
Integrating Genomic, Transcriptomic, and Interactome Data to
Improve Peptide and Protein Identification in Shotgun Proteomics
Xiaojing Wang† and Bing Zhang*,†,‡,§

†Department of Biomedical Informatics, ‡Vanderbilt-Ingram Cancer Center, and §Department of Cancer Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee 37232, United States

ABSTRACT: Mass spectrometry (MS)-based shotgun proteomics is an
effective technology for global proteome profiling. The ultimate goal is to
assign tandem MS spectra to peptides and subsequently infer proteins
and their abundance. In addition to database searching and protein
assembly algorithms, computational approaches have been developed to
integrate genomic, transcriptomic, and interactome information to
improve peptide and protein identification. Earlier efforts focus primarily
on making databases more comprehensive using publicly available
genomic and transcriptomic data. More recently, with the increasing
affordability of the Next Generation Sequencing (NGS) technologies,
personalized protein databases derived from sample-specific genomic and
transcriptomic data have emerged as an attractive strategy. In addition,
incorporating interactome data not only improves protein identification
but also puts identified proteins into their functional context and thus facilitates data interpretation. In this paper, we survey the
major integrative bioinformatics approaches that have been developed during the past decade and discuss their merits and
demerits.
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1. INTRODUCTION

Proteins are key functional molecules in cells and serve as a link
between genotype and phenotype. Global proteomic analysis
allows direct measurements of proteins, and when integrated
with genomic and transcriptomic studies, provides a great
opportunity to understand the information flow from DNA to
protein to phenotype.
Among different high-throughput proteomic technologies,

mass spectrometry (MS)-based shotgun proteomics has had the
greatest impact in biological and biomedical research. Recent
technology advances have made this approach increasingly
applicable for global profiling of cell and tissue proteomes, with
the capacity to detect more than 10000 proteins from a single
biological sample.1 Figure 1 illustrates the typical workflow of a
shotgun proteomics study. In the experimental phase, proteins
are enzymatically digested into peptides, which are fractionated
and analyzed by liquid chromatography−tandem mass
spectrometry (LC−MS/MS). In the data analysis phase,
tandem mass spectra are interpreted to peptides by computa-
tional algorithms and then assembled into proteins. The most
widely used method for peptide identification is database
searching by computational tools such as SEQUEST, Mascot,2

X!Tandem,3 or MyriMatch.4 These tools first perform an in
silico digestion of all proteins in a reference protein database to
enumerate all candidate peptide sequences and then construct a
theoretical spectrum for each candidate peptide sequence.
Experimentally observed fragment ion spectra are compared to

the theoretical spectra and then linked to corresponding
peptides if a comparison produces a statistically significant
peptide-spectrum match (PSM) score. Finally, identified
peptides are transformed into a list of identified proteins
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Figure 1. A typical workflow of shotgun proteomics.
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through protein assembly tools such as IDPicker,5 MassSieve,6

or ProteinProphet,7 among others.
Although this strategy has been successful, there are several

critical challenges that cannot be fully addressed by simply
improving database searching and protein assembly algorithms.
On one hand, all database searching algorithms rely on a
reference protein database, which is typically incomplete. First,
novel protein coding genes are still being continuously
identified.8 Second, a single gene locus can produce multiple
transcript and protein isoforms through alternative splicing, and
it remains difficult to completely catalogue all protein coding
transcripts that can be generated from known gene loci.9

Moreover, sequence variants including single nucleotide
polymorphisms (SNPs), somatic mutations, insertions, dele-
tions, and gene fusions are often neglected in commonly used
reference protein databases. On the other hand, despite
substantial improvements, reliable identification of low-
abundant proteins remains challenging.
During the past decade, various computational methods have

been developed to integrate orthogonal data sources to
improve peptide and protein identification in shotgun
proteomics studies. These approaches take advantage of the
rapidly growing volumes of genomic, transcriptomic, and
interactome data. Here we review different integrative
bioinformatics strategies that have been used to address the

above-mentioned challenges. Relevant studies are summarized
in Table 1 and the list continues to grow. This review is limited
to human and mouse studies, and studies focusing on microbes
or plants are not included.

2. IMPROVING PEPTIDE IDENTIFICATION

Bottom-up proteomics technologies rely on peptide identi-
fication to infer protein presence. Integrating genomic and
transcriptomic information allows the identification of peptides
derived from novel protein coding genes, splice variants, and
sequence variations, leading to a more comprehensive
proteomic characterization of biological and clinical samples.

2.1. Novel Protein-Coding Genes

The database searching strategy relies on complete genomes
and thorough protein coding gene annotations. Although whole
genome sequencing data for human and other model organisms
have been available for a decade, genome annotation remains
incomplete even for the human genome. Several studies have
demonstrated the potential of shotgun proteomics in the
discovery of novel protein-coding genes in human and mouse
using a variety of approaches.8,10−12

The most intuitive approach to enable the identification of
novel protein-coding genes by shotgun proteomics is to use a
database containing a six-frame translation of the whole

Table 1. List of Published Orthogonal Data Assisted Proteomics Studies

Genomic Information

Choudhary et al. six-frame translation using the draft of human
genome

13

Fermin et al. six-frame translation of whole human genome 19
Sevinsky et al. six-frame translation of whole human genome 18

peptide isoelectric point (pI)
Bitton et al. prescreening searches on databases translated

from individual chromosomes; matched entries
were then combined with the Celera database
entries and used for a second time search

12

Mo et al. exon−exon junction database 29
Power et al. noncontiguous junction peptides in a “full length

transcript”
30

Gatlin et al. generating dynamically all possible SNPs 40
Roth et al. creating a highly annotated database, including

splicing, PTMs, and SNPs
47

Bunger et al. reference protein database 41
tryptic peptide database created from dbSNP
peptide pI

Schandorff et al. elongating IPI sequences with theoretical
N-terminal peptides, variant peptides from
cSNP, variant peptides from conflict annotation
in Swiss-Prot, and proteolytic enzyme and
keratin sequences

37

Xi et al. human disease-related variants from OMIM,
PMD, and Swiss-Prot

44

Nijveen et al. 20-mer variant peptides generated by three-frame
translation from mRNA sequences including
SNPs in dbSNP

35

Li et al. combined database of normal proteins and variant
peptides

46

modified FDR estimation
Su et al. a pipeline of nontargeted proteomics for

identifying SAP peptides in human plasma and
quantifying them using targeted proteomics

43

Khatun et al. whole genome proteogenomic mapping to
identify novel protein coding regions for
ENCODE cell line proteomics data

8

Transcriptomic Information

Tanner et al. using genomic data and EST data to
construct the exon graph, which is a
compact representation of all putative
exons, splice variants and polymorphisms

31

Edwards et al. using sequence database compression
strategies to reduce EST database size by
approximately 35-fold

36

Menon et al. three-frame translation of mRNA
sequences from the ECgene and
ENSEMBL databases

33,34

Ramakrishnan et al. using expression information from
microarray to assist protein identification

52

Ning et al. six-frame translation of novel junction
mRNA sequence identified by RNA-Seq

38

Wang et al. customized database from RNA-Seq data 49,59
Chen et al. generating database for missense SNVs and

RNA edits from genomic sequencing and
RNA-Seq data

48

Sheynkman et al. deriving novel splice-junction peptides
from RNA-Seq data

39

Evan et al. de novo assembly of transcriptomes from
RNA-Seq data

51

Menschaert et al. A custom protein database built from both
Swiss-Prot and RIBO-seq derived
translation products

61

Woo et al. A proteogenomic database from large scale
RNA-Seq data

26

Sheynkman et al. detection of variant peptides from
RNA-Seq data

62

Network Information

Li et al. protein−protein interaction network-assisted
protein assembly through clique enumeration
and enrichment analysis

54

Ramakrishnan et al. improving protein identification by considering
information on functional associations from a
gene function network

56

Goh et al. using functional clusters to expand protein lists 63
Nusinow et al. using a network-based inference tool, SNIPE,

to select proteins that are likely to be active
but undetectable in shotgun proteomics

55
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genome. Right after the release of the initial human genome
draft sequence, Choudhary and colleagues searched an LC−
MS/MS data set containing peptides from at least 22 human
proteins against a curated protein database, an expressed
sequence tag (EST)-derived database, and a genome-derived
database.13 Although the data set was small and the majority of
proteins were found much more rapidly using the curated
protein database, the study pioneered the use of genome
translated databases for shotgun proteomics. A six-frame
translation database does not depend on gene models and
therefore contains all possible protein forms except for peptides
spanning the exon junction regions. The strategy has been
widely used in microbial studies because microbial genomes are
small and lack alternative splicing.14,15 Since 98% of the human
genome is not protein coding,16 this method dramatically
increases the searching space and computational time. Tools
have been developed to automate this strategy and make it
practical for mammalian genomes.17 However, a major concern
is the large amount of background noise introduced by this
strategy. Therefore, extra efforts are needed when applying this
method to large, complex mammalian genomes.
Methods have been developed to constrain the database size

and complexity before the search. For experiments that use
immobilized pH gradient strips to fractionate peptides, each
fraction only contains peptides of a narrow isoelectric point
(pI) range. This information has been used for the develop-
ment of GENQUEST,18 a method that restricts the peptide
search space based on the pI range. Specifically, after the six-
frame translation of the genome, each putative protein is in
silico digested with trypsin and the pI is calculated for each
peptide. Peptides are then grouped together based on their pIs.
Spectra generated from a specific peptide fraction are only
searched against the subset of peptides with pIs in the same
range. It has been shown that this method resulted in accurate
and sensitive results comparable to searching a curated protein
database. Another method utilizes a series of prescreening
searches against databases translated from individual chromo-
somes to identify and eliminate nonmatching entries, and then
a second search is performed against all the matched entries
combined with a curated protein database. This method
dramatically reduces the database size for individual searches
and has been successfully used to identify novel peptides in two
human cell lines.12

Methods have also been developed to control the peptide
false discovery rate (FDR) after the search. Ferman et al.
searched a data set from the Human Proteome Organization
Plasma Proteome Project against a six-frame translation of the
entire human genome to identify novel blood proteins.19 They
used a Poisson model, which brings into consideration the
number of spectra searched, score threshold applied to
accepting a match, the size of the target sequence database,
and the length of the matched protein sequence, to estimate the
confidence of peptide identifications. A detailed analysis
showed that among the 2309 high quality intragenic peptides,
73% were completely contained within annotated exons, 6%
partially overlapped with annotated exons, and 21% were
aligned to nonexonic regions.
Ever since the emergence of the RNA sequencing (RNA-

Seq) technology, RNA-Seq data have been widely used to
facilitate proteomics studies of nonmodel organisms that do not
have a fully sequenced and well-annotated genome, such as
many microorganisms and plants.20−23 In human and model
organism studies, RNA-Seq has revealed a large number of

transcribed unannotated regions,24,25 and some of them may
represent novel protein-coding regions. Because gene ex-
pression changes over time and conditions, and each data set
is associated with sequencing errors and mapping errors,
combining different RNA-Seq data sets from an organism can
lead to a more comprehensive and accurate reference protein
database for the organism. A recent study in Caenorhabditis
elegans generated an aggregated database from public C. elegans
RNA-Seq data sets, allowing the identification of hundreds of
novel genes in a MS/MS data set from 11 developmental stage
of C. elegans.26

2.2. Novel Splice Variants

The incompleteness of genome annotation can also arise from
unknown isoforms. Alternative splicing isoforms amplify the
coding diversity and thus enable the functional repertoire of
genes. A typical exon in the human genome is short with more
than three-quarters of the exons having a length less than 200
bp,27 which means a relatively large number of peptides span
the exon boundary. Because of incomplete genome annotation,
many splice junctions might be missing in the public databases.
A more comprehensive splicing annotation will certainly
improve peptide identification in proteomics, as exemplified
by a study demonstrating a 7% increase in peptide identification
when using ENSEMBL database with explicit isoform entries
rather than the nonredundant Swiss-Prot database.28

As mentioned above, one major limitation of the six-frame
genome translation method is the failure to detect junction-
spanning peptides. This limitation can be partially overcome by
the generation of an exon−exon junction database. Mo et al.
designed a theoretical exon−exon junction protein database to
account for all possible combination of exons for each gene in
the ENSEMBL database while keeping the frame of trans-
lation.29 They only took 25 amino acid residues from each exon
and used X!Tandem and SEQUEST to identify exon junctions
in a human liver secretome MS/MS data set. By combing
search results from the two tools, they identified 488
nonredundant peptides corresponding to 395 ENSEMBL
genes. Another study by Power et al. used a similar method
to construct a database harboring peptide sequences derived
from all hypothetical exon−exon junctions in the human
genome.30 The strategy, named SkipE, employs two main steps
for database construction. First, it includes a “full-length
transcript”, which is the longest predicted exon sequence, for
each gene. Overlapping exons are merged into a longer one.
Second, entirely noncontiguous junction peptides are created
from exon−exon junction-spanning sequences by cleaving the
trypsin sites on both faces. Compared to the database generated
by Mo et al. (873024 peptides), this method helped reduce the
database size by more than half (307030 peptides).
One intrinsic limitation of using only genomic data (exon

model) to generate exon−exon junction databases is that many
predicted alternative splicing events do not occur at the
transcriptional level, and therefore a large amount of noise is
introduced. To address this limitation, some studies have used
EST data to reduce the size of a putative junction database.
ESTs are short sequences from complementary DNA (cDNA)
sequences and can indicate gene expression. Tanner et al. have
developed algorithms that combine genomic data and EST data
to construct an exon graph, which is a compact representation
of all putative exons, splice variants, and polymorphisms. By
searching a large collection of 18.5 million tandem MS spectra
from human proteomic samples against the database, they
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confirmed the translation of 224 hypothetical human proteins
and over 40 alternative splicing events.31 Other studies use
three-frame translation of mRNA sequences from ECgene, a
comprehensive alternative splicing sequence database with
splice variants predicted by EST clustering,32 to generate
databases for integrating with the ENSEMBL database.33,34

Since alternative splice variants contribute to a number of
diseases including cancer, these studies have been performed to
identify both novel and known splice variants in cancer
samples.
Using EST data could largely reduce the number of putative

junctions and introduce novel proteins. However, this approach
is limited by the (1) large and redundant data size; (2) inability
to cover all genes; and (3) presence of unprocessed and
truncated transcripts as well as genomic contaminants.31,35,36

Because of these limitations, some researchers even argue
against using EST data for proteomics studies.37 Further efforts
are required to overcome these limitations. Edwards et al. have
introduced several sequence database compression strategies to
maintain the high quality ESTs, thus reducing database size by
approximately 35-fold. These strategies include: (1) limiting
EST sequences to those mapping to the vicinity of known
genes; (2) requiring a minimum peptide length of 30-mer; and
(3) including only peptides supported by at least two ESTs.
This approach brings the database size closer to the commonly
used protein sequence databases and allows the discovery of
novel peptides in a variety of public data sets.36 The
GENQUEST method mentioned earlier can also be used to
reduce the complexity of EST databases.18 Although very
helpful, these approaches cannot overcome other above-
mentioned limitations.
Compared to EST libraries, RNA-Seq provides a more

advanced way to comprehensively identify alternative splicing
events. Ning et al. performed a preliminary analysis using RNA-
Seq data to derive a six-frame translated novel junction
sequence database for MS/MS data search, with a focus on
the identification of novel alternative splicing forms.38 Although
the study only provided proteomic evidence for a few novel
alternative splicing forms, it helped demonstrate the feasibility
of using RNA-Seq data to facilitate the identification of junction
peptides. In a more recent study, Sheynkman et al. built an
unannotated splice-junction peptide database with more than
30000 peptides based on RNA-Seq data, allowing the
identification of 57 novel splice junction peptides.39 Neither
of these studies identified as many novel junction peptides as
one would expect, which might be explained by the low
expression level of the novel transcripts and the limited
sequence coverage of proteomics data.

2.3. Sequence Variations

Tremendous progress has been made in the identification of
disease or drug-response associated DNA sequence variations
over the past decade. Validation of these variations at the
protein level may lead to novel opportunities for disease
diagnosis, prognosis, and treatment. Shotgun proteomics
provides a high-throughput solution for the protein-level
validation of genomic variations if such information is included
in the sequence database used for the search.
An early study by Gatlin et al. used SEQUEST-SNP to

identify sequence variations in human hemoglobin proteins.40

Their algorithm dynamically generates all possible SNPs and
translates them into peptides for proteomics search. This
strategy is only possible for data sets with one or several genes

because the number of dynamically introduced variations can
grow exponentially with increased number of genes. Several
other studies incorporated SNPs derived from EST data to
protein databases.31,36

More efforts have been made to enable the identification of
protein sequence variations through incorporating genomic
variation information from databases such as dbSNP and
COSMIC. These works address two key challenges: how to
include possible variations into a database and how to control
the FDR in the search results with expanded databases.
Bunger et al. presented a refined two-step approach.41 First,

LC−MS/MS data are searched against the reference protein
database and a separate SNP database created from dbSNP.
Next, search results are compared to get reliable SNP-
containing peptides. They pointed out that searching for
SNP-peptides carry a high risk of false positives due to small
mass changes and post-translational modification or peptide
modifications that result in similar mass shifts as amino acid
substitutions. To control false positives, they proposed two
strategies. First, a decoy database can be created by random
substitution of reference peptides with similar size. Second, a
more stringent match score cutoff can be applied for identifying
SNP peptides. The score cutoff can be empirically identified to
balance false-positives and false-negatives. Their study identi-
fied 36 alternative SNP alleles which were not included in the
reference IPI database.
Nijveen et al. designed a Human Short Peptide Variation

Database (HSPVdb) dedicated to minor histocompatibility
antigens (MiHAs) and demonstrated the value of the database
by identifying the majority of published polymorphic SNP or
alternative reading frames (ARFs)-derived epitopes in a
proteomics study.35 They generated the database by introduc-
ing SNPs into corresponding mRNA sequence fragments from
RefSeq and then translated them using three reading frames.
The database consists of 20-mer peptides. Further improve-
ments were made to remove nonpolymorphic SNPs in dbSNP,
which improved the elucidation of MiHAs.
A primary drawback of searching normal database and variant

database separately is the loss of competition between normal
and variant peptides. A single combined database is preferred
because a spectrum that matches well to a peptide in one
database may have a better match to a different peptide in
another database. This cannot be resolved unless all candidate
sequences are considered in a single database.42 Therefore, Su
et al. added a “validation” phase after searching spectra against a
variation database from SNPs.43

To build a combined database, Schandorff et al. developed
MSIPI, in which each IPI protein sequence entry is appended
with additional peptide sequences such as theoretical N-
terminal peptides and variant peptides from coding SNPs.37

MSIPI allows the identification of N-terminal peptides and of
cSNPs in proteomic samples, with an only 10% increase in
database size. Along the same line, Xi et al. built a database
named SysPIMP that adds human disease-related mutated
proteins from OMIM, PMD, and Swiss-Prot to a reference
database.44 More recently, we have developed CanProVar,
which comprehensively integrates information on protein
sequence variations from various public resources, with a
focus on cancer-related variations.45 We have also developed a
bioinformatics workflow to address several critical challenges in
using such databases for identifying variant peptides from
shotgun proteomics data, including FDR estimation, efficient
storage of variation information, compatibility with different
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search engines, and result interpretation.46 Applying CanPro-
Var and this workflow to proteomics data sets of human cancer
cell lines and tumor samples identified hundreds of variant
peptides. More importantly, genomic sequencing confirmed
around 90% of the variant peptides randomly selected from the
identified ones.
With the aid of the Next Generation Sequencing (NGS)

technologies, large amounts of new SNPs and mutations are
continually being identified, and the above-mentioned methods
are both blessed and cursed. Significantly expanded databases
inevitably lead to higher requirements on data storage, longer
search time, and higher risk in false identifications. One
particularly promising approach is to derive personalized
databases for individual samples based on matching DNA or
RNA sequencing data.
In an integrative personal omics profiling (iPOP) study,

expanding a protein database with variations identified from
DNA and RNA sequencing data allowed the identification of
variant peptides resulted from single nucleotide variants
(SNVs) and RNA edits.48 Using RNA-Seq and shotgun
proteomics data from two colorectal cancer cell lines, we
showed that customized protein sequence databases derived
from RNA-Seq data can enable the detection of known and
novel peptide variants.49 In an integrated genomics and
proteomics analysis of rat liver, variants derived from genome
and transcriptome variation were appended to the ENSEMBL
rat database, allowing the detection of variant peptides in the
proteomic data.50 Evan et al. used RNA-Seq reads generated
from adenovirus-infected human HeLa cells for the de novo
assembly of the entire (host and virus) transcriptome and then
built a protein database by six-frame translation of the predicted
transcripts for proteomics search.51 The proteomics informed
by transcriptomics (PIT) technique identified more than 99%
of the proteins identified using a traditional protein database
with annotated human and adenovirus proteins. These studies
demonstrate the great potential of integrative proteogenomic
studies for an accurate and comprehensive characterizing of
individual proteome.

3. IMPROVING PROTEIN IDENTIFICATION

Inferring proteins from identified peptides is a critical step in
shotgun proteomics. Methods have been developed to enhance
protein inference by integrating mRNA expression or protein−
protein interaction data.

3.1. mRNA Expression

Most protein assembly tools assume that all proteins are equally
likely to be present in a sample, even though this assumption is
oversimplistic. Ramakrishnan et al. incorporated mRNA
abundance estimated from microarray gene expression profiling
as prior knowledge of protein presence to improve protein
identification in shotgun proteomics experiments.52 Their
approach, MSpresso, calculates a protein identification
probability by combing direct measure of protein presence
from proteomics data and the inferential evidence from
microarray data. In their study, the method improves protein
identification by ∼40% at a fixed error rate. This work clearly
demonstrated the value of incorporating mRNA expression
data as prior knowledge in protein identification.
An underlying assumption of the MSpresso approach is a

good correlation between mRNA and protein abundance.
However, recent studies have shown that mRNA and protein
abundance are only moderately correlated. On the basis of a

more realistic assumption that mRNA expression is a
prerequisite for protein expression, we proposed an alternative
method by refining proteomics search space based on RNA-Seq
data from the same sample. Specifically, a transcript abundance
cutoff is set to remove unexpressed transcripts or lowly
expressed transcripts that are unlikely to be detected at the
protein level. Using RNA-Seq and shotgun proteomics data
from two colorectal cancer cell lines, we showed that this
approach not only increases the number of identified protein
groups but also the number of identifiable spectra,49 and the
latter can help enhance spectral counting-based protein
quantification.

3.2. Protein−Protein Interaction

Most biological functions arise from interactions among
proteins; however, traditional protein assembly pipelines treat
proteins as independent entities. To ensure the reliability of
protein identification, these pipelines usually eliminate a large
number of possible but nonconfident proteins, including many
low-abundant proteins that may be vital for the understanding
of biological systems. On the basis of the observation that
proteins involved in the same biological process or pathway
tend to lie close to one another in the protein−protein
interaction network,53 several methods have been developed to
improve protein identification by incorporating protein−
protein interaction network data. These methods can be
broadly classified into three categories: module-based approach,
direct neighborhood approach, and diffusion-based approach.
A representative implementation of the module-based

approach is the clique-enrichment approach (CEA) developed
by our group.54 After protein assembly, all identified proteins
are grouped into confident proteins and nonconfident proteins
and mapped to a protein−protein interaction network.
Network modules defined as fully connected subnetworks (or
cliques) are enumerated from the network and evaluated for
the enrichment of confident proteins. Nonconfident proteins
that coexist in a network module enriched with confident
proteins are rescued. In several data sets tested, CEA increased
protein identification by 8−23% with an estimated accuracy of
85%.54 Although clique enumeration is used in CEA for the
identification of network modules, other network clustering
algorithms can be similarly used in the module-based approach.
The direct neighborhood approach considers all direct

neighbors of a protein as the neighborhood of the protein.
One representative implementation is Software for Network
Inference of Proteomics Experiments (SNIPE).55 In this
method, spectral counts for all proteins are mapped to their
nodes in a network. An updated score for each protein is re-
estimated by adding up the scores of the protein and all its
immediate neighbors. Permutation is then applied to assess the
statistical significance of the updated scores for all proteins.
Applying SNIPE to a tooth development data set correctly
highlights several proteins that are not normally detected by
shotgun proteomics analysis of complex protein samples from
whole tissues.55

The diffusion-based approach takes into consideration the
global network topological structure. This approach is closely
related to Google’s PageRank algorithm. One representative
implementation is MSNet.56 The MSNet score for a protein is
the convex combination of two terms: the probability that the
protein is present in the sample given evidence from a MS
experiment, and the weighted average of MSNet scores of the
protein’s immediate network neighbors. This is very similar to
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SNIPE, but in MSNet, the scores are updated iteratively so that
evidence from indirect neighbors can be included. Applying
MSNet to yeast and human samples increased protein
identification by 8−29% and 37%, respectively.56

Previously, we compared the performance of these three
approaches through cross-validation using a yeast cell culture
data set.54 Our results suggest that the module-based approach
is more effective and more robust. As a large number of
proteomics data sets are available now, it is worth re-evaluating
these methods using multiple data sets. All network-based
approaches depend on the network coverage and quality. To
increase coverage, one may consider functional association
networks instead of protein−protein interaction networks, so
that different types of functional relationships can be included
in the network. These approaches may also be improved by
using condition-specific networks, such as the tissue-specific
protein−protein interaction networks. Moreover, in the
module-based approach, functional modules can be more
broadly defined by Gene Ontology, pathways in different
databases, and known protein complexes, etc. A recent study by
Goh et al. showed that these functional modules can also be
used to improve protein identification in proteomics studies.57

These network and pathway-based approaches not only
improve protein identification but also put identified proteins
into their functional context.54 In comparative studies, this
approach enables comparisons at the network level instead of
individual protein level, allowing a systems level understanding
of the difference between the samples.

4. CONCLUSION AND PERSPECTIVES
A major goal in proteomics is to comprehensively identify all
proteins in biological and clinical samples. Following the
information flow from DNA to RNA to protein and functional
networks, genomic, transcriptomic, and interactome data can be
applied to improve peptide and protein identification in
shotgun proteomics (Figure 2).

Despite substantial improvements in MS/MS data analysis,
there remains a large number of unassigned spectra in a typical
proteomics study, indicating a large unknown proteome
territory.58 This unknown territory can be partly explained by
unknown protein coding genes and different types of variations
of known protein coding genes. Earlier efforts focus primarily
on making databases more comprehensive using publicly
available genomic and transcriptomic data. More recently,

personalized protein databases derived from sample-specific
genomic and transcriptomic data have emerged as an attractive
approach.
Figure 3 summarizes major computational approaches to

increasing database completeness using publicly available
genomic and transcriptomics data. Combining six-frame
translation and exon−exon junction predictions can theoret-
ically enumerate all coding potentials of the genome. Further
integrating sequence variation data from databases such as
dbSNP and COSMIC allows the identification of variant
peptides and proteins. Transcriptomics data from EST or RNA-
Seq can be used to refine exon−exon junction predictions and
filter for sequence variations with transcriptional evidence.
Although these approaches can largely increase the complete-
ness of protein databases, significantly expanded search space
may introduce enormous background noise, reducing specific-
ity, and sensitivity in peptide identification. In a recent study on
ENCODE cell lines,8 shotgun proteomics data from two
human cell lines K562 and GM12878 were searched against the
GENCODE v7 protein database, the GENCODE v7 transcript-
derived protein database, and the six-frame translation of the
whole human genome. The GENCODE v7 protein search
identified the largest number of peptides, despite of the smallest
database size. In contrast, the whole genome search identified
the smallest number of peptides. It is worth noting that each
search identified a significant number of peptides that were
missed by the other two searches, indicating different database
constructing strategies are complementary and could be used in
a joint way.8

With the recent advancements in DNA and RNA-sequencing
technologies, deriving personalized protein databases from
sample-specific genomic and transcriptomic data becomes a
very attractive strategy. RNA-Seq is of particular interest
because of its affordable cost and high information content,
including information on novel transcribed regions, novel
alternative splicing events, sequence variations resulted from
genomic alteration and RNA editing events, and transcript
presence and abundance. A sample-specific database taking into
consideration all above information can better approximate the
real protein pool in the sample and thus improves peptide and
protein identification, and tools facilitating such integration,
such as customProDB,59 have emerged.
Although the review focuses on using orthogonal data to

improve shotgun proteomics studies, these integrative
approaches are mutually beneficial. For example, proteomics
can help refine genome annotations10,60 and confirm novel
alternative splicing events predicted based on RNA-Seq data.
Comprehensive identification of all proteins in biological
samples can facilitate the reconstruction of sample-specific
interactomes. The ability to identify sample-specific protein
forms is critical for the emerging field of personalized
proteomics, which could complement personalized genomics
and lead to novel protein biomarkers and therapeutic targets.
More importantly, comprehensive integration of information at
DNA, RNA, protein, and network levels, including post-
translational modification information that is not discussed in
this review, will eventually lead to better understanding of
cellular systems, comprehensive catalogue of disease-associated
molecular alterations, and novel approaches to correct these
alterations. A key to success is the continuous development of
computational algorithms and tools that can help translate the
large amount of multidimensional data into new knowledge
that will eventually improve human health.

Figure 2. Orthogonal data assisted proteomics studies.
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