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Background: A common problem in resting-state neuroimaging studies is that subjects

become drowsy or fall asleep. Although this could drastically affect neurophysiological

measurements, such as magnetoencephalography (MEG), its specific impact remains

understudied. We aimed to systematically investigate how often drowsiness is present

during resting-state MEG recordings, and how the state changes alter quantitative

estimates of oscillatory activity, functional connectivity, and network topology.

Methods: About 8-min MEG recordings of 19 healthy subjects, split into ∼13-s

epochs, were scored for the presence of eyes-open (EO), alert eyes-closed (A-EC), or

drowsy eyes-closed (D-EC) states. After projection to source-space, results of spectral,

functional connectivity, and network analyses in 6 canonical frequency bands were

compared between these states on a global and regional levels. Functional connectivity

was analyzed using the phase lag index (PLI) and corrected amplitude envelope

correlation (AECc), and network topology was analyzed using the minimum spanning

tree (MST).

Results: Drowsiness was present in >55% of all epochs that did not fulfill the AASM

criteria for sleep. There were clear differences in spectral results between the states (A-EC

vs. D-EC) and conditions (EO vs. A-EC). The influence of state and condition was far less

pronounced for connectivity analyses, with only minimal differences between D-EC and

EO in the AECc in the delta band. There were no effects of drowsiness on any of the

MST measures.

Conclusions: Drowsiness during eyes-closed resting-state MEG recordings is present

in the majority of epochs, despite the instructions to stay awake. This has considerable

influence on spectral properties, but much less so on functional connectivity and network
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topology. These findings are important for interpreting the results of EEG/MEG studies

using spectral analyses in neurological disease, where recordings should be evaluated for

the presence of drowsiness. For connectivity analyses or studies on network topology,

this seems of far less importance.

Keywords: magnetoencephalography (MEG), EEG, graph connectivity analysis, spectral power analysis,

drowsiness

INTRODUCTION

Quantitative analyses of neurophysiological data in terms of
spectral changes and alterations in (functional) connectivity
and network topology have changed our thinking on how
neuropathology can lead to cognitive disability (Stoffers et al.,
2007; de Waal et al., 2012; Schoonhoven et al., 2019).
Complicating factors for such analyses are the influence of
physiological changes that may occur during changes in
condition or vigilance state. Although it may seem easy to
control different conditions, such as instructing subjects to stay
awake or to not open their eyes during eyes-closed recordings,
evidence suggests the contrary. Subjects dose off easily, also
in noisy environments, such as MRI scanners (Poudel et al.,
2014; Tagliazucchi and Laufs, 2014). In the quiet EEG/MEG
environment, this may be even more problematic. In addition,
spontaneous opening of the eyes during EEG/MEG recordings
occurs frequently, despite the instructions.

The spectral changes that both eye-opening and drowsiness
or sleep induce have been recognized since the first recording of
the EEG by Hans Berger in the first half of the twentieth century
(Berger, 1929; Schomer and Lopes da Silva, 2005). Opening of the
eyes leads to suppression of the dominant background pattern
(the “alpha rhythm”). This alters the results of spectral analyses
significantly (Glass and Kwiatkowski, 1970). Fortunately, the
distinction between eyes-open and eyes-closed conditions can be
made relatively easily with a visual inspection of the time series.
It shows suppression of the posterior-dominant rhythm in the
parietooccipital areas, often in conjunction with the presence
of eye-blink artifacts. Sleep [non-REM 1 (NREM1)] is another
phenomenon that can be relatively easy to assess with a visual
inspection of time series. It is characterized by the diffuse slowing
of the background rhythm which increases both theta and delta
power in >50% of a 30-s epoch. These specific criteria for the
EEG definition of sleep are defined in the American Academy of
Sleep Medicine Guidelines (AASM) criteria (Berry et al., 2017).
A more challenging problem is the more dynamic state change
of impaired vigilance, or drowsiness. The detection of drowsiness
is difficult since encephalographic patterns differ, it is often short
and subjects are unaware of any drowsiness (Maulsby et al., 1966;
Santamaria and Chiappa, 1987; Deuker et al., 2009). It precedes
longer periods of oscillatory slowing and alpha dropout, but there
can be significant increases in lower frequency band oscillations
(Lal and Craig, 2002; Li et al., 2020).

The oscillatory slowing in drowsiness can theoretically
influence consistency, reproducibility, and test–retest reliability
of spectral power and connectivity measurements. Measurement
validity in EEG andMEG has been the topic of numerous reports

in healthy subjects as well as different neurological or psychiatric
diseases. The consistency and test–retest reliability of spectral
power estimates with EEG/MEG are generally good, even with
low amounts of data and the number of subjects (Salinsky et al.,
1991; Napflin et al., 2007; Marquetand et al., 2019). In fact, there
seems to be a genetic heritability in the background pattern that
underscores the robustness of the spectral power measurements
(Smit et al., 2005). However, brain functional connectivity
estimates depend on a number of factors, including amount
of data, technical considerations in terms of filtering, artifact
rejections, and other preprocessing steps and type of connectivity
calculation used (refer to an extensive overview) (Jin et al., 2011;
Hardmeier et al., 2014; Colclough et al., 2016; Garces et al., 2016;
Pernet et al., 2020). Interestingly, the influence of state changes
on graph theoretical measures has received even less attention
than the effects of drowsiness on spectral power. In an MEG
reproducibility study, Deuker et al. (2009) found a substantially
lower ICCs for different graph metrics between repeated resting-
state and task recordings, suggesting greater variation in resting-
state recordings. While they argued that low reliability in the
resting state might be a consequence of the diverse nature
of neural patterns found in resting state, drowsiness was not
taken into account here. Marquetand et al. (2019) showed that
vigilance only has a relatively small influence on overall test–
retest reliability of functional connectivity measures. However,
they only compared selected awake epochs instead of the effects
of drowsiness specifically. They also studied test–retest reliability
and not the influence of state changes on connectivity measures
per se.

Therefore, this study aimed to systematically investigate to
what extent these state changes are present during resting-
state MEG recordings, and how these alter quantitative MEG
estimates of oscillatory activity, functional connectivity, and
network topology in healthy controls.We screened a large dataset
of healthy controls for the presence of sufficient data in the alert
resting-state, drowsy resting-state, and eyes-closed conditions.
Our main hypothesis was that vigilance changes are frequently
present, and that they significantly alter spectral power similar
to the effects of opening of the eyes. Following from this, we
hypothesized that connectivity estimates are also significantly
influenced by state and condition. If this is indeed the case,
careful selection of resting-state data is of greater importance
for studies into MEG-related biomarkers, being either spectral
power measurements or connectivity analysis than now generally
assumed. Not only should data selection then focus on artifacts
or clear sleep, but also on unexpected protocol deviations
(eyes-opening) or drowsiness. Specifically, when MEGmeasures,
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FIGURE 1 | Example of the scoring of epochs (vertical lines mark the start/end of different epochs, each epoch is 13.1072 s) for both the eyes-open (EO) part (part

one, light gray) and the eyes-closed (EC) part (part two, white and black) of the recording protocol. Epochs in part two were scored for the presence of alert

eyes-closed (A-EC, white) or drowsy eyes-closed (D-EC, black) epochs. Note the accidental opening of the eyes during the eyes-closed condition.

such as oscillatory slowing or altered, functional connectivity
and network properties, are studied as a potential biomarker
for disease.

METHODS

Case Selection
Existing resting-state MEG recordings of 66 healthy controls
were selected from the larger Amsterdammultiple sclerosis (MS)
cohort. The Amsterdam MS cohort is a prospective cohort that
is focused on finding imaging and biomarker determinants of
disease progression in MS. Visits consist of a clinical assessment
of neurological functioning, routine MRI, and MEG recordings.
Healthy controls were included in the AmsterdamMS cohort for
a case-controlled comparison (Tewarie et al., 2014a).

Technical Details and Recording Protocol
of the MEG-Recordings
Magnetoencephalography data were acquired using a 306-
channel whole-head MEG system (Elekta Neuromag Oy,
Helsinki, Finland), while participants were in supine position
inside a magnetically shielded room (VacuumSchmelze GmbH,
Hanua, Germany). The recording protocol consisted of 3-min
eyes-open followed by a 5-min recording with the eyes closed
in the majority of subjects. Refer to Figure 1 for a schematic
overview of the recording protocol. In case of clear signs of
imminent sleep in the ongoing recording (such as slow rolling eye
movements or clear slowing of the posterior dominant rhythm),
an auditory stimulus was given by the laboratory technician to
arouse the subject. Horizontal eye movements were measured
using EOG electrodes placed to the left and right of the eye.

A sample frequency of 1,250Hz was used. An anti-aliasing
filter of 410Hz and a high-pass filter of 0.1Hz were applied
online, and other artifacts were removed offline using the
temporal extension of signal space separation (tSSS) in MaxFilter
software with a sliding window and correlation limit of 10 and
0.9, respectively (Elekta Neuromag Oy, version 2.2.10) (Taulu
et al., 2004; Taulu and Simola, 2006; Medvedovsky et al., 2009).
Before tSSS, malfunctioning channels were removed after careful
visual inspection of the raw data [SK]. The mean number

of excluded channels was 5.4, (range: 1–10). The participants’
head position in relation to the MEG sensors was continuously
recorded using signals from four head localization coils. The head
localization coil positions were digitized, as well as the outline
of the participants scalp (∼500 points), using a 3D digitizer
(Fastrak, Polhemus, Colchester, VT).

Scalp surfaces of all subjects were co-registered to their
structural MRIs using a surface-matching procedure, with an
estimated resulting accuracy of 4mm (Whalen et al., 2008).
The automated anatomical labeling (AAL) atlas was used to
define 78 cortical regions of interest (ROIs) (Gong et al.,
2009). Broadband (0.5–70Hz) time series were estimated for the
centroid of each of these ROIs using an atlas-based beamforming
approach described previously (Hillebrand et al., 2012, 2016).
Specifically, an equivalent current dipole was used as a source
model, and a single sphere, which was fitted to the outline of
the scalp as obtained from the co-registered MRI, was used as a
volume conductor model. A scalar beamformer implementation
(beamformer, version 2.1.28; Elekta Neuromag Oy) similar to
synthetic aperture magnetometry (Robinson and Vrba, 1999)
was used to compute broadband beamformer weights, which
were subsequently normalized (Cheyne et al., 2007). Broadband
data were used for the computation of the beamformer weights,
singular value truncation (with the default setting of 1e-06 times
the maximum singular value) was used when inverting the data
covariance matrix to deal with the rank deficiency of the data
after tSSS (∼70 components), and a unity noise covariance
matrix was used for the estimation of the optimum source
orientation using singular value decomposition (Sekihara et al.,
2004). Inspection of source-space data and further analyses of
the time series were done with the in-house developed software
package Brainwave (version 0.9.152.12.26), Available from http://
home.kpn.nl/stam7883/brainwave.html.

Epoch Selection: Eyes-Open, Alert
Eyes-Closed, and Drowsy Epochs
Each of the 66 subjects was screened (ES) for the presence of an
equal number of non-overlapping eyes-closed (A-EC), eyes-open
(EO), and drowsy (D-EC) artifact-free epochs of 4,096 samples
(13.1072 s, downsampled by factor 4) (Fraschini et al., 2016).
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FIGURE 2 | Example of the scoring of the MEG recording for the first subjects. Represented are 34 epochs (13.1072 s each) for the first 10 subjects. Subjects 1 and

10 had a shorter recording than that was defined in the protocol. Marked in white are epochs that were scored as resting-state alert eyes-closed (A-EC) epochs.

Marked in black are epochs that were scored as drowsy eyes-closed (D-EC) epochs. Marked in light gray are epochs that were scored as the eyes-open (EO) epochs.

Marked in a darker gray are epochs where a clear artifact was present (A). Note the presence of drowsiness in some subjects soon after the start of the eyes-closed

part of the recording. Also note the opening of the eyes during the “eyes-closed” (EO) condition.

Eyes-open (EO) epochs were selected from the first 3min
of the recording. They were characterized by the absence of
a clearly visible posterior dominant “background” pattern and
the presence of eye-blink artifacts (mainly visible in signal
space). The other epochs were selected from the second part
of the recording (refer to Figure 1). Alert eyes-closed (A-EC)
resting state was defined as epochs with a clear posterior
dominant background pattern present (in most subjects an
alpha rhythm), absence of clear (eye-blink) artifacts, and the
absence of signs of alpha dropout and/or significant slowing
of the background pattern. Drowsy eyes closed (D-EC) was
defined as epochs with an alpha dropout for short periods
of time (<50% of epoch length), increased theta power in
epochs compared to other epochs in the same recording, and/or
slow, roving eye movements in the eye-movement channels,
but which did not fulfill the AASM criteria for NREM1 based
on the duration of these alterations (<50% alpha in 30-s
epochs) (Santamaria and Chiappa, 1987; Berry et al., 2017;
Asadi-Pooya and Sperling, 2019).

To retain a sufficient number of subjects with enough and
a comparable number of epochs in all states, we decided to
start with the selection of subjects with at least 5 epochs per
condition/state per subject (15 epochs in total). A total of 19
subjects (out of the 66 healthy controls in the Amsterdam MS
cohort) could be included based on this selection criterion.
After the analysis of the dataset with 5 epochs, we decided to
reanalyze our data with 10 epochs per subject. Unfortunately,
a majority of these cases had artifacts in the eyes-open part
of the recording, so only the drowsy (n = 10) and eyes-
closed alert (n = 10) epochs could be used. Also, only 15
cases had 10 artifact-free epochs in the awake and drowsy
states. Results of this second analysis of only 15 cases but
with more data per case (10 epochs) are presented in the
Supplementary Tables S2, S3.

Example of Visual Epoch Selection and
Quantitative Assessment of Epochs on a
Case-by-Case Basis
Refer to Figures 2, 3 for examples of the epoch scoring for a
fraction of the subjects (Figure 2) and 1 subject individually
(Figure 3). Figure 3 shows how time series change in appearance
and shows the fluctuations of relative theta and alpha1 power
over time/epochs in the different states. There is a clear
suppression of the dominant background pattern with a drop in
theta or alpha1 power when the subject opened the eyes (epoch
28). These effects are also present, but to a lesser extent, in
epochs 18–19. Of note, here is that epochs with a duration of
13 s were used: quite often changes in state or condition (eyes
opening) occurred during an epoch, so that the effects on relative
power measures tend to average out. Refer to Figure 1 for a
theoretical example.

Time Series Analyses
For each subject, time series was digitally divided into the six
classical EEG/MEG frequency bands [delta (0.5–4Hz), theta (4–
8Hz), alpha1 (8–10Hz), alpha2 (10–13Hz), beta (13–30Hz), and
gamma (30–48Hz)] by fast Fourier transform of the data; setting
activity outside passband to zero, followed by inverse Fourier
transform (brickwall filter). This resulted in 6 sets of 78 time
series (i.e., 6 sets for each cortical ROI). From these time series,
the relative power for each band and peak frequency (frequency
with the maximum power in the 4–13Hz range) were calculated.
Global cortical relative power for the different frequency bands
was constructed as mean relative power over all 78 cortical ROIs
and 5 epochs (or 10 epochs for dataset 2). Similarly, average peak
frequency was estimated as the mean peak frequency over all
78 cortical ROIs and 5 (or 10) epochs. Refer to Table 1 for a
schematic overview of analyzed variables.
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Functional Connectivity and Network
Topology
Subsequently, we estimated functional connectivity between 78
AAL regions using two frequently used methods; the phase lag
index (PLI) (Stam et al., 2007) and corrected amplitude envelope
correlation (AECc) (Hipp et al., 2012). The PLI is a phase-based
measure with correction for volume conduction. It estimates the
asymmetry of the distribution of phase differences between time
series. The AECc is based on the amplitude envelope correlation
(AEC) (Bruns et al., 2000) and uses pairwise orthogonalization
prior to the calculation of the AEC to correct for volume
conduction. The AEC in turn is an amplitude-basedmeasure that
estimates the Pearson correlation between the envelopes of the
amplitude of time series. The amplitude envelops are calculated
using the Hilbert transform of the time series. See also more
detail, including a study of reproducibility, of both measures
(amongst others) by Briels et al. (2020).

Global FC was calculated by averaging all values in the matrix.
Regional FC was analyzed as average FC from 1 ROI to all
other ROIs. For each epoch and each participant separately, the
minimum spanning tree (MST) subgraph was constructed using
the PLI or AECc connectivity matrix (Tewarie et al., 2014b).
This resulted in a dichotomized backbone of the functional brain
network formed by the 78 cortical regions and 77 strongest
functional connections, as the MST contains a fixed number of
regions (i.e., nodes) and connections (i.e., links). Consequently,
there are no arbitrary thresholds, which optimizes comparability
between subjects and states or conditions (Stam et al., 2014). The

two extreme tree topologies exist: (1) a line-like tree where all
nodes are connected to two other nodes with the exception of
the two, the so-called, leaf nodes at either end that have only one
link, and (2) a star-like tree where all leaves are connected to one
central node. There are many different tree types between these
two extremes (Boersma et al., 2013).

The tree topology can be characterized by various measures,
and global MST network measures are informative about the
functional integration and segregation of the entire network
(Boersma et al., 2013; Tewarie et al., 2015). Here, we used the leaf
fraction (LF), the tree hierarchy (TH), and betweenness centrality
(BC). Leaf fraction is a measure based on the leaf number, which
is defined as the number of nodes that have only one connection.
It ranges between 2 (a line topology; such a tree is called a path)
and a maximum valueM = n – 1 (with n the number of nodes) (a
star-like topology). Leaf fraction is the leaf number divided by the
maximum possible leaf number: Lf = L/M. Tree hierarchy (TH)
characterizes a hypothesized optimal topology of the efficient
organization while preventing information overload of central
nodes. For a line-like topology Th = 0, for a star-like topology
Th = 0.5, and for trees with a configuration between these 2
extreme situations, Th can have values of Th → 1. BC of a node
u is defined as the number of shortest paths between any two
nodes i and j in the network that are passing u, divided by the
total number of shortest paths. BC ranges between 0 (leaf node)
and 1 (central node in a star-like network). The BC of the tree
was characterized by the BCmax, i.e., the BC of the node with the
highest BC in the tree. Nodes with a high BC are considered “hub

FIGURE 3 | Continued
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FIGURE 3 | (A) Representation of the state changes in subject one of the subjects. Note the changes in the power values depending on the presence of drowsiness,

or visual suppression of the background pattern (epoch 28 in the eyes-open condition). Only epochs 21, 22, 24, 29, and 33 were without any signs of drowsiness.

Epoch length was 13.1072 s. (B) Source-space time-series visualized in Brainwave (epoch length 4,096 samples, sample frequency of 312Hz, resulting in an epoch

length of 13.1072 s). Shown are state changes in subject 7. Image 1 is epoch 29 of subject 7 (example of an A-EC epoch). In image 2 (epoch 28), the subject has

opened the eyes (despite the instruction to keep them closed). In image 3 (epoch 30), there is clear slowing of the background pattern indicative of drowsiness/sleep.

The magnifications show 3 s of the AAL regions 21 (left precuneus) to 30 (left anterior cingulate).

nodes” not only based on their number of connections, but also
on their importance for global communication in the network.
Maximum BC describes the importance of the most central node,
which is a measure of central network organization (van Dellen
et al., 2018).

Statistical Analysis
Analyses were done on global and regional levels. For each
subject, peak frequency was calculated for each ROI in each epoch
and then averaged over the available epochs to get regional values.
A global value was obtained by subsequently averaging over all 78
ROIs. Similarly, power values for each of the 6 different frequency
bands were calculated for each ROI and epoch, averaged over
epochs to obtain regional values, and subsequently averaged over
all ROIs to obtain global values. Global and regional FC were
calculated as described in paragraph 2.4. The MST metrics LF,
TH, and BC were averaged over epochs.

Differences between average values per subject or group (for
peak frequency, power values, connectivity values, and MST
measures) and individual ROIs per subject or group (for regional
power and FC differences and regional differences in BC) were
compared between the 3 different states or conditions (EO, A-
EC, and D-EC) using the pairwise t-tests. Regional results were
corrected for 78 comparisons (78 AAL ROIs) using the false

discovery rate (FDR). An alpha <0.05 after the correction was
considered statistically significant. All analyses were performed
for the dataset with all states (set of 19 subjects with EO, A-EC,
and D-EC data) as well as for the dataset with more epochs, but
fewer cases (subjects with A-EC and D-EC data). All statistical
analyses were performed in IBM SPSS Statistics 26 andMicrosoft
Excel 2016.

RESULTS

Descriptives and Availability of Data
Time series of 66 healthy controls were screened for the presence
of at least 5 epochs in the alert eyes-closed, drowsy eyes-closed,
and eyes-open states or conditions. Recordings were on average
of 35 epochs long and consisted of 13 epochs in the EO state for
all of the subjects (by design) and a median of 22 epochs (range
13–33 epochs) for the eyes-closed state. The eyes-closed epochs
(1,448 epochs in 66 subjects) were then scored for the presence
of the alert (A-EC) and drowsy (D-EC) states. There were 793
(55%) drowsy epochs and 544 (37%) alert epochs. We excluded
97 (6%) epochs with a clear artifact (mainly frequent eye-blinking
in the EO condition) and 14 (1%) epochs with spontaneous eyes
opening during the eyes-closed condition. Figure 2 shows an
example of the scoring for the first 10/66 subjects.
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TABLE 1 | Results of spectral and connectivity analyses for the eyes-closed alert (A–EC) and drowsy state (D–EC), and eyes-open (EO) condition.

5 epochs

(∼13 s)

Eyes-closed alert

(A-EC)

Eyes-open resting state

(EO)

Eyes-closed drowsy

(D-EC)

p-value Regional difference?*

FFT Mean SD Mean SD Mean SD A-EC vs.

EO

A-EC vs.

D-EC

A-EC vs.

EO

A-EC vs.

D-EC

Delta power 0.269 (0.043) 0.313 (0.061) 0.283 (0.042) <10−7 0.0001 Yes Yes

Theta power 0.137 (0.015) 0.141 (0.019) 0.151 (0.017) <0.001 <10−7 Yes Yes

Alpha1 power 0.089 (0.021) 0.073 (0.017) 0.086 (0.021) <10−7 0.110 Yes No

Alpha2 power 0.125 (0.024) 0.097 (0.022) 0.112 (0.020) <10−7
<10−7 Yes Yes

Beta power 0.303 (0.057) 0.295 (0.061) 0.289 (0.049) <0.01 <10−7 Yes Yes

Gamma power 0.078 (0.010) 0.081 (0.013) 0.078 (0.012) 0.001 0.501 No No

Peak frequency 8.6 (0.6) 7.8 (0.9) 8.0 (0.6) <10−7
<10−7 Yes Yes

PLI

Delta (0.5–4Hz) 0.113 (0.004) 0.113 (0.003) 0.112 (0.003) 0.513 0.236 No No

Theta (4–8Hz) 0.095 (0.004) 0.095 (0.004) 0.096 (0.005) 0.672 0.105 No No

Alpha1 (8–10Hz) 0.138 (0.009) 0.136 (0.008) 0.138 (0.012) 0.295 0.823 No No

Alpha2 (10-13Hz) 0.117 (0.010) 0.111 (0.007) 0.113 (0.007) 0.074 0.098 No No

Beta (13–30Hz) 0.051 (0.003) 0.051 (0.003) 0.051 (0.003) 0.507 0.064 No No

Gamma (30-48Hz) 0.048 (0.003) 0.048 (0.003) 0.049 (0.003) 0.727 0.711 No No

AECc

Delta (0.5–4Hz) 0.504 (0.009) 0.520 (0.021) 0.505 (0.015) 0.005 0.896 Yes No

Theta (4–8Hz) 0.508 (0.013) 0.511 (0.015) 0.512 (0.016) 0.695 0.081 No No

Alpha1 (8–10Hz) 0.517 (0.019) 0.518 (0.021) 0.518 (0.023) 0.968 0.872 No No

Alpha2 (10–13Hz) 0.522 (0.023) 0.523 (0.024) 0.524 (0.028) 0.778 0.999 No No

Beta (13–30Hz) 0.518 (0.014) 0.520 (0.017) 0.520 (0.018) 0.856 0.481 No No

Gamma (30–48Hz) 0.501 (0.003) 0.502 (0.003) 0.502 (0.004) 0.586 0.189 No No

FFT, fast Fourier transform; PLI, phase lag index; AECc, corrected amplitude envelope correlation. Presented p-values are not corrected for multiple comparisons for the differences

between states.

*Regional differences: defined as “no” if none of the 78 cortical AAL ROIs had a significant (p < 0.05 after correction for multiple comparisons using FDR) between states.

Ultimately, only 19 subjects had sufficient epochs (n = 5) in
each state or condition, so a total of 15 epochs were included
per case. There were 13 women and 6 men. The mean age
was 40.3 (SD 8.4) years. As also mentioned in the Section
Methods, we additionally analyzed how many cases of these
19 subjects we could use if we were to include 10 epochs in
each state. Then, only 15 cases [11 women and 4 men, mean
age 40.9 (SD 7.1) years] had sufficient epochs in the awake
and drowsy states (n = 10). Results of this second analysis of
only 15 cases but with more data per case are presented in the
Supplementary Tables S2, S3.

The Effects of State and Condition on
Spectral Power
The results of spectral analysis are presented in Table 1. Clear
and significant differences between the different states (A-EC and
D-EC) and different conditions (EO vs. A-EC) were present. For
the eyes-open vs. eyes-closed condition, most striking differences
were a lower peak frequency, lower relative alpha2 and alpha1
power, and higher relative delta power during the eyes-open
(EO) condition.

Similar differences were present between the alert (A-EC)
and drowsy (D-EC) states. Relative theta power was significantly
higher in D-EC epochs vs. A-EC epochs whereas alpha2 power,
beta power, and peak frequency were significantly lower in

drowsy epochs. A second analysis [fewer subjects but more
epochs (10 instead of 5)] in the alert and drowsy states confirmed
these findings (refer to Table 2).

Not surprisingly, the differences in spectral power also
translated to regional differences (i.e., the comparison of all 78
AAL ROIs between states, refer to Supplementary Table S1).
There were clear differences between EO and A-EC, as well
as between A-EC and D-EC, in some of the 78 cortical AAL
regions in the delta, alpha2 and beta bands, and between
the majority of the 78 cortical AAL regions in the theta
band and in the peak frequency analysis in both datasets.
Figure 4 gives a visual overview of the spatial distribution
of relative power values for the different states or conditions
(dataset 1).

The Effects of State on Functional
Connectivity and Network Topology;
Drowsiness (D-EC) vs. Alert (A-EC) State
There were no significant differences between the A-EC and
D-EC states for the connectivity analyses (PLI and AECc) and
the studied MST metrics (based on the PLI and AECc) in both
datasets (refer to Tables 1, 2). Repeated analysis in the sample
with fewer cases but more epochs confirmed these findings (refer
to Supplementary Tables S2, S3).

Frontiers in Neuroscience | www.frontiersin.org 7 June 2022 | Volume 16 | Article 782474

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


S
trijb

is
e
t
a
l.

D
ro
w
sin

e
ss

a
n
d
R
e
stin

g
-S

ta
te

M
E
G

S
tu
d
ie
s

TABLE 2 | Network analyses (using the minimum spanning tree (MST) in all frequency bands for the eyes-closed alert (A-EC) and drowsy states (D-EC), and eyes-open (EO) condition for 19 subjects with 5 epochs

(epoch length of 13.1072 s) for each of the states or conditions.

(A)

MST Leaf fraction (LF) MST Tree hierarchy (TH)

5 epochs

(∼13 s)

Eyes-closed alert

(A-EC)

Eyes-open

(EO)

Eyes-closed drowsy

(D-EC)

p-value Eyes-closed alert

(A-EC)

Eyes-open

(EO)

Eyes-closed drowsy

(D-EC)

p-value

PLI Mean SD Mean SD Mean SD A-EC vs.

EO

A-EC vs.

D-EC

Mean SD Mean SD Mean SD A-EC vs.

EO

A-EC vs.

D-EC

Delta (0.5–4Hz) 0.515 (0.039) 0.512 (0.040) 0.513 (0.039) 0.600 0.800 0.384 (0.043) 0.381 (0.041) 0.382 (0.041) 0.561 0.496

Theta (4–8Hz) 0.514 (0.039) 0.521 (0.034) 0.522 (0.039) 0.161 0.295 0.379 (0.039) 0.393 (0.037) 0.390 (0.039) 0.042 0.063

Alpha1 (8–10Hz) 0.509 (0.041) 0.517 (0.038) 0.517 (0.038) 0.221 0.199 0.380 (0.040) 0.388 (0.043) 0.388 (0.038) 0.06 0.09

Alpha2 (10–13Hz) 0.521 (0.041) 0.510 (0.033) 0.517 (0.035) 0.063 0.534 0.383 (0.044) 0.378 (0.033) 0.384 (0.038) 0.461 0.815

Beta (13–30Hz) 0.514 (0.037) 0.521 (0.338) 0.520 (0.039) 0.161 0.295 0.379 (0.039) 0.393 (0.038) 0.390 (0.039) 0.012 0.067

Gamma (30–48Hz) 0.502 (0.040) 0.509 (0.042) 0.495 (0.097) 0.237 0.553 0.375 (0.043) 0.381 (0.040) 0.385 (0.043) 0.164 0.396

AECc

Delta (0.5–4Hz) 0.497 (0.041) 0.502 (0.048) 0.482 (0.041) 0.015 0.387 0.375 (0.039) 0.364 (0.0387) 0.364 (0.038) 0.223 0.227

Theta (4–8Hz) 0.497 (0.042) 0.500 (0.039) 0.506 (0.480) 0.568 0.129 0.368 (0.039) 0.371 (0.043) 0.373 (0.042) 0.712 0.634

Alpha1 (8–10Hz) 0.505 (0.043) 0.495 (0.038) 0.494 (0.042) 0.098 0.061 0.377 (0.041) 0.365 (0.042) 0.364 (0.041) 0.061 0.053

Alpha2 (10–13Hz) 0.516 (0.041) 0.508 (0.045) 0.515 (0.042) 0.164 0.831 0.375 (0.038) 0.375 (0.045) 0.382 (0.056) 0.937 0.690

Beta (13–30Hz) 0.540 (0.046) 0.544 (0.051) 0.553 (0.057) 0.501 0.118 0.391 (0.045) 0.396 (0.043) 0.405 (0.557) 0.488 0.084

Gamma (30–48Hz) 0.480 (0.040) 0.485 (0.043) 0.484 (0.040) 0.468 0.361 0.364 (0.034) 0.366 (0.037) 0.365 (0.041) 0.736 0.366

(B)

MST maximum betweenness centrality (BC)

5 epochs

(∼13 s)

Eyes-closed alert (A-EC) Eyes-open (EO) Eyes-closed drowsy (D-EC) p-value Regional

differences BC

PLI Mean SD Mean SD Mean SD A-EC vs.

EO

A-EC vs.

D-EC

Delta (0.5–4Hz) 0.675 (0.060) 0.676 (0.053) 0.678 (0.060) 0.856 0.786 No

Theta (4–8Hz) 0.680 (0.054) 0.667 (0.059) 0.669 (0.050) 0.102 0.112 No

Alpha1 (8–10Hz) 0.673 (0.057) 0.670 (0.060) 0.669 (0.053) 0.341 0.343 No

Alpha2 (10–13Hz) 0.684 (0.058) 0.676 (0.055) 0.677 (0.059) 0.355 0.365 No

Beta (13–30Hz) 0.680 (0.054) 0.667 (0.059) 0.669 (0.050) 0.083 0.112 No

Gamma (30–48Hz) 0.673 (0.061) 0.671 (0.054) 0.669 (0.057) 0.813 0.717 No

AECc

Delta (0.5–4Hz) 0.675 (0.057) 0693 (0.063) 0.665 (0.056) 0.028 0.421 No

Theta (4–8Hz) 0.677 (0.058) 0.679 (0.064) 0.683 (0.061) 0.825 0.480 No

Alpha1 (8–10Hz) 0.672 (0.055) 0.684 (0.067) 0.686 (0.063) 0.202 0.092 No

Alpha2 (10–13Hz) 0.675 (0.063) 0.673 (0.058) 0.679 (0.068) 0.229 0.103 No

Beta (13–30Hz) 0.693 (0.065) 0.690 (0.067) 0.688 (0.064) 0.720 0.406 No

Gamma (30–48Hz) 0.662 (0.049) 0.665 (0.055) 0.666 (0.055) 0.700 0.526 No

FFT, fast Fourier transform; PLI, phase lag index; AECc, corrected amplitude envelope correlation. Presented p-values are not corrected for multiple comparisons for the differences between states.

*Regional differences: defined as “no” if none of the 78 cortical AAL ROIs had a significant (p<0.05 after correction for multiple comparisons using FDR) between states.
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The Effects of Condition on Functional
Connectivity and Network Topology; Eyes
Opening (EO) vs. Alert Eyes-Closed (A-EC)
Condition
There were no differences in functional connectivity with the PLI
between the A-EC and EO groups. Regarding network topology,
however, there was a significantly higher MST TH in the theta
and beta bands in the EO condition using the PLI.

There was only a difference in the AECc in the delta
band between the EO and A-EC conditions. Opened eyes were
related to a significantly higher delta band connectivity with the
AECc. These differences also translated to changes in network
topology. There was a higher LF and a higher BC in the EO
condition. There were no differences in the tree hierarchy. Delta
band regional BC did not differ between both states (refer to
Table 2A, B; Supplementary Table S3).

DISCUSSION

This study investigated the effects of drowsiness and opened
or closed eyes on neurophysiological measures of activation,
connectivity, and network topology. Drowsiness was present
in a large part of eyes-closed resting-state epochs. There were
significant spectral changes between alert (A-EC) and drowsy
(D-EC) states and between the eyes-open (EO) and eyes-closed
conditions. Estimates of functional connectivity only differed for
the AECc in the delta band between the eyes-open (EO) and
eyes-closed (A-EC) conditions. Additionally, there were changes
in network topology between eyes-open (EO) and eyes-closed
(A-EC) conditions. Drowsiness was of far less influence on
connectivity metrics or network properties.

State fluctuations in subjects during resting-state recordings
are a commonly encountered phenomenon (Lal and Craig,
2002; Marquetand et al., 2019; Li et al., 2020). It is even
present during repetitive activity, such as driving (Dkhil et al.,
2015; Sriraam et al., 2016). In fact, in our case, it led to
having far less subjects available for analysis than initially
anticipated since it was present in 55% of epochs in 66 healthy
controls. Drowsiness is a challenge for a clinical interpretation
of EEG/MEG results since such physiological changes can easily
resemble pathology. Although EEG/MEG is an excellent tool
for identifying physiological changes between wakefulness and
sleep, the dynamic transition between the two states and the
concomitant EEG/MEG changes are difficult to define. Our study
observed the effects of drowsiness on spectral power in the
majority of frequency bands and in a large number of epochs. In
the literature, the most recognizable characteristics of drowsiness
or sleep have been described as a decreasing alpha power, an
alpha dropout, an increase in theta power, and slow, horizontal
eye movements in EOG channels (Santamaria and Chiappa,
1987). The AASM criteria define the first sleep phase (NREM1)
as >50% of a 30-s epoch containing low-amplitude mixed-
frequency EEG and/or the appearance of any of the following
phenomena: (a) EEG activity in a range of 4–7Hz with slowing
of background frequencies by ≥1Hz from those of the awake
stage, (b) vertex sharp waves, and (c) slow, roving eye movements
(Berry et al., 2017). However, periods of drowsiness can also

be short (<50% of a 30-s epoch) and these short periods can
be frequently present. Clinically, these short episodes can even
be accompanied by decreased responsiveness. This often comes
unnoticed by the participant. Poudel et al. (2014) showed in a
task-based fMRI/EEG study that “microsleeps” (i.e., brief (0.5–
15 s) episodes of complete failure to respond, accompanied by
slow eye closures and EEG theta activity) were present in a
surprisingly large majority of healthy participants while lying in
an MRI scanner. These subjects had no unusual sleep pattern
for the week prior to the scan. A similar study by Tagliazucchi
showed that 30% of subjects do not maintain wakefulness
(according to the AASM criteria) in the first 3min in a resting
state in an MRI scanner (de Pasquale et al., 2010; Poudel et al.,
2014; Tagliazucchi and Laufs, 2014). This study confirmed that a
large number of epochs (55%) can be classified as drowsy without
fulfilling the criteria for NREM1 sleep.

Now, the most important question is whether the changes in
condition or state matter in terms of the influence on spectral
analysis or estimates of functional connectivity and network
topology. In the extensive body of literature on intra-individual
variability in spectral power, the main focus is on test–retest
reliability, but drowsiness is often not specifically taken into
account (Craig et al., 2012; Babiloni et al., 2021). Previous studies
reported that the power density of resting-state EEG recordings
in healthy controls is stable at 12–40 months retest (Napflin et al.,
2007; Duan et al., 2021). There is a high test–retest correlation (r
= 0.84 at 12–14 weeks; intra-class correlation coefficients = 0.8–
0.9 at 4 weeks), and the absolute and relative power densities are
quite consistent when computed from artifact-free time series of
20 s to 4min (Salinsky et al., 1991). Relative power densities seem
slightly more repeatable (Duan et al., 2021). Also, reproducibility
of spectra EEG measurements over recording sessions seems
better in eyes-closed (EC) settings than in eyes-open settings
possibly due to the absence of eye-blink artifacts. This perhaps
suggests that on average, drowsiness may not be a very
significant problem. However, when specifically selecting data
on drowsiness, there are important and significant differences
especially in the power spectrum as we have shown here. These
changes we observed are in line with the previous work that most
often shows a shift in oscillatory activity to the lower frequency
bands (i.e., theta and alpha 1 bands) (Yeo et al., 2009).

It is interesting that we found that connectivity measures
(AECc and PLI) and MST metrics are far less—if at all—
influenced by state changes. Previous work in EEG suggested
differences in coherence between sleep stages (Kaminski et al.,
1997). Our study indicated that effects on functional connectivity
were absent for PLI, and AECc effects were only seen in the
delta band for eyes open (EO) vs. eyes closed (A-EC). Data of
patients with Alzheimer’s disease show that the reproducibility
of EEG/MEG results is dependent on the type of connectivity
measure and frequency band; the AECc is most robust in
the alpha and beta frequency bands and the PLI in the theta
band (Colclough et al., 2016; Briels et al., 2020). It needs to
be mentioned that the AECc and PLI may measure different
types of connectivity and are in a sense complementary to each
other. There is no satisfactory explanation for the meaning and
importance of the different results bothmeasures sometimes give.
We, therefore, chose to study both measures.
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FIGURE 4 | Visual representation of the average relative power values (5 epochs for 19 subjects) for different frequency bands and different conditions/states. Note

the lower posterior alpha2 power EO vs. A-EC, the higher frontal delta power EO vs. A-EC, the lower central beta power D-EC vs. A-EC and higher central and frontal

theta in D-EC vs. A-EC.

Marquetand et al. additionally showed that vigilance does not
influence overall test–retest reliability. However, they did not
study the connectivity metrics that we used in our work per se
and only compared selected awake epochs instead of the effects of
drowsiness specifically. Possibly, both the AECc and the PLI are
too robust “trait” measures [i.e., stable in individuals (Demuru
et al., 2017), regardless of state] or too noisy to detect subtle
changes. The differences we found in the AECc in the delta band
and subsequently in some of MST metrics (i.e., in the network
topology) may be caused by less subtle effects, such as eye
movements (i.e., eye blinks), as suggested by Bodala et al. (2015).

As in all studies, there are some limitations to our work.
First of all, the classification of drowsiness remains arbitrary
since it involves a dynamic state between wakefulness and sleep
and no clear criteria for its presence exist. Nevertheless, the
differences we found between the drowsy and awake states
in the spectral analysis were highly significant and clinically
relevant. So even with such a highly dynamic state, attention
to its presence makes a clear difference. There is also the
methodological issue of the common source effect (Palva et al.,
2018). Both the PLI and AECc are however harbor corrections
for field spread. So, it is highly unlikely that common source

effects are of importance here. Additionally, we agree that the
number of subjects and number of epochs are fairly limited. We
screened an extensive number of healthy controls (n = 66) for
the presence of sufficient drowsy, awake, and eyes-open epochs.
We felt it to be important that sufficient data were available
for all three states to be able to properly assess inter-individual
differences with the appropriate pairwise tests. Ultimately, only
19/66 subjects had enough epochs in all 3 states. We do however
believe that it is possible to draw valid conclusions on this
subset. The states clearly differ in terms of the spectral analysis
(virtually all frequency bands differ highly significantly in terms
of relative power). In addition, although there is a significantly
altered relative power, connectivitymeasures remain rather stable
or unchanged. Additionally, a very recent (2022) publication
by Wiesman et al. shows that the stability of spectral resting-
state MEG measurements can be robustly estimated in most
cortical regions when derived from relatively short segments of
30–120 s of resting-state data. We have used a minimum of 5∗13 s
(Wiesman et al., 2021).

As far as the translation to other datasets is concerned,
this study used manual epoch selection, which is labor-
intensive, especially for larger sample sizes. Recently, algorithmic
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approaches to monitor alertness and drowsiness, such as a blind
source separation method—independent component analysis
(ICA)—have been applied to EEG data (Hsu and Jung, 2017).
ICA is already a widely used approach to eliminate assorted
artifacts. However, the application of ICA for the distinction
between alert and drowsy transitions is relatively new. One
issue is that individual ICA components may, or may not, be
attributable to drowsiness. ICA may also influence subsequent
connectivity estimates, resulting in added variation in results.
This approach may however be of value if used for the
automatic detection of epochs that should be excluded from
subsequent analyses.

Ultimately, the awareness of drowsiness being present, even
within seconds after the start of a recording, is important
especially when the goal is to perform spectral power analyses.
Also, conditions can change unexpectedly (i.e., the subject
can open his/her eyes even when instructed otherwise), and
this has the potential to influence brain connectivity studies
significantly. It is of note that we found many of these events in
healthy controls, and it may be even more extensively present
in persons with neurological diseases that lead to cognitive
disturbances. Epoch selection by trained raters is therefore
of utmost importance, especially when performing spectral
analyses. For functional connectivity analyses using the AECc
and/or PLI, as well as studies on network topology, it seems
mainly important to assess whether subjects really held to the
eyes-closed/eyes-open instructions. Also, for future studies into
neurodegenerative diseases, especially when connectivity metrics
are used other than the AECc/PLI, it is important to test the
influence of state to rule out any physiological effect coming from
the spectral changes that are the result of drowsiness.

CONCLUSION

Drowsiness during eyes-closed resting-state MEG/EEG
recordings was present in the majority of epochs. This had
considerable influence on spectral power but not on connectivity

and network topology. These findings are important for
future studies that use EEG/MEG to study the dynamics of
neurological disease. Recordings should be evaluated for the
presence of drowsiness when spectral analyses are performed.
For connectivity analyses or studies on changes in network
topology, this is far less important.
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