3
c.202G>A p.Ala68Thr missense_variant 4 -
c.5251C>T p.Arg1751Cys missense_variant - 6
c.2962C>T p.Arg988Cys missense_variant 7 -
c.3412C>T p.Arg1138* stop_gained 9 9

Then, we performed gene set enrichment analysis to further identify the key molecular
mechanisms that have been altered by the genetic alterations. Consistent with previously
published studies [19–21], we found pathways in cancer were significantly affected in
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PanNETs and liver metastases, and that EGFR tyrosine kinase inhibitor resistance and
transcriptional misregulation in cancer were unique to liver metastases via KEGG pathway
analysis; simultaneously, GO Biological Processes analysis underlined those signaling
pathways tightly related to tyrosine phosphorylation, DNA repair, and cell cycle regulation,
especially in liver metastases (Table 3, Supplementary Table S1).

Table 3. The analysis of KEGG and GO.

Category Primary Metastases

KEGG Pathway
Pathways in cancer Pathways in cancer

Melanoma EGFR tyrosine kinase inhibitor resistance
Transcriptional misregulation in cancer

peptidyl-tyrosine phosphorylation positive regulation of transferase activity
phosphatidylinositol-mediated signaling transmembrane receptor protein tyrosine kinase signaling pathway
regulation of cellular response to stress regulation of DNA metabolic process
regulation of DNA metabolic process negative regulation of cell proliferation

negative regulation of cell proliferation apoptotic signaling pathway
DNA repair negative regulation of cell cycle

GO Biological
Processes

epithelial cell proliferation

We also identified seven genes (BRCA1, BRCA2, RANBP2, SPTA1, ATRX, ATM, and
LRP1B) with copy-number variations (CNVs) (Figure 2A and Supplementary Table S2).
Among them, the BRCA1 (chr17q21.31) and BRCA2 (chr13q13.1) loci were frequently
amplified (CNV-gain), and most were shared between primary and metastatic tumors.
Since BRCA1/BRCA2 are frequently mutated in PanNETs and are significant predictors
of survival outcome in pancreatic cancer patients [22], we analyzed if BRCA1/2 CNVs
could impact the PFS in PanNETs patients. Although the Kaplan–Meier analysis revealed
no statistically significant difference in PFS between patients with and without BRCA1/2
CNVs, these mutations seem to confer a better prognostic outcome. (37.0 months, 95%
CI, 22.5-52.7 vs. 24.0 months, 95% CI, 20.6-28.7; hazards ratio, 1.542, 95% CI, 0.471-5.052;
p = 0.074) (Figure 2B). We reasoned that the lack of statistical significance could be due to the
relatively small sample size, and we believe that the observation warrants further studies.

Structural variant (SV) analysis revealed that MITF, the microphthalmia-associated
transcription factor, was observed both in PanNET and liver metastasis, with a rate of
36.4% (Supplementary Table S3). DAXX deletion was also seen in one patient and a high
impact frameshift variant (c.207+1G>A) was identified in another patient (Figure 2A and
Supplementary Table S3). Finally, no evidence of microsatellite instability and germline or
somatic mutations in MSI-related genes were identified in the 11 patients.

3.3. Spreading Routes of PanNETs in One Special Patient

To characterize the spatiotemporal metastases patterns of PanNET, we first recon-
structed the clonal evolutionary history and metastatic routes for one special patient (Case
No. 11), who was diagnosed with liver, ovarian, and brain metastases. Between February
2014 and July 2019, the patient received pancreatectomy for removal of primary PanNET,
hepatectomy for liver metastasis and bilateral ovariectomy for ovarian metastasis at an
interval of two to three years between surgeries (Figure 3A). Of note, the primary tumor
was G2, liver metastasis was NET G3, and the ovarian metastasis was G1 in this patient
(Supplementary Table S4). To understand heterogeneity and the evolutionary trajectories of
PanNET progression in this patient, we re-sequenced the patient’s primary tumor (n = 1),
liver metastases (n = 2), ovarian metastases (n = 2), and blood sample via WES.
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Figure 3. Evolutionary trajectories of PanNETs in a patient with liver and ovarian metastases.
(A) Case No.11 underwent three operations within five years to remove the primary tumor, liver
metastases, and ovarian metastases, respectively. Her five tumor samples and blood were whole-
exome sequenced. (B) Circos plots display the chromosomal distribution of variations in the five
tumor samples from the patient. The outer rings indicate SNVs and the inner rings indicate copy
number variations (CNVs). The high-resolution version of the circos plots can be found in Supple-
mentary Figure S1. (C) The dynamic diagram of clonal prevalence during the dissemination from
primary PanNET to the liver and ovarian. (D) Tumor phylogenies are reconstructed based on somatic
variations of the patient. (E) Schematic illustration of tumor evolution: starting with normal cells
that carry susceptible germline mutations, more and more driving mutations are accumulated as the
cells proliferate, leading to malignant transformation, growth of the primary tumor and metastatic
dissemination, seeding and outgrowth.

WES revealed high genomic heterogeneity between the primary tumor and its liver
and ovarian metastases, including CNVs and SVs, between metastases of different organs,
as well as between different metastatic sites within the same organ (Figures 3B–D and S1),
which could be due to the long interval between the primary and metastatic tumors; in the
process of tumor growth after metastasis, novel mutations are constantly acquired, which
increases the genetic heterogeneity between them. Apart from intratumor heterogeneity,
these results revealed spatiotemporal heterogeneity among the primary tumor and its
metastases which formed monophyletic clades, suggesting that liver metastasis and ovarian
metastasis were founded by different populations of cells (Figure 3E). In combination with
the clinical course of case No. 11, we hypothesize that, at least in this patient, distant
dissemination seeding occurred before the first operation.
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3.4. Clonal Cluster of PanNETs

To further explore the clonal evolutionary from primary PanNETs to liver metastasis,
we reconstructed the clonal evolutionary history and metastatic routes for other patients.
Pyclone was adopted to calculate the cancer cell fractions (CCFs) of each mutation, which
were then grouped into mutation clusters (Figure 4).
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Here, we first demonstrate our analysis strategy with Patient 01, who harbored 222 mu-
tations in primary tumor and 194 mutations in metastasis tissue, with 173 shared mutations.
Eight mutation clusters were identified in this patient (Figure 4). Different clusters dis-
played distinct CCFs in both primary tumor and liver metastasis, which is indicative of
constant, polyclonal seeding. As for Patient 01, the blue cluster increased significantly from
primary tumor to liver metastasis, suggesting that the mutations in this cluster (e.g., GNAQ
and MED12) had a selective advantage that was possibly associated with niche outgrowth
in the distant site. Similar trend was observed in all other patients. These results suggest
that polyclonal seeding was the major form of metastasis in these PanNET patients.

4. Discussion

Clonal evolution is an important biological process in metastatic progression of Pan-
NETs, but the magnitude and the clinical relevance of genomic heterogeneity PanNETs
metastasis remains largely unexplored. In the current study, we employed NGS to delineate
the mutational characteristics and intratumoral heterogeneity of primary PanNETs and
paired metastases. This study provides the first direct piece of evidence for the presence of
a high degree of shared mutations between PanNETs and liver metastases, and reveals that
liver metastases in PanNETs patients have a polyclonal origin. Consistent with other find-
ings in breast and lung cancer metastasis [23], polyclonal seeding in PanNETs metastases
was associated with a less favorable survival outcome. Polyclonal seeding likely provides
the metastases with the necessary genetic and phenotypic diversity that confers competi-
tive advantages with respect to growth, expansion as well as resistance to treatment. For
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instance, shared clonal mutations in driver genes such as ATM, ATRX, BRCA1/2, DAXX,
MSH3, and MSH6 are associated with aberrations in major cellular signaling pathways like
Pathways in cancer, DNA damage response, and regulation of cell cycle. Changes in these
important cellular signaling pathways could be of fundamental significance in driving
tumor progression to metastasis, and emergence of drug resistance, consequently resulting
in poor survival outcomes. Furthermore, our findings indicate that clonal mutations in
metastases constitute distinct subsets of gene mutations that occur early during oncogenesis
of PanNETs, suggesting that the metastatic potential of PanNETs was specified early. This
warrants a need to target the driver mutations of tumorigenesis in PanNETs. The results
also indicate that metastatic cells continually accrued new private mutations that further
differentiate themselves from primary tumor cells genetically, and these private mutations
might be required for niche independence and growth. In view of the fact that primary
tumor was resected prior to detection of liver metastases as well as ovarian metastases, and
a high percentage of mutations were shared among the primary PanNETs and liver and
ovarian metastases, it remained a distinct possibility that liver metastasis occurred as early
as or prior to the resection of the primary tumor as liver metastases may be too small to be
detected at the time of surgery.

It was reported that DAXX and MEN1, which are involved in chromatic remodeling,
were mutated in PanNETs [24]. This study also found that DAXX and MEN1 were mu-
tated both in the primary tumor and liver metastasis. In addition, we found that other
genes including SETD2, ARID2, and KMT2C that are involved in chromatin organization
were mutated in PanNETs and liver metastases. This suggests that aberrant chromatin
remodeling is an important pathongenic mechanism in both primary PanNETs and liver
metastases. Previously, Roy et al. found loss or deletion of DAXX and disruption of SETD2
function in 81% of primary PanNETs with distant metastases and showed that these ge-
nomic changes were associated with shorter disease-specific survival [25]. Similarly, Cives
et al. further showed that mutations in DAXX in PanNETs were associated with increased
grade, lymphovascular invasion, and reduced disease-free survival [26]. Taken together,
these findings indicate that alterations in chromatin-remodeling machinery may contribute
to metastasis of PanNETs and may be used as biomarkers in predicting malignant pro-
gression of PanNETs. Furthermore, in this study, we discovered recurrent shared clonal
somatic mutations in BRCA1 and BRCA2. In light of this, we posit that PARP inhibitor,
olaparib, which is conventionally used as maintenance treatment for cancer patients who
have deleterious germline BRCA1/2 mutations, may be used to treat metastatic PanNET
patients with somatic BRCA1/2 mutations. This study also uncovered several missense
variants of ARID2 in both primary PanNETs and liver metastases. Though mutations in
ARID2 have been described in pancreatic cancer [27], no mutations of ARID2 have been
previously reported in primary PanNETs and liver metastases. In addition, this study also
provides the first report of MITF deletion in PanNETs and liver metastases. MITF, the
microphthalmia-associated transcription factor, is involved in multiple cellular processes
including cell survival and proliferation, invasion, and DNA damage repair [21]. It also
activates the expression of INK4A by binding to its promoter and induces retinoblastocyte
protein (Rb) to be underphosphorylated, leading to cell cycle arrest and differentiation
into terminal cells [28]. All in all, this study provides a list of metastasis related somatic
mutations that may aid in the development of treatment strategies.

Notwithstanding, this study has several limitations. The sample size was rather lim-
ited; only 11 patients with PanNETs with liver metastasis were analyzed in the study. In
addition, though the patients were collected from a prospectively maintained database at
our institution, the study was retrospective in nature and was carried out at a single tertiary
care institution. Moreover, no functional verification experiment was performed. Nonethe-
less, this study provides valuable insights into the molecular mechanisms underlying
metastatic progression in PanNETs.
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5. Conclusions

In conclusion, we showed that liver metastases were polyclonal in nature, as evidenced
by the high degree of shared clonal mutations. These polyclonal metastases are associated
with worse prognostic outcome. Furthermore, we found evidence that suggests that gene
mutations that potentiate metastases might have been acquired early during tumorigenesis
of PanNETs. Our study also uncovers some novel gene mutations that could be further
explored for therapeutic manipulation and prognostic significance for PanNETs.
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