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Purpose: To develop an objective glaucoma damage severity classification system based on OCT-derived
retinal nerve fiber layer (RNFL) thickness measurements.

Design: Algorithm development for RNFL damage severity classification based on multicenter OCT data.
Subjects and Participants: A total of 6561 circumpapillary RNFL profiles from 2269 eyes of 1171 subjects to

develop models, and 2505 RNFL profiles from 1099 eyes of 900 subjects to validate models.
Methods: We developed an unsupervised k-means model to identify clusters of eyes with similar RNFL

thickness profiles. We annotated the clusters based on their respective global RNFL thickness. We computed the
optimal global RNFL thickness thresholds that discriminated different severity levels based on Bayes’ minimum
error principle. We validated the proposed pipeline based on an independent validation dataset with 2505 RNFL
profiles from 1099 eyes of 900 subjects.

Main Outcome Measures: Accuracy, area under the receiver operating characteristic curve, and confusion
matrix.

Results: The k-means clustering discovered 4 clusters with 1382, 1613, 1727, and 1839 samples with mean
(standard deviation) global RNFL thickness of 58.3 (8.9) mm, 78.9 (6.7) mm, 87.7 (8.2) mm, and 101.5 (7.9) mm. The
Bayes’ minimum error classifier identified optimal global RNFL values of > 95 mm, 86 to 95 mm, 70 to 85 mm; and
< 70 mm for discriminating normal eyes and eyes at the early, moderate, and advanced stages of RNFL thickness
loss, respectively. About 4% of normal eyes and 98% of eyes with advanced RNFL loss had either global, or � 1
quadrant, RNFL thickness outside of normal limits provided by the OCT instrument.

Conclusions: Unsupervised machine learning discovered that the optimal RNFL thresholds for separating
normal eyes and eyes with early, moderate, and advanced RNFL loss were 95 mm, 85 mm, and 70 mm, respec-
tively. This RNFL loss classification system is unbiased as there was no preassumption or human expert inter-
vention in the development process. Additionally, it is objective, easy to use, and consistent, which may augment
glaucoma research and day-to-day clinical practice.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100389 ª 2023 by the American Academy of
Ophthalmology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Glaucoma is a heterogeneous group of disorders that rep-
resents the second leading cause of blindness overall,
affecting up to 91 million individuals worldwide.1,2 As an
optic neuropathy, glaucoma is characterized by distinct
structural and functional changes that ultimately may
impact patients’ vision-related quality of life.3

Accumulating evidence suggests that detectable
glaucomatous axonal loss as measured by OCT precedes
detectable visual field (VF) impairment.4,5 As OCT can
quickly provide objective, 3-dimensional, depth-encoded
information from the retina and optic disc, it has recently
become one of the most frequently used tools in clinical
practice to assess glaucoma and monitor its progression.

Accurate staging of the severity of glaucoma-induced
damage is an important component of guiding glaucoma
ª 2023 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
management. It can provide prognostic information for
therapy adjustment based on the type and extent of damage.
It can also enhance both the monitoring of progression and
evaluation of the treatment efficacy, thereby improving
prognosis plans and maintaining vision-related quality of the
life for patients.6 It could essentially establish a common
ground for glaucoma research and clinical practice.6

Currently available OCT instruments provide some
quantitative data and visualizations for determining if a
given measurement is outside the range of normal retinal
nerve fiber layer (RNFL) thickness measurements. Howev-
er, OCT instruments do not currently provide a severity
scale for RNFL loss. Thus, staging the severity of structural
damage based on OCT has remained largely subjective with
poor agreement among experts.7,8 It is our aim to a develop
1https://doi.org/10.1016/j.xops.2023.100389
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an improved staging system based on unsupervised and
supervised machine learning models applied to
OCT-derived RNFL thickness measurements, that will be
unbiased, objective, consistent, reproducible, clinician-
friendly, and most importantly, easy to use.6 Unlike many
machine learning models that require expert-annotated
datasets, our models require no labeled data and include
no human expert intervention, thus generating unbiased and
objective outcomes.

Numerous approaches have been proposed for glaucoma
damage staging and disease characterization based on VF
tests only.9e17 In contrast, methods for staging glaucoma
damage based on OCT are rare.18,19An OCT-based glau-
coma staging system was proposed by Brusini18 in which
superior and inferior quadrant average RNFL thickness
measurements were used to stage glaucoma.18 Brusini also
suggested another model for staging glaucoma based on
RNFL profiles derived from scanning laser polarimeter
(GDx) instrument.19 However, this model was not
extended to OCT-derived RNFL profiles.

Machine learning models of artificial intelligence sys-
tems have shown great promise for addressing different
challenges in glaucoma, although most of these models have
been applied to glaucoma diagnosis or progression
detection.20e29 In this paper, we propose unsupervised and
supervised machine learning models to stage structural
RNFL loss. Our system may be used to gain some insights
to glaucoma when it is interpreted along with other potential
ocular comorbidities that may impact RNFL.

Methods

Subjects and Data

Discovery Dataset. The discovery dataset included 6561 reliable
OCT circle scans from 2269 eyes of 1171 patients (who visited our
glaucoma clinic) collected from the Spectralis instrument (Hei-
delberg Engineering). We excluded OCT profiles of visits that
were collected less than a year apart from the previous visit. This
dataset was used to develop the RNFL damage severity classifi-
cation system.

Independent Validation Dataset. The validation dataset
included 2505 reliable OCT circle scan profiles collected from 3
different institutes. A total of 691 OCT profiles from 691 eyes of
691 subjects who visited Mass Eye and Ear glaucoma service, 154
OCT profiles from 154 eyes of 82 normal subjects who participated
in the Advanced Glaucoma Intervention Study at the University of
California, Los Angeles, and 1660 OCT profiles from 254 eyes of
127 glaucoma patients who visited the Rotterdam Eye Hospital in
the Netherlands, were collected. Details of the subjects’ charac-
teristics are presented in Table 1.

We received institutional review board approval to perform this
secondary data analysis study and were compliant with the tenets
of the Declaration of Helsinki. This was primarily a secondary de-
identified data analysis and thus was exempt from obtaining con-
sent. However, for one small subset of data from the University of
California, Los Angeles center, consent had been previously ob-
tained from the patients.

Overview of the Pipeline

Figure 1 shows the diagram of the RNFL damage severity
classification system. We first developed an unsupervised
2

clustering approach based on k-means to find clusters with similar
OCT profiles by inputting 64 averaged sectors, 6 general sectors,
and 1 global RNFL parameter. We then investigated the optimal
number of clusters objectively. To assure whether the clustering
step was stable, and whether the clusters were reproducible, we
repeated the clustering several times, each time randomly selecting
a subset of OCT profiles (without replacement) and assessing
cluster memberships. We then performed post hoc analyses to
label statistical clusters and generate clinical clusters based on
means of global RNFL thickness values of each cluster. We then
computed the optimal global RNFL thresholds that separated the
clusters with the highest accuracy (i.e., minimum error classifier
based on Bayes theorem which is equivalent to highest area under
the receiver operating characteristic curve) and generated the new
clusters (we called them clinical clusters). We further verified the
reproducibility of the global RNFL thresholds based on an
independent validation dataset. We then established an objective
RNFL damage severity classification system based on the
ascertained clinical clusters and identified global RNFL thresholds.
As OCT data for developing this pipeline were primarily collected
from glaucoma clinics, this model may be used to stage RNFL
loss in patients with glaucoma, provided considering the impact of
other comorbidities such as myopia or macular edema on RNFL
thickness.

Preprocessing

We excluded all OCT profiles in which the signal strength was < 15
based on the vendor recommendation. OCT segmentation was
manually evaluated at each contributing center to exclude scans with
segmentation error. To generate 64 RNFL sectors, we averaged the
segmented RNFL of every 12 A-scans as the initial profile of circle
scans is composed of 768 A-scans (Fig 1; a ring with 64 local sectors
around the optic disc). Averaging segmented A-scans (provided by
the Spectralis Software) reduces the effect of variation due to
possible imaging misalignment or previous anatomic differences in
different eyes.28 The input to the unsupervised model included 64
RNFL sectors along with 7 instrument-generated general sectoral
and global RNFL thickness measurements.

Unsupervised Machine Learning

We developed a k-means unsupervised clustering30 to partition eyes
to k clusters by dividing data in the 71-dimensional space into dis-
joint groups by employing an objective function that minimizes
the distances within RNFL profiles in each group while maximizing
the distance among clusters.31 We then used the Silhouette metric to
objectively identify the optimal number of clusters.32

To verify that our datasets were representative, we included eyes
across the glaucoma continuum, particularly eyes from both ends of
the glaucoma spectrum in terms of RNFL loss, to assure an unbiased
and reproducible analysis. We visualized the RNFL loss distribution
in both discovery and validation datasets in terms of global RNFL
thickness to assure input-data representativeness (Fig 2).

We further assessed the stability of clustering to assure that
clusters were reproducible. We therefore selected subsets of RNFL
in the discovery dataset randomly and repeated k-means clustering
several times and computed the membership accuracy. We then
computed the overall percentage agreement (membership accu-
racy) as the percentage of the eyes that were consistently assigned
to same cluster.

We performed a post hoc analysis to annotate and assign
clinical labels to the statistical clusters. We computed the global
RNFL thickness values of the eyes in each cluster to identify levels
of RNFL loss. We then labeled the clusters as normal (cluster with
highest mean global RNFL thickness), early, moderate, and



Table 1. Characteristics of Global and Sectoral RNFL Thickness Values of Eyes Used in this Study (SD).

Parameters Discovery Dataset Validation Dataset

Number of OCT visits 6561 2505
Number of subjects 1171 900
Number of eyes 2268 1099
Number of visits, mean (SD) 1.9 (� 1.95) 1.3 (� 2.7)
Length of follow-up visits (yrs), mean (SD) 2.2 (� 1.9) 1.2 (� 2.4)
Global RNFL thickness (mm), mean (SD) 83.2 (� 17.2) 74.9 (� 20.1)
Age (yrs), mean (SD) 64.5 (� 13.2) 63.0 (� 12.3)

RNFL ¼ retinal nerve fiber layer; SD ¼ standard deviation.
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advanced (cluster with lowest mean global RNFL thickness) stages
of RNFL loss based on their global RNFL thickness values. It is
worth mentioning that in the absence of RNFL-impacting comor-
bidities such as myopia or macular edema, this model can stage
glaucoma severity based on the RNFL thickness.
Glaucoma Damage Severity Classification
System Based on RNFL Thickness Profiles

Our unsupervised machine learning model can be used as an RNFL
(and glaucoma) damage severity staging system; however, a major
weakness is its dependency on a machine learning system, which in
turn is considered not user-friendly by clinicians, and thus unlikely
to receive significant acceptance and widespread clinical utility,
especially in a very busy medical setting.

We therefore developed another supervised machine learning
model to identify global RNFL thickness thresholds that discrim-
inate statistical clusters (different RNFL/glaucoma severity levels)
with highest accuracy. We employed Bayes’ minimum error
classifier to identify optimal global RNFL thresholds that
discriminated statistical clusters with minimum error.33 We then
identified the new “clinical clusters” based on the determined
global RNFL thresholds. We also adjusted the identified
thresholds based on the mean of global RNFL thinning due to
normal aging to make this model applicable for glaucoma
staging as well. More specifically, we used the statistics from the
normative database of the Spectralis instrument. The mean age of
subjects in the Spectralis normative database was 48.2 years and
the mean rate of global RNFL thinning due to aging was �0.075
mm/year. The new thresholds were subsequently calculated as the
old thresholds minus the difference of the mean cluster age and
normative database age multiplied by the rate.
Figure 1. Diagram of the pipeline. Circumpapillary retinal nerve fiber layer (R
sectors. All 64 RNFL sectors along with general sectoral and global measuremen
clusters. Clinical labels were assigned to clusters based on mean global RNFL th
identify optimal RNFL thresholds for the RNFL damage severity classification sy
that correspond to normal eyes and eyes at the early, moderate, and advanced
There was no expert intervention in determining clusters,
identifying the optimal number of clusters, recognizing global
RNFL thresholds with highest accuracy, or establishing clinical
clusters. Using global RNFL thresholds provides a simple and
easy-to-use glaucoma damage severity classification system that
maximizes its clinical utility. We also compared the identified
global RNFL thresholds of the proposed stating system against
previously developed RNFL-based classification systems.

Validation of the Pipeline

We merged 3 independent datasets from the Rotterdam Eye Hos-
pital, the University of California, Los Angeles, and Mass Eye and
Ear to generate a dataset that is as representative as possible of a
general clinical population. The independent dataset included 2505
RNFL profiles and was used to validate findings. We first inves-
tigated whether we could discover (reproduce) statistical clusters
with similar properties we identified based on the discovery data-
set. We thus applied the k-means clustering (using same parame-
ters) on the validation dataset and identified statistical clusters. We
then evaluated the optimal number of clusters using the Silhouette
metric, as was used for the discovery dataset. We then labeled
clusters based on the mean of global RNFL of OCT profiles in
clusters and compared corresponding clusters based on the dis-
covery and validation datasets. We then identified the RNFL
thresholds that discriminate clinical clusters based on the validation
dataset and compared them against RNFL thresholds that we had
previously identified based on the discovery dataset.

We used generalized estimating equations (GEEs)34 to compare
different characteristics of subjects, such as age, in the discovery and
validation datasets. We also used GEEs to compare corresponding
clusters that were identified based on the discovery and
NFL) thickness in profiles with 768 A-scans were averaged to generate 64
ts were input to the unsupervised clustering algorithm to identify statistical
ickness of eyes in each cluster. Bayes’ minimum error classifier was used to
stem. The 4 identified clusters are presented in blue, green, orange, and red
stages of RNFL loss, respectively.
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Figure 2. Distribution of global retinal nerve fiber layer (RNFL) thickness
measurement in the discovery dataset (black curve; top) and the inde-
pendent validation dataset (gray curve; bottom).
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independent datasets, as we had included both eyes of some of the
subjects in datasets. Machine learning and statistical analyses were
performed in Python 3.8 and R (version 4.0.3) platforms.
Figure 3. Scatter plot of the statistical clusters. Principal component
analysis (PCA) was applied on retinal nerve fiber layer profiles to reduce
the dimensionality from 64 dimensions to 2 dimensions for visualization.
The eyes in the statistical clusters are grouped together in the PCA space.
Colors blue, green, orange, and red correspond to normal eyes and eyes at
the early, moderate, and advanced stages of glaucoma, respectively.
Results

The demographic characteristics of the subjects are pre-
sented in Table 1. Briefly, the discovery dataset included
6561 OCT profiles from 2268 eyes of 1171 subjects with
a mean (standard deviation [SD]) age of 64.5 (13.2) years
and a mean global RNFL thickness of 83.2 (17.2) mm.
The independent validation dataset included 2505 OCT
profiles from 1099 eyes of 900 subjects with a mean age
of 63.0 (12.3) years and a mean global RNFL thickness of
74.9 (20.1) mm. Figure 2 shows the global RNFL
thickness distributions of eyes in the discovery and
validation datasets. Eyes in the discovery dataset had
greater global RNFL thickness compared with eyes in the
validation dataset (P < 0.01; GEE model). The difference
between the mean age of subjects in the discovery and
validation datasets was only w1.5 years, but it was
statistically significant (P < 0.01; GEE model).

Statistical Clusters Based on the Discovery
Dataset

Based on the discovery dataset, Silhouette suggested that the
optimal number of statistical clusters was 4. However, we
performed clustering based on 3 clusters because the knee-
plot suggested 3 or 4 clusters (confusing knee-plot curves).
Figure 3 shows the scatter plot of the first and second
principal components of the RNFL thickness values in 4
statistical clusters. On average, > 98.0% of the eyes were
assigned to the same cluster based on repeated k-means
clustering applied 5 times, with each time randomly
selecting different subsets of the discovery dataset without
replacement (Table 2). Thus, we were able to confirm that
the clusters were stable and reproducible.

We annotated statistical clusters by assigning normal,
early, moderate, and advanced labels to clusters based on
their respective global RNFL thickness values. The mean
(SD) global RNFL thickness in normal, early, moderate, and
4

advanced clusters was 101.5 (7.9) mm, 87.8 (8.2) mm, 78.9
(6.7) mm, and 58.3 (8.9) mm, respectively. The number of
OCT profiles in these 4 statistical clusters was 1839, 1727,
1613, and 1382, respectively.

Based on the statistical clusters, the proportion of eyes
with global RNFL thickness, or � 1 out of 6 general sectoral
regions, being outside the normal limit (ONL) in the normal,
early, moderate, and advanced clusters was 4% (83 OCT
profiles), 17% (293 OCT profiles), 58% (940 OCT profiles),
and 98% (1357 OCT profiles), respectively.
Clinical Clusters and RNFL Damage Severity
Classification System Based on the Discovery
Dataset

The mean age (SD) of the subjects in normal, early, mod-
erate, and advanced clusters was 58.3 (15.0), 63.8 (12.0),
67.4 (11.4), and 68.7 (11.3) years, respectively. The Bayes’
minimum error classifier identified global RNFL thickness
of 95 mm, 85 mm, and 70 mm as optimal thresholds for
discriminating normal, early, moderate, and advanced stages
of glaucoma (Fig 4). The adjusted thresholds due to normal
aging were 96 mm, 86.5 mm, and 71.5 mm; these were
optimal thresholds for discriminating normal, early,
moderate, and advanced stages of RNFL loss (or
glaucoma). The number of OCT profiles in 4 clinical
clusters (based on the identified RNFL thresholds) was
1715, 1453, 1910, and 1483, respectively.

Based on the established global RNFL thresholds, the
proportion of eyes with global RNFL thickness, or � 1 out



Table 2. Membership Accuracy of the Clustering Based on
10-times Repeating k-Means on Randomly Selected (without

Replacement) Subsets of the Discovery Dataset

Percentage of Discovery
Dataset (%) Mean Range

90 0.994 [0.976e0.999]
80 0.992 [0.978e0.996]
70 0.990 [0.983e0.995]
60 0.982 [0.959e0.995]
40 0.962 [0.884e0.991]
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of 6 general sectoral regions, being ONL was about 3% (48
OCT profiles), 13% (187 OCT profiles), 51% (981 OCT
profiles), and 98% (1457 OCT profiles), respectively.

Validating Findings Based on the Validation
Dataset

The mean age (SD) of the subjects in normal, early, mod-
erate, and advanced clusters was 55.9 (13.3), 59.2 (12.4),
65.0 (11.6), and 66.0 (10.6) years, respectively. Based on
the validation dataset with 2505 OCT profiles, we observed
4 clusters that were optimum according to the Silhouette and
knee-plot. We then annotated the statistical clusters by
assigning normal, early, moderate, and advanced labels to
clusters based on their respective global RNFL thickness
values. The mean (SD) global RNFL thickness of eyes in
normal, early, moderate, and advanced clinical clusters was
103.8 (9.2) mm, 86.6 (6.6) mm, 80.7 (7.9) mm, and 56.2 (9.4)
mm, respectively. The number of OCT profiles in normal,
early, moderate, and advanced clusters was 422, 474, 502,
and 1107, respectively. The Bayes’ minimum error classifier
identified global RNFL thickness values of 93 mm, 87 mm,
and 70 mm as optimal thresholds for discriminating normal,
early, moderate, and advanced stages of glaucoma.
Figure 4. Global retinal nerve fiber layer (RNFL) thickness profiles in 4 statist
(dashed lines) were identified based on the Bayes’ minimum error classifier. C
normal eyes and eyes at the early, moderate, and advanced stages of glaucoma,
In comparison to initial statistical clusters, the mean ac-
curacy of clinical clusters to discriminate normal eyes and
eyes at the early, moderate, and advanced stages of struc-
tural RNFL loss, based solely on global RNFL thickness
measurement, was approximately 78%. Figure 5 shows the
confusion matrix of the classification system (clinical
clusters) based on the identified global RNFL thresholds.

The adjusted thresholds due to normal aging were 94 mm,
88.5 mm, and 71.5 mm as optimal thresholds for discrimi-
nating normal, early, moderate, and advanced stages of
glaucoma. The identified mean global RNFL thickness
values in the statistical clusters and the identified global
RNFL threshold values based on the validation dataset were
supportive of the identified factors from the discovery
dataset.
Discussion

We developed unsupervised and supervised machine
learning models to identify the level of structural severity
based on OCT data without human expert intervention. The
unsupervised k-means model discovered 4 clusters with
similar OCT profiles that were labeled to normal, early,
moderate, and advanced stages based on their respective
mean global RNFL thickness values. Rather than proposing
a glaucoma damage severity staging system based on the
initial k-means clustering (which is complex and thus un-
likely to be used by clinicians), we identified clinical clus-
ters corresponding to normal eyes and eyes at early,
moderate, and advanced stages of structural loss based on
global RNFL thickness values. Specifically, we developed a
supervised Bayes’ minimum error classifier to identify
global RNFL thresholds that could discriminate clusters
with highest accuracy (minimum error). We found that
global RNFL thickness values of 95 mm, 85 mm, and 70 mm
were optimal thresholds for discriminating normal, early,
ical clusters based on the discovery dataset. The optimal RNFL thresholds
olors blue, green, orange, and red correspond to the RNFL distribution of
respectively.
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Figure 5. Confusion matrix of the proposed glaucoma damage severity staging system based on global retinal nerve fiber layer thresholds compared with the
initial statistical clusters that were derived by unsupervised machine learning model only.
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moderate, and advanced stages of RNFL loss without
considering the impact of age. The age-adjusted thresholds
based on insights from the Spectralis normative database
deviated only 1 to 1.5 mm from these thresholds. As the
mean age of subjects in Spectralis database was 48.8 years,
the mean RNFL of new subjects would need to be age-
adjusted then compared against our severity staging sys-
tem. It is worth mentioning that all development steps were
unbiased as there was no expert intervention in identifying
RNFL thresholds.

The first step of our algorithm included an unsupervised
clustering based on k-means. As there is no definite metric
to evaluate whether the outcome of the unsupervised clus-
tering model is stable or not, we repeated the clustering
algorithm several times, each time randomly selecting a
subset of samples and recording the class memberships
(Table 2). We observed a high level of membership
accuracy (> 96% in all evaluations) based on 5 subsets of
datasets and 10 repeats of the clustering algorithm for
each subset. We then assessed whether the number of
clusters was optimum based on Silhouette metric and
knee-plot visualization.32 The Silhouette metric and knee-
plot suggested that the optimal number of clusters was 4.
We thus performed clustering based on 4 clusters corre-
sponding to 4 severity levels.

There are several glaucoma staging systems based on
VFs that have been derived based on fully or partially
subjective criteria with expert knowledge
integration.9,11,13e16,35,36 For instance, the widely used
Hodapp-Parrish-Anderson VF staging system suggests
several mean deviation thresholds, along with assessment
of several VF test points including those within the central
5 degrees to discriminate early, moderate, and advanced
stages of glaucoma.9 The basis for these proposed
thresholds, however, is mostly subjective. Additionally, it
is highly challenging to calculate test point computations
in the day-to-day clinical setting. We, however, employed
unbiased, unsupervised machine learning along with
objective supervised Bayes statistical analysis to identify
global RNFL thresholds that determine the severity levels of
structural loss. We identified that the global RNFL thickness
threshold for discriminating normal eyes is about 95 mm; the
global RNFL thickness threshold for discriminating early
and moderate stages of RNFL loss is approximately 85 mm;
and the global RNFL thickness threshold for identifying
advanced stages of RNFL loss is about 70 mm: A previous
study on the ability of OCT to discriminate different stages
6

of glaucoma found that global RNFL thickness thresholds of
72.5 mm and 97.5 mm discriminated early, moderate and
advanced stages of glaucoma (3 stages).37 As OCT data for
developing our model were primarily collected from
glaucoma clinics, this model may be used to stage the
severity level of RNFL loss in patients with glaucoma,
however, physicians would need to be aware of other,
potentially RNFL-impacting comorbidities, such as
myopia and macular edema, when interpreting findings.
Although our model could discriminate 4 stages of glau-
coma severity, our proposed threshold for discriminating
normal and early stage of glaucoma (95 mm) is close to the
threshold suggested in this previous study.

Medeiros et al38 proposed a combined structure-function
index to detect glaucoma and to stage glaucoma according
to 3 levels of normal, preperimetric, and perimetric glau-
coma. This index is derived based on complex equations to
calculate VF-derived and OCT-derived estimates of the total
number of retinal ganglion cells by analyzing multiple pa-
rameters including age, mean deviation, global RNFL
thickness, and VF sensitivity expressed in decibels (dB) at
different eccentricities. The area under the receiver oper-
ating characteristic curve for discriminating early from
moderate glaucoma, and moderate from advanced glau-
coma, were 0.94 and 0.96, respectively. We, in contrast,
propose 3 global RNFL thresholds to distinguish 4 different
stages of glaucoma. Moreover, rather than offering a com-
plex model that uses several parameters that make the sys-
tem complex, we propose only a widely used and available
index of global RNFL thickness value to stage glaucoma.

Brusini proposed a glaucoma staging system based on the
average RNFL thickness in the superior and inferior quad-
rants to stage glaucoma into 6 severity levels.18 The reported
sensitivity and specificity for discriminating normal eyes
from eyes with glaucoma were 95.2% and 91.9%,
respectively. Although the Nidek RS-3000 normative data-
set has been used to delineate the curvilinear lines to
discriminate normal from borderline and borderline from
abnormal, the rest of the curvilinear lines are specified by
arbitrary assumptions, based on clinical assessment of the
optic disc, using the Optic Disc Damage Staging System39

that was previously developed by the author, and additional
data from both Glaucoma Detection with Variable Corneal
Compensation (GDx VCC) and Heidelberg Retina
Tomograph. This OCT Glaucoma Staging System includes
6 nonlinear equations, each with 3 parameters.
Unfortunately, the complexity of this model decreases the
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likelihood it would be readily incorporated into clinical use.
However, the author has developed a software that requires
inputting RNFL thickness values for the superior and
inferior quadrant. The issue then becomes downloading and
using a third-party software for staging glaucoma.

Although the staging systems proposed by Medeiros,
Brusini el al, Mills et al, and others14e16,36 used a few
hundred eyes to develop and test models, we used large
datasets with > 7000 OCT profiles to develop and
validate models independently. Unlike previously
developed OCT-based staging systems, ours uses global
RNFL thickness as the sole parameter. We have several
reasons for using a single parameter. First, we intend to
provide an easy-to-use approach that is ultimately suited for
use in day-to-day clinical practice and glaucoma research.
Second, global RNFL is a widely used parameter that is
readily available, in contrast to fine sectoral/voxel analysis,
local RNFL thickness assessments, and additional criteria
based on parameters that are not necessarily readily avail-
able. Third, it is not labor intensive, and thus makes staging
simple for clinical use.

Our data suggest that sole, unsupervised k-means clus-
tering can be used to create a glaucoma damage severity
staging system. Why did we bother to develop a second
machine learning model based on Bayes theorem to identify
global RNFL thickness thresholds alone? The answer is that
although a glaucoma staging system based on the unsu-
pervised k-means clustering mode may be more accurate, it
would utilize a complex mapping model applied to 71
RNFL parameters, an operation unlikely to be routinely
utilized in a clinical setting. However, our simplified glau-
coma damage severity staging system is based on global
RNFL thickness measurements that are readily available to
clinicians as well as researchers and easy to work with.
Based on initial k-means clustering, we observed that the
proportion of normal eyes with global RNFL thickness or �
1 general sectoral region being ONL was 4%, although this
proportion dropped to 3% for the staging system based on
global RNFL thickness thresholds. Moreover, based on both
the initial k-means clustering and the proposed staging
system based on global RNFL thresholds, 98% of the eyes
in the advanced stages of glaucoma had global or � 1
general sectoral region ONL. We are simply complying with
the Occam’s razor principle that suggests the superiority of a
simple compared with a complex model, if the accuracy is
not significantly compromised.40

Several studies, including ours, have proposed unsuper-
vised and supervised machine learning approaches for
detecting glaucoma progression based on OCT data or
identifying patterns of RNFL loss in patients with glau-
coma.28,41,42 In this study, however, we developed
unsupervised and supervised machine learning models to
stage glaucoma based on OCT. Although glaucoma
progression and staging are both important clinical
measurements, establishing glaucoma damage stage may be
particularly critical and valuable in determining treatment
options and even detecting progression. We used a large
discovery dataset to develop models and employed another
independent validation dataset to validate models. We
showed that the identified global RNFL thresholds based
on the validation datasets supported the identified global
RNFL thresholds based on the discovery dataset. The small
discrepancy between global RNFL threshold values derived
from the discovery and validation datasets may be
explained by the fact that the number of eyes at the
moderate to advanced stages of glaucoma were different in
the discovery and validation datasets (Fig 2). Moreover,
this discrepancy is somewhat universal to many studies and
not specific to our study as even the summary statistics of
the RNFL data in normative datasets of different
instruments could also be different.

Most glaucoma staging methods have limited clinical
utility for several major reasons. First, models may be
simple and easy to use but may also be somewhat subjec-
tive, not standardized, and poorly reproducible. Second,
models may be more accurate and quite standardized but
may also be too complicated and time-consuming to be
utilized day-to-day in a clinical setting.6 Third, models may
be developed based on a limited number of OCT samples.
We, however, proposed a glaucoma damage severity
classification system based on large numbers of OCT
samples that is simple, easy to use, clinician-friendly, and
quick, yet precise enough to be used in glaucoma research
and clinical practice. We ultimately suggest using both OCT
and VF17 staging systems to obtain a fuller portrayal of
glaucoma severity.

Our study does have several limitations as well. First,
both datasets were retrospective, thus providing limited in-
formation on true progression of eyes to higher severity
levels. Second, the datasets were collected from glaucoma
clinics with no information regarding possible comorbidities
such as cataract, myopia, maculae edema, or surgical his-
tory, which may impact findings. Third, OCT profiles were
collected from the Spectralis instrument only; thus, data
from other vendors would be desirable to verify findings.
Fourth, use of the global RNFL thickness parameter only for
RNFL damage severity classification in patients with glau-
coma may miss those with early stage localized RNFL loss.
Fifth, we were unable to collect VFs from corresponding
eyes to assess VF severity of eyes in different clusters.
Finally, our data may not be fully representative of the cases
encountered in some clinical practices, although the use of a
validation dataset from multiple centers minimizes this
issue. Future studies are desirable to further investigate and
address these limitations.

In conclusion, we developed a glaucoma damage severity
classification system based on unsupervised and supervised
machine learning models that is unbiased and objective. We
discovered 4 clusters of RNFL profiles, evaluated the
quality of learning based on several objective metrics, and
evaluated the reproducibility and optimal number of clus-
ters. We then employed supervised learning, based on
Bayes’ minimum error criteria, to identify optimal global
RNFL thresholds that define 4 severity levels of glaucoma.
Our structural damage severity classification system sug-
gested global RNFL thickness values of 95 mm, 85 mm, and
70 mm are optimal thresholds for discriminating normal,
early, moderate, and advanced stages of RNFL loss. The
proposed RNFL damage severity classification system is
simple, easy to use, clinician-friendly, and unbiased. It is
7
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based on a readily available OCT global parameter and uses
simple thresholds; thus, it may augment glaucoma research
8

and clinical practice to gain insight to glaucoma-induced
RNFL loss.
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