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Over the past decade, neural networks have become one of the cutting-edge methods
in various research fields, outshining specifically in complex classification problems. In
this paper, we propose two main contributions: first, we conduct a methodological
study of neural network modeling for classifying biological traits based on structured
gene expression data. Then, we suggest an innovative approach for utilizing deep
learning visualization techniques in order to reveal the specific genes important for the
correct classification of each trait within the trained models. Our data suggests that this
approach have great potential for becoming a standard feature importance tool used in
complex medical research problems, and that it can further be generalized to various
structured data classification problems outside the biological domain.

Keywords: neural networks, saliency maps, activation maximization, multiclass classification, deep learning,
structured data, gene expression, biological traits

INTRODUCTION

With the rapid rising of deep learning research over the past years (Lecun et al., 2015), neural
networks have recently become one of the key models in computational biology, prominent in
fields such as medical diagnosis, medical genomics, regulatory genomics, and cellular imaging;
to name but a few (Angermueller et al., 2016; Leung et al., 2016; Min et al., 2016; Jones et al.,
2017; Eraslan et al., 2019). Within these domains, artificial neural networks have been shown to
encompass great potential in learning complex relationships from high-throughput omics data
such as genomics, proteomics, metabolomics and alike (Grapov and Fahrmann, 2018; Zhang
et al., 2019). Lately, classification problems, one of the most popular domains in deep learning
(Lecun et al., 2015), gained focus in medical analysis by studies where molecular data have
been suggested for classification of biological or medical traits (Chen et al., 2014; Dwivedi, 2018;
Kong and Yu, 2018). In this study we methodologically explore the use of neural networks for
classifying biological traits based on gene expression levels, and strive for the identification of
trait-specific genes that are important for successful classification. For this purpose, we utilize a
dataset of expression levels of immunological genes measured in healthy individuals in response
to extracellular stimulations (Lee et al., 2014). We test three biological traits: the gender and the
ethnicity of the individual from whom the immune cells were derived, along with the extracellular
stimulation following which the expression levels were measured. Formally, each biological trait
corresponds to a multiclass classification problem according to the number of distinct classes
related to this trait (for example, the four classes within the ethnicity trait are “African-American,”
“Caucasian,” “East-Asian,” and “Multi-racial”).
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Naturally, the latest turmoil of deep learning studies
has also brought attention to studies that focus on basic
questions regarding the application of neural networks; whether
neural networks modeling improves on gold-standard methods,
whether it worth the cost of adding complexity to model
interpretability, or how an appropriate network architecture
should be chosen (Montesinos-López et al., 2018; Traits et al.,
2018; Yu et al., 2019). As our first contribution in this paper,
we provide a methodological study for examining the benefits
of neural network modeling for the tested biological traits
classification based on gene expression data and discuss different
possibilities for network architectures.

The second contribution of this paper relates to the estimation
of feature importance through deep learning visualization
techniques. Here we aim to shed light on patterns within the
input that are important for the prediction of a given model.
Particularly, for each of the biological traits we strive to identify
the specific genes important for its classification. We demonstrate
how feature importance analysis can be conducted using two
visualization techniques commonly used in computer vision. We
start by utilizing Saliency Maps (Simonyan et al., 2013) to address
the challenge of highlighting input features essential for the
correct classification of a given sample. Then, we turn to utilizing
Activation Maximization (Erhan et al., 2009) to address the
challenge of uncovering features that have strong impact on the
model prediction for each class. Notably, we exploit the fact that
the gene expression input is a structured numerical data – we take
advantage of its tabular format by averaging per gene across all
samples in a class – to show that the two visualization techniques
converge to similar results. Finally, we examine the specific genes
that obtained the highest importance estimations for each of the
tested biological traits and find solid biological reasoning for why
these particular genes are relevant for the classification process of
a trait. Various feature importance methods have been proposed
along the years (Eraslan et al., 2019), however, to the best of
our knowledge, this is the first time deep learning visualization
techniques are used to estimate feature importance of structured
numerical data, specifically for classifying biological traits. It is
also the first demonstration that the two visualization techniques
converge to similar results when applied on structured numerical
data. As complex neural networks nowadays become a major
part of biological modeling, we believe the suggested techniques
may be an important addition to our arsenal of cutting-edge
model-interpretability techniques.

RESULTS

Investigating Neural Network
Architectures for Classifying Biological
Traits
As the first step of our work, we decided to focus on some
basic questions regarding neural networks – whether we can
use them as a simple tool for classifying biological traits,
what is the level of accuracy that can be obtained, and which
architectures should be used for this purpose. We have utilized

a previously published dataset (Lee et al., 2014) of 2441 samples,
each is a panel of 414 immune-related genes whose expression
levels were measured in healthy individuals (section “Gene
Expression Data and the Classified Biological Traits”). We
chose to examine three categorical biological traits: (i) the
extracellular stimulation following which the expression levels of
the genes were measured (LPS, dNS1, IFNβ or no stimulation),
(ii) the gender of the individual from which the immune cells
were derived (male or female), and (iii) the ethnicity of the
individual (African-American, Caucasian, East-Asian or Multi-
racial). For each of these three biological traits we explored
various neural network architectures of multiclass classification
models (Figure 1 and section “Neural Network Architectures”).
In all cases, the input layer of the classifier is an expression
panel of the 414 genes, and the neurons of the output layer
correspond to the number of classes in the tested biological
trait (softmax activation). Cross validation was used to estimate
the performance of the classification models (10-fold; section
“K-Fold Aross Validation”).

As the most basic neural network architecture we started by
examining shallow neural networks with one non-linear hidden
layer (ReLU activation), tested across an increasing number
of hidden layer neurons (Figure 1A and Table 1, top). As
expected, higher accuracy scores were obtained for shallow
networks with higher numbers of hidden neurons in all three
biological traits. Specifically, the classification models were found
to be highly accurate in cases of extracellular stimulations and
gender traits classification (98.69 and 95.9% mean accuracy
scores, respectively). In contrast, predicting ethnicity fell shortly
behind (mean accuracy of 76.19%). This concurs well with our
general biological understanding that predicting stimulation trait
would be highly accurate given that the genes within the input
panel were chosen for their role in cellular response (Lee et al.,
2014), that predicting gender would resolve in good performance
given that gender-linked genes are included in the input panel,
and that predicting ethnicity would obtain lower predictive
scores as human population ethnicities are inherently mixed.
We then tested two-hidden layers neural network architectures
comprised of two non-linear hidden layers (ReLU activation;
different number of hidden neurons in each layer; Figure 1B
and Table 1, middle). Similar results were obtained for the two-
layer architecture where increasing the number of neurons in all
three cases improved the performance of the classifiers. However,
the sole act of adding a second hidden layer did not seem to
have an impact on the level of accuracy. Lastly, we have tested
a multiclass logistic regression (softmax regression) through a
simpler architecture, where no hidden layers (hence no ReLU
activations) were introduced to the model. This architecture
obtained a lower level of accuracy across all traits (Figure 1C and
Table 1, bottom).

Next, we turned to examine the effect of data normalization
on the performance of the neural network classification models.
We applied standard Z-score normalization to the dataset
across all samples to normalize the expression of each input
gene. This pre-processing step is a common practice in gene
expression analyses as distinct genes may vary by the shape of
their expression distribution. We tested the model architectures
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FIGURE 1 | Tested neural network architectures. Presented are the three architectures examined in this paper: shallow neural networks with one hidden layer (A) or
two hidden layers (B) of varying sizes, and a neural network without hidden layers, equivalent to multiclass logistic regression (C). In all cases the input layer is an
expression level panel of 414 genes, while the output layer consists of one neuron for each class of the biological trait (either 2 neurons for gender classification, or 4
neurons for stimulation and ethnicity classification). Different number of neurons (ranging between 2 and 64) were tested for the hidden layers within the shallow and
the two hidden layers architectures.

described above on the normalized dataset and found that
introducing gene normalization to the data strongly improved
the accuracy of all classification models (Table 2). In particular,
the two neural network architectures obtained outstanding
performances even when lower numbers of neurons were used
in the hidden layers (Table 2, top and middle). In the cases
of extracellular stimulation and gender classification, the top
accuracy scores were obtained for shallow networks with a much
smaller number of neurons when normalized gene expression
data was used compared to the non-normalized data (∼98%
accuracy for stimulation trait using 8 versus 64 neurons for
normalized versus non-normalized data, respectively, ∼96%
accuracy for gender trait using 2 versus 32 neurons for
normalized versus non-normalized data, respectively). The
ethnicity classification model also showed dramatic improvement
due to the normalization process: the accuracy is increased
from 76.19% when applied on the original dataset to 90.75%
when applied on the normalized dataset. Normalization also
led to substantial improvement of logistic regression, which

obtained similar (or even slightly better) accuracy scores
compared to the neural network architectures (Table 2, bottom).
We emphasize that this finding is important: as neural
networks nowadays become a significant portion of the models
investigated in computational biology, introducing complexity to
the model does not necessarily improve model accuracy. When
considering the tradeoff between model simplicity and model
performance, special attention should be given to conventional
models, such as logistic or linear regressions, which may be
sufficient for various biological analyses. This conclusion is in
agreement with previous studies (Montesinos-López et al., 2018;
Traits et al., 2018).

Identifying the Genes That Are Important
for Each Specific Class by Harnessing
Deep Learning Visualization Techniques
Encouraged by the observation that neural networks can
appropriately be used to classify biological traits based on

TABLE 1 | Accuracy of multi-classification, obtained using the original gene expression levels.

Gene expression dataset

Architecture Stimulation Gender Ethnicity

Shallow neural network 2 36.61 (± 10.79) 61.78 (± 11.78) 56.82 (± 0.17)

8 61.42 (± 29.69) 77.57 (± 19.77) 61.92 (± 5.74)

16 98.60 (± 0.79) 95.33 (± 5.38) 68.53 (± 6.89)

32 98.07 (± 1.66) 95.90 (± 4.47) 71.45 (± 8.65)

64 98.69 (± 1.23) 95.50 (± 3.03) 76.19 (± 3.66)

Two-hidden layers neural network 8 + 2 37.18 (± 12.44) 61.60 (± 11.30) 58.41 (± 3.25)

16 + 8 89.59 (± 14.46) 85.62 (± 16.92) 64.53 (± 6.45)

32 + 16 98.73 (± 0.83) 93.81 (± 9.61) 70.43 (± 1.66)

Logistic regression 77.97 (± 22.34) 87.56 (± 19.25) 68.66 (± 16.11)

Accuracy scores obtained by the classification models designed for the three biological traits (stimulations, gender and ethnicity; columns). Reported are the mean and
standard deviation of accuracy scores that were obtained using a 10-fold cross validation analysis, across models with different architectures (rows). The original gene
expression levels were used as input data. Best accuracy scores are highlighted in red.
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TABLE 2 | Accuracy of multi-classification, obtained using normalized gene expression levels.

Normalized gene expression dataset

Architecture Stimulation Gender Ethnicity

Shallow neural network 2 92.45 (± 9.49) 96.64 (± 1.06) 86.45 (± 3.96)

8 98.81 (± 0.74) 96.48 (± 0.98) 90.75 (± 1.66)

16 98.73 (± 0.87) 96.39 (± 0.92) 89.80 (± 1.80)

32 98.65 (± 0.74) 96.19 (± 1.18) 89.84 (± 1.63)

64 98.52 (± 0.97) 96.03 (± 1.44) 89.19 (± 1.44)

Two-hidden layers neural network 8 + 2 95.94 (± 9.05) 96.93 (± 1.12) 87.24 (± 5.93)

16 + 8 98.89 (± 0.69) 96.72 (± 1.07) 89.72 (± 1.14)

32 + 16 98.56 (± 1.09) 96.72 (± 1.19) 89.48 (± 1.56)

Logistic regression 99.06 (± 0.66) 96.97 (± 1.12) 91.36 (± 1.03)

Accuracy scores obtained for the classification models designed for the three biological traits (stimulations, gender and ethnicity; columns). Reported are the mean and
standard deviation accuracy scores that were obtained using a 10-fold cross validation analysis, across models with different architectures (rows). Normalized gene
expression levels were used as input data. Best accuracy scores of linear and non-linear models are highlighted in red. Appendix presents similar results obtained for
different classification performance measurements (precision, recall, and F1-score), as well as the average training time of each architecture.

molecular input data, we next aimed to identify the specific
genes contributing to the classification model of each biological
trait. For this purpose, we examined two commonly used
deep learning visualization techniques – Saliency Maps and
Activation Maximization.

Saliency Maps are utilized to highlight the specific input
patterns relevant for the process of assigning a sample to
a particular class during model prediction (Simonyan et al.,
2013; Kotikalapudi, 2017). For example, when a classifier is
given an image of a bird, we might be interested to know
whether it successfully classifies the image based on bird-
related pixels or based on its surrounding leaves (Kotikalapudi,
2017). Formally, saliency maps quantify the saliency of each
pixel – evaluating the change in the output caused by a
small change in the tested input pixel (section “Saliency Maps
and Averaged Saliency Maps”). In the context of our tabular
numerical input we can utilize saliency maps to assess the
contribution of each gene when a sample is assigned to a
class by a trained classification model. In other words, the
saliency map obtained for a given sample can be thought of
as a numerical vector that quantifies the saliency – namely,
the contribution – of each gene to the correct classification
of the sample. Based on this rationale, we hypothesized that
it would be possible to look for saliency maps patterns that
are shared between all samples of a given class, and use
these shared patterns as class-specific characteristic. To test
this, we used shallow neural network architecture with 8
hidden neurons and the normalized gene expression dataset.
Taking advantage of the tabular format of our structured data,
the saliency maps can be presented as heatmaps, grouping
samples according to their true class (Figure 2). Indeed,
we find shared patterns of saliency maps for most samples
within each class (Figure 2B). Furthermore, the substantial
difference between traits suggests that the trained model is
using a different subgroup of genes when testing the assignment
of each class, as expected. These class-specific patterns were
absent from the original (normalized) gene expression data

(Figure 2A), emphasizing the utility of the model. Taken
together, these observations support the notion that saliency
maps patterns can be used to identify class-specific characteristics
of biological traits.

In light of these findings, we set out to transform the
saliency maps per sample in a model class into an aggregative
saliency map per class in a biological trait. Our rationale is
that if we consider the tabular structure of our data, we can
calculate Averaged Saliency Maps for each class – where the
saliency scores of a gene are averaged across all samples of a
particular class (section “Saliency Maps and Averaged Saliency
Maps”). More formally, we average the saliency scores of all
samples in a certain class to form one saliency pattern that
quantifies the contribution of each gene to the classification
process of this class. Similarly, to the saliency maps per samples
(Figure 2B), we can observe different patterns within each
class in the averaged saliency maps as well (Figure 3A).
Overall, the advantage of the tabular format of a structured
input is exploited to highlight important genes of a class
based on saliency scores. To the best of our knowledge,
this is the first time that the tabular form is used for this
purpose. Whereas the tabular structure is common in biological
measurements, it is typically absent from classical deep learning
research fields.

A second deep learning visualization technique, activation
maximization, can also be used to uncover input patterns (genes)
that are essential for classification. Activation maximization
is commonly used to generate a synthetic input that best
fits a trained model assignment to a particular class (Erhan
et al., 2009; Chollet, 2015; Kotikalapudi, 2017). For example,
when considering an image classification model, we might
be interested in knowing how a sample that maximizes
the activation of the birds’ class would look like. It might
include a single bird within the image, but it might also
encompass a bundle of beaks, wings and feathers (Chollet,
2015; Kotikalapudi, 2017). In our context, the activation
maximization technique can be used to generate a gene pattern
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FIGURE 2 | Gene expression versus saliency maps patterns. For each of the three biological traits (left to right panels) presented are heat maps of the gene
expression data (A) or calculated saliency maps (B) across the 414 input genes (rows), for each sample in the test set (columns). Samples within each trait are
grouped by their class label. Prominent patterns are mainly visible in the trained saliency maps model.

FIGURE 3 | Scores for the importance of genes, with respect to each
individual class. For each of the three biological traits (top to bottom)
presented are heat maps of gene scores obtained for each class (y-axis)
across the 414-genes input panel (x-axis). Gene scores were obtained using
either the averaged saliency maps (A) or the activation maximization (B). The
comparison shows that both methods provide similar scores for the effect of
genes on accurate prediction of each class.

that maximizes the model assignment to a specific class within
a biological trait. This will highlight the genes that have
stronger influence on the prediction of a class, therefore pushing
toward the assignment of a tested sample to its appropriate

class. Formally, the activation maximization is calculated by
generating an initial random input, followed by an iterative
process of refining the generated input to maximize the
neuron of interest (section “Activation Maximization”). Here,
when testing one biological trait, we applied the activation
maximization technique by generating a 414-genes input panel
that maximizes the activation of the neuron that corresponds
to the tested class. Figure 3 demonstrates comparison of
scores between the averaged saliency maps (Figure 3A) and
the activation maximization patterns (Figure 3B) on this
data. The correlation between the scores calculated by the
two methods is as high as 0.98 for each class within the
three biological traits. Both methods are therefore found
similarly, appropriate for assessing the contribution of a
gene to the classification model, as expected. Taken together,
our results support the notion that commonly used neural
network visualization techniques can be used to pinpoint the
genes that are important for the classification process, and
further show that both methods provide similar scores when
applied on structured data. To the best of our knowledge,
this is the first time it was shown that both visualization
techniques actually converge if an average is applied to
the saliency maps.

Identifying Genes That Are Generally
Important for the Classification of a
Biologic Trait
We next aimed to identify the genes that are most important to
the classification of each biological trait. As the abovementioned
gene importance scores refer to each biological class
(Figures 2, 3), these scores should be aggregated across
classes in order to indicate the general contribution of a
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gene to the classification of a trait. Such aggregation relies
on the assumption that high-scored genes (with respect to
particular classes) are also important for the entire classification
process of the biological trait under study. We therefore
average the absolute values of gene scores (obtained from one
of the visualization techniques) across the classes. Absolute
values are used since both highly positive and highly negative
scores imply strong contribution to the correct classification
of a class. We refer to these averaged scores as trait-specific
gene scores and explore its use to prioritize genes that are
important to each biological trait. The top K trait-specific
genes are the K genes that obtained the highest trait-specific
gene scores.

We first validated our basic assumption that the top
trait-specific genes are most important for the classification
process. To address this, we compared the accuracy obtained
from a shallow neural network model whose input is a
panel of all 414 genes to a network whose input is a
subgroup panel of only top-K trait-specific genes. Given
the high consistency of scores produced by the averaged
saliency maps and activation maximization, results are
shown only for the activation maximization method. We
tested a variety of thresholds for the selection of trait-
specific genes, and found that a small group of these
genes may be sufficient for gaining similar performance to
that of a 414-genes classifier, and that this is true for all
three biological traits (Table 3, left), in agreement with our
basic assumption.

Regression coefficients are commonly used in biological
studies as a method for evaluating the effect of each gene
per model class. As logistic regression was previously shown
to obtain comparable accuracy to that of a neural network,
we reasoned that logistic regression could be used as a
gold standard reference also for the assessment of gene
scores. We therefore calculated trait-specific gene scores

using conventional logistic regression, and subsequently
compared these scores to those obtained using the visualization
technique. In particular, we defined trait-specific gene scores
(of logistic regression) as the average of absolute regression
coefficients across all classes of a trait under study. We
found that using the top K trait-specific genes for the
classification of each trait, either selected based on the
activation maximization or the logistic regression model,
results in similar performance (Table 3). In addition, the K top
trait-specific genes derived from both methods are quite similar
(Table 4). These results suggest that visualization techniques-
based prioritization may provide a good alternative to the
conventional analysis that is commonly conducted through
logistic regression, a fact that might become important in cases
where deep neural networks may be required to solve more
complex problems.

Finally, we investigate the biological role of the top prioritized
genes predicted for each trait. We define the leading trait-
specific genes as the minimal set of K genes that allow
accuracy that is comparable to that of the full set of genes.
For instance, in the case of classifying the extracellular
pathogenic stimulation, 10 top genes is the minimal set whose
accuracy is similar to the accuracy obtained by 414 genes
(>98%, Table 3, left; row 5 versus 10); these 10 genes are
therefore the leading stimulation-specific genes. These leading
stimulation-specific genes (Table 4; left) are found to be
primarily immune-cells mediated cytokines (IL6, IL28A, IL28B,
IL29, IL1B) and immune-defense genes (IFIT2, IFI44), which
serve as the innate immune defense line against invading
pathogens (Iwasaki and Medzhitov, 2004). In fact, the top
two genes – IL6 and IFIT2 – are solely sufficient for the
stimulation-trait classifier and gain excellent accuracy (above
96%) when they are both used as the input data (Table 3,
second row). In the case of gender classification, a single
top gene was found as the leading gene with exceptional

TABLE 3 | Accuracy scores obtained for classification based on the top trait-specific genes.

Activation maximization Logistic regression

Number of genes Stimulation Gender Ethnicity Stimulation Gender Ethnicity

1 71.23 (± 2.24) 96.97 (± 1.90) 56.82 (± 0.17) 71.19 (± 1.99) 96.93 (± 1.06) 56.82 (± 0.17)

2 96.56 (± 1.36) 97.01 (± 1.13) 56.82 (± 0.17) 96.72 (± 1.47) 97.09 (± 1.08) 56.82 (± 0.17)

3 95.70 (± 1.33) 97.30 (± 0.98) 58.54 (± 1.02) 96.27 (± 1.78) 97.25 (± 0.86) 56.90 (± 0.29)

5 97.50 (± 1.25) 97.30 (± 1.06) 63.75 (± 2.15) 95.94 (± 1.32) 97.13 (± 1.09) 57.97 (± 0.78)

10 98.69 (± 0.99) 97.66 (± 1.23) 71.97 (± 2.63) 98.69 (± 0.71) 97.21 (± 1.10) 70.38 (± 2.17)

20 99.10 (± 0.73) 97.50 (± 0.96) 80.71 (± 1.29) 98.81 (± 0.65) 97.50 (± 1.11) 80.83 (± 1.88)

50 99.22 (± 0.68) 97.75 (± 0.99) 86.73 (± 1.57) 99.34 (± 0.49) 97.29 (± 1.06) 86.20 (± 1.51)

100 99.30 (± 0.76) 97.71 (± 0.87) 90.13 (± 1.23) 99.26 (± 0.73) 97.46 (± 1.26) 90.17 (± 1.11)

200 99.06 (± 0.61) 97.17 (± 1.29) 91.32 (± 0.93) 99.14 (± 0.59) 97.42 (± 1.06) 91.89 (± 1.31)

414 (all) 98.81 (± 0.74) 96.48 (± 0.98) 90.75 (± 1.66) 99.06 (± 0.66) 96.97 (± 1.12) 91.36 (± 1.03)

The top genes were selected based on their trait-specific gene scores, which were calculated either based on activation maximization scores using a shallow neural
network with 8 hidden neurons (left) or logistic regression coefficients (right). The table presents accuracy scores of the classification models designed for the three
biological traits (columns) using varying numbers of top trait-specific genes (column 1). Reported are the mean and standard deviation of accuracy scores obtained using
a 10-fold cross validation analysis using normalized gene expression data. Red: The minimal number of top genes providing a classification model whose accuracy is
similar to that obtained by all 414 genes under study.
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TABLE 4 | Top ten trait-specific genes of each biological trait.

Stimulations Gender Ethnicity

Activation maximization Logistic Regression Activation maximization Logistic Regression Activation maximization Logistic Regression

IL6 IL6 ZFY ZFY PLA2G4C PLA2G4C

IFIT2 IFIT2 EIF1AY EIF1AY GP1BA GP1BA

PPP6C IL7 DDX3Y DDX3Y LILRA3 IFITM3

IL1B IL1B DCBLD1 KCTD14 SPTLC2 CCL7

DTX4 IFI44 TLR8 C12orf23 OTOF SLC8A1

IL28A DTX4 CTSH LILRA3 MSR1 ATP1B1

IFI44 IRG1 IL1F9 NRIP3 IFITM3 CD40

IL28B SCG3 GPR68 TLR8 LHFP CTSH

IL29 IL1RN MGC57346 HPS1 CUL4A SIGLEC9

PTX3 IL28A ERAP1 IL4R SLC8A1 C6orf192

For each trait (top row), presented are ten genes that obtained the top (highest) trait-specific gene scores, calculated using either activation maximization (left) or logistic
regression (right).

performance (>96%, Table 3, middle). In fact, each of the
top three genes – ZFY, EIF1AY or DDX3Y – can serve as
the sole input of a gender classification model with >96%
accuracy (data not shown). This is perhaps unsurprising, in
retrospect, given that all these three genes are Y-linked genes
(Vakilian et al., 2015). Finally, in the more inherently complex
biological trait – ethnicity – a much larger group of about
100 leading genes is needed in order to preserve sufficient
accuracy of around 90%.

To summarize this work, we propose a thorough examination
of utilizing neural networks to classify biological traits
and demonstrate the use of two classical deep learning
visualization techniques – saliency maps and activation
maximization – to highlight input patterns essential for the
classification model of each trait. We demonstrate how to
reveal the most important genes for each classification –
which we term leading trait-specific genes – and show strong
biological reasoning for why these genes were selected by
the model to guide the prediction process. As opposed to
inference conducted through regression coefficients, the
proposed use of visualization techniques on structured
data to examine feature importance can be effortlessly
extended to deep neural network architectures that might
be found crucial for classifying various complex traits.
As the application of neural networks in computational
biology is a rapidly growing field, we believe these techniques
provide a powerful and general approach for identifying the
particular input features essential for the prediction of a trained
neural network model.

MATERIALS AND METHODS

Gene Expression Data and the Classified
Biological Traits
We utilized a published dataset (Lee et al., 2014) (GEO
accession GSE53166) consisting of the expression levels of
414 immune-related genes in peripheral blood monocyte-
derived dendritic cells (DC) extracted from healthy individuals.

In total, 2441 samples are included in the dataset – each
sample is treated in our analysis as a 414-genes expression
panel. Each sample is accompanied with information
regarding the gender and the ethnicity of the individual
from which the immune cells were derived and information
regarding an extracellular stimulation following which the
genes expression levels were measured (or indicated that
it was measured without prior extracellular stimulation).
The distribution of the 2441 samples across the different
classes within the three biological traits – gender, ethnicity,
and extracellular stimulation – is summarized in Table 5.
Normalization of the gene expression data was conducted
using Z-score normalization applied on each gene across
all 2441 samples.

The selection of this dataset, which is a relatively
small one, serves two goals: first, we aimed to use a
dataset for which conventional methods provide high
performance (thereby allowing systematical comparison
of feature importance), and second, we aimed to
highlight the fact that for many datasets, conventional
methods may be sufficient for the construction of an
accurate classifier.

TABLE 5 | Biological traits.

Biological trait Classes

Extracellular stimulation Unstim (734 samples), LPS (806
samples), dNS1 (469 samples), IFNβ

(432 samples)

Gender Female (1412 samples), Male (1029
samples)

Ethnicity African-American (506 samples),
Caucasian (1387 samples), East-Asian
(487 samples), Multi-racial (61 samples)

The three biological traits examined in this study (left), presented together
with their corresponding classes and the number of samples included in each
class (right). Abbreviations of stimulations: Unstim, unstimulated sample; LPS,
lipopolysaccharide; dNS1, influenza virus lacking the NS1 viral gene; IFNβ, the
interferon-β cytokine.
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Neural Network Architectures
We tested two different neural network architectures for the
multiclass classification problem for each of the three biological
traits – a neural network with a single hidden layer (here
termed “shallow neural network”; Figure 1A) and a neural
network with two hidden layers (“two hidden layers neural
network”; Figure 1B). Different dimensions were tested for the
hidden layers (2, 8, 16, 32, or 64 for the shallow network;
8+2, 16+8, or 32+16 for the two hidden layers network). ReLU
activation function was used and a standard L2 regularization
with λ = 0.01 was applied (no hyperparameter tuning was
conducted for choosing λ). The input for all classifiers is the
expression panel of the 414 immune-related genes, while the
number of output neurons corresponds to the number of classes
in each trait (2 for gender, 4 for ethnicity and extracellular
stimulation). A softmax activation function was used at the
output layer to assign a class for a tested sample. Lastly, we
formed a neural network-like instance of logistic regression to
preserve consistency with the abovementioned neural networks.
The logistic regression network was constructed as an input layer
directly connected to an output layer with softmax activation
(Figure 1C; no hidden layer).

K-Fold Aross Validation
In order to properly estimate and compare the performance of
the different neural network classification models, we used 10-
fold cross validation strategy to split the dataset multiple times
(Kohavi, 1995; Dietterich, 1998). Each split produced a training
set, on which a neural network was trained, along with a test set,
which was used to evaluate the accuracy of the trained model.
We used stratified cross validation to preserve the proportion
of the samples within each class in each split. The results of
the 10-fold cross validation splits are summarized as the mean
and standard deviation scores, providing a robust method for
performance assessment.

Saliency Maps and Averaged Saliency
Maps
Saliency Maps is a deep learning visualization technique
commonly used for highlighting the input components within
a sample that are important for the process of assigning the
sample to its particular class by a trained neural network
model (Simonyan et al., 2013). Formally, this method measures
the contribution of each input component to the classification
process. An input component can be, for example, a pixel
within an image (in image classification) or a gene within an
expression panel (in classification of biological samples). In other
words, saliency maps quantify the impact that small changes
in the input data have on the correct classification of each
sample (Kotikalapudi, 2017).

In this study we use saliency maps as a tool for exploring
the contribution of each gene to the correct classification of
a sample within a biological trait. The saliency maps formally
provide a score for each gene per sample. We further exploit
the tabular structure of gene expression data to create “Averaged
Saliency Maps,” where an average score is calculated for each

class across all its samples. Such averaged maps emphasize the
genes that are important for the assignment of each class, taking
into consideration the scores of all samples in these classes.
Importantly, such analysis is not possible in the general case of
image classification (which relies on pixels that do not necessarily
share the same topological structure). Here, the averaging is
only possible due to the tabular organization of the molecular
data across multiple samples. We use this concept of averaged
saliency maps to move from per-sample characteristics to class-
specific characteristics.

Activation Maximization
Activation Maximization is a deep learning visualization
technique that is commonly used for generating an input instance
that maximizes the activation of a particular filter within a trained
model (Erhan et al., 2009; Chollet, 2015). Specifically, activation
maximization can be used to generate an input that maximizes
the activation of an output neuron corresponding to a particular
class. Formally, activation maximization process is conducted by
generating an initial random input and iteratively refining it to
maximize a particular class (Kotikalapudi, 2017). In this study
we use the activation maximization to evaluate the contribution
of each of the genes to the process of assigning samples to
a particular class (within a biological trait under study). High
activation maximization gene scores (either positive or negative)
indicate a greater impact of a gene on the classification process of
the tested class.

Trait-Specific Genes
Given the contribution scores of each gene per class (either
based on activation maximization or on averaged saliency maps),
averaging these scores across the classes allows the detection
of genes that are important for the classification of the entire
biological trait. We refer to such averaged scores as “trait-specific
gene scores,” and top-ranked genes based on these scores are
referred to as “trait-specific genes.” Finally, the “leading trait-
specific gene” are the minimal group of trait-specific genes whose
classification accuracy is similar to that obtained by the full
input set of genes.

DISCUSSION

During the past decade, neural networks have emerged as a
promising tool widely used in complex classification analysis,
standing at the frontline of various deep learning fields (Lecun
et al., 2015). Recent studies in biomedicine have naturally
proposed utilizing gene expression data in order to classify
medical traits through neural networks (Chen et al., 2014;
Dwivedi, 2018; Eraslan et al., 2019), a trend that can only
be expected to continue to thrive in the coming years. In
this study we examine the classification of different biological
traits based on gene expression levels derived from healthy
individuals, focusing on two main contributions: first, we present
a methodological approach to address basic questions revolving
the use of neural networks. We discuss the selection of an
appropriate architecture while considering the tradeoff between
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model complexity and accuracy. Second, we propose the use
of two common deep learning visualization techniques to
explore genes contribution, per sample or per trait class, to the
classification process. We show how these methods can be used
to uncover genes that are essential for the classification process of
a given biological trait.

We focused on three biological traits – an extracellular
pathogenic-like stimulation following which gene expression
levels were measured, the gender of the person from which
a sample was derived and the person’s ethnicity. We started
by exploring different neural network architectures for the
prediction of each of the three biological traits and found that
in all three cases, simple architectures were sufficient to obtain
highly accurate predictions. We further demonstrated that data
normalization greatly improves the performance of the network
models, enabling the use of smaller, hence more efficient, neural
networks. We also found that when using the normalized dataset,
a simple logistic regression obtained accuracy scores that are
similar to those obtained by neural network models. The tradeoff
between model simplicity versus model accuracy should be
therefore taken into consideration before turning to the use of
a more complex neural network model.

Next, we explored the use of two deep learning visualization
techniques – Saliency Maps (Simonyan et al., 2013; Kotikalapudi,
2017) and Activation Maximization (Erhan et al., 2009;
Chollet, 2015) – for the purpose of revealing trait-specific
genes essential for the classification model trained for each
biological trait. We used the two methods to investigate
input patterns (in our case, genes) that are important for the
classification process of a particular trait. We have leveraged
the tabular form of the gene expression data to show that
the two visualization techniques converge to similar results.
As expected, the prioritization of the genes based on their
contribution scores resulted in a different group of leading
trait-specific genes suggested for each of the classified traits,
including Y-linked genes for gender classification and immune-
cells mediated cytokines for extracellular stimulation classifier.
We took advantage of the fact that the logistic regression
models were found comparable to the neural network models
in order to show high concurrence between the essential
genes proposed by the two visualization techniques with those
having the largest (absolute) coefficients in a logistic regression
model. Taken together, these findings support the notion that

deep learning visualization techniques can be used as valid
methods for exploring the importance of omics components in
various biomedical fields. Furthermore, our results lay strong
foundations for the general utility of visualization techniques for
interpretability in the context of any complex structured-input
neural networks.
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APPENDIX

Performance analysis of multi-classification models, obtained using normalized gene expression levels. Performance scores (accuracy,
precision, recall, F1-score; columns) obtained for the classification models designed for the three biological traits (stimulations, gender
and ethnicity; top to bottom) along with training time (in seconds). Reported are the mean and standard deviation scores that were
obtained using a 10-fold cross validation analysis, across models with different architectures (rows). Normalized gene expression levels
were used as input data.

Stimulation

Architecture Accuracy Precision Recall F1-score Time (sec)

Shallow neural network 2 92.46 (± 10.12) 92.10 (± 14.02) 92.46 (± 10.12) 90.93 (± 13.27) 4.60

8 98.81 (± 0.83) 98.82 (± 0.83) 98.81 (± 0.83) 98.81 (± 0.83) 6.04

16 98.77 (± 1.11) 98.81 (± 1.05) 98.77 (± 1.11) 98.77 (± 1.11) 7.00

32 97.54 (± 1.69) 97.74 (± 1.42) 97.54 (± 1.69) 97.54 (± 1.69) 7.24

64 98.52 (± 1.01) 98.57 (± 0.95) 98.52 (± 1.01) 98.52 (± 1.02) 12.04

Two-hidden layers neural network 8 + 2 98.44 (± 0.80) 98.47 (± 0.77) 98.44 (± 0.80) 98.44 (± 0.80) 9.54

16 + 8 98.44 (± 1.38) 98.52 (± 1.27) 98.44 (± 1.38) 98.44 (± 1.38) 10.93

32 + 16 98.61 (± 0.97) 98.65 (± 0.90) 98.61 (± 0.97) 98.60 (± 0.98) 12.85

Logistic regression 98.81 (± 0.76) 98.84 (± 0.73) 98.81 (± 0.76) 98.81 (± 0.76) 11.59

Gender

Architecture Accuracy Precision Recall F1-score Time (sec)

Shallow neural network 2 96.56 (± 1.06) 96.60 (± 1.04) 96.56 (± 1.06) 96.56 (± 1.06) 3.99

8 96.39 (± 1.83) 96.41 (± 1.83) 96.39 (± 1.83) 96.39 (± 1.84) 4.98

16 96.52 (± 1.37) 96.55 (± 1.36) 96.52 (± 1.37) 96.52 (± 1.37) 6.06

32 96.72 (± 1.77) 96.76 (± 1.74) 96.72 (± 1.77) 96.72 (± 1.77) 7.16

64 95.62 (± 1.99) 95.70 (± 1.90) 95.62 (± 1.99) 95.61 (± 2.00) 9.51

Two-hidden layers neural network 8 + 2 96.89 (± 1.62) 96.93 (± 1.62) 96.89 (± 1.62) 96.89 (± 1.62) 9.67

16 + 8 96.52 (± 1.18) 96.55 (± 1.18) 96.52 (± 1.18) 96.52 (± 1.18) 10.92

32 + 16 96.43 (± 1.52) 96.50 (± 1.42) 96.43 (± 1.52) 96.44 (± 1.51) 12.84

Logistic regression 96.93 (± 0.97) 96.98 (± 0.94) 96.93 (± 0.97) 96.93 (± 0.97) 14.62

Ethnicity

Architecture Accuracy Precision Recall F1-score Time (sec)

Shallow neural network 2 85.71 (± 4.22) 83.84 (± 4.09) 85.71 (± 4.22) 84.22 (± 4.61) 5.04

8 90.17 (± 1.80) 88.37 (± 1.88) 90.17 (± 1.80) 89.18 (± 1.81) 5.05

16 90.38 (± 1.56) 88.76 (± 2.08) 90.38 (± 1.56) 89.36 (± 1.67) 5.88

32 88.40 (± 3.22) 86.96 (± 3.31) 88.40 (± 3.22) 87.49 (± 3.21) 8.66

64 86.63 (± 3.92) 85.07 (± 3.61) 86.63 (± 3.92) 85.69 (± 3.76) 11.29

Two-hidden layers neural network 8 + 2 88.00 (± 3.80) 86.01 (± 3.61) 88.00 (± 3.80) 86.78 (± 3.91) 9.74

16 + 8 89.80 (± 2.24) 87.79 (± 2.01) 89.80 (± 2.24) 88.66 (± 2.18) 11.99

32 + 16 89.03 (± 2.70) 87.08 (± 2.36) 89.03 (± 2.70) 87.92 (± 2.61) 13.35

Logistic regression 91.48 (± 0.86) 90.13 (± 1.15) 91.48 (± 0.86) 90.62 (± 0.94) 11.57
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