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Abstract

We have recently developed analysis methods (GREML) to estimate the genetic variance of a complex trait/disease and the
genetic correlation between two complex traits/diseases using genome-wide single nucleotide polymorphism (SNP) data in
unrelated individuals. Here we use analytical derivations and simulations to quantify the sampling variance of the estimate
of the proportion of phenotypic variance captured by all SNPs for quantitative traits and case-control studies. We also derive
the approximate sampling variance of the estimate of a genetic correlation in a bivariate analysis, when two complex traits
are either measured on the same or different individuals. We show that the sampling variance is inversely proportional to
the number of pairwise contrasts in the analysis and to the variance in SNP-derived genetic relationships. For bivariate
analysis, the sampling variance of the genetic correlation additionally depends on the harmonic mean of the proportion of
variance explained by the SNPs for the two traits and the genetic correlation between the traits, and depends on the
phenotypic correlation when the traits are measured on the same individuals. We provide an online tool for calculating the
power of detecting genetic (co)variation using genome-wide SNP data. The new theory and online tool will be helpful to
plan experimental designs to estimate the missing heritability that has not yet been fully revealed through genome-wide
association studies, and to estimate the genetic overlap between complex traits (diseases) in particular when the traits
(diseases) are not measured on the same samples.
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Introduction

Genome-wide association studies (GWAS) have been extremely

successfully in identifying genetic variants associated with complex

traits and diseases in humans [1]. In GWAS, hundreds of

thousands or millions of SNPs are tested one by one for statistical

evidence of association with a trait, and to avoid false positive

discoveries due to the very large number of statistical tests being

conducted, usually a very stringent p-value threshold, e.g. 561028,

is used to report a significant finding. Therefore, if there are many

genes each with a small effect affecting the trait, most of these

genetic variants will fail to pass the stringent threshold and remain

undetected. This is one of the explanations of the ‘missing

heritability’ question, that genetic variants identified from GWAS

so far explain a fraction of the heritability for complex traits [2].

We proposed a method, which is able to estimate the total amount

of variance explained by all SNPs together without testing the

SNPs individually for a quantitative trait [3], and subsequently

extended it to the estimation of missing heritability for binary

disease data from ascertained case-control studies [4]. The

analyses until recently only included common SNPs (e.g. minor

allele frequency .0.01). The estimate quantifies the overall

contribution from the additive effects of all SNPs, which is the

upper limit of the proportion of variance that is captured by the

additive effects of the set of SNPs used in the estimation, and is also

the lower limit of the narrow-sense heritability of the trait. We also

extended the method to estimate the genetic correlation between

two traits using SNP data [5,6]. In contrast to the traditional

(co)variance estimation methods that rely on pedigree information

(family/twin studies), our method uses unrelated samples from a

general population and the genetic (co)variance is estimated using

a genetic relationship matrix (GRM) estimated from SNPs. The

estimate of genetic variance using SNP data in unrelated

individuals is free of confounding from common environment

effects shared between close relatives that are difficult to model in

family-based analyses, and is directly comparable to results from

GWAS, because both are based on the same experimental design.

For multiple trait analysis, the SNP-based approach allows the

estimation of the genetic correlation between complex traits

measured on different samples [6,7]_ENREF_8. This is important

in particular for estimating the genetic correlation between

diseases because multiple diseases are unlikely to co-segregate in

sufficiently large pedigrees to allow estimation using traditional

pedigree design. The SNP-based method has the flexibility of
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estimating the genetic correlation between any two diseases using

completely independent case-control data. Other methods to

estimate genetic parameters from individual-level or summary

GWAS data have also been reported [8–10].

We previously named the SNP-based method mentioned

GREML [11], as a complement to GBLUP [12] where variance

components are assumed known, and have been implemented

them in the software tool GCTA [13]. One outstanding question is

the statistical power of detecting genetic variation using the

population-based estimation method, for example how many

samples are required to achieve estimates that are sufficiently

accurate to detect genetic (co)variance of complex traits. In this

paper, we derive the sampling variance of the estimate of genetic

(co)variance by analytical derivations and verify our derivations by

simulations under a range of scenarios. We also provide an online

tool for power calculation.

Methods and Results

Univariate analysis
The methods of using SNP data to estimate genetic variance in

unrelated individuals have been detailed elsewhere [3,13]. In brief,

given GWAS data, we can model the phenotype as

y~gze ð1Þ

where y is an N61 vector of phenotypes with N being the sample

size, g is an N61 vector with each of its elements being the total

genetic effect of an individual captured by all SNPs, and e is an

N61 vector of residuals. We have g*N(0,s2
GA) and e*N(0,s2

eI),

where s2
G is the genetic variance captured by all SNPs, A is the

genetic relationship matrix (GRM) estimated from SNPs [3], s2
e is

the residuals variance and I is an identity matrix. The genetic

relationships, also known as ‘genomic relationships’ or ‘genetic

similarity relationships’, are referenced to the current population,

and so can be negative as they are distributed about a mean of

zero. Equation (1) is a typical mixed linear model with

var(y)~s2
GAzs2

eI, in which the variance components can be

estimated using a restricted maximum likelihood (REML)

approach [13,14]. The proportion of variance explained by all

SNPs (SNP heritability) is defined as h2
G~s2

G=(s2
Gzs2

e).

For power calculation, we need to know the sampling variance

of the estimate of s2
G, i.e. var(ŝs2

G). In practice, the asymptotic

sampling variance (standard error squared) of a variance

component is calculated from a diagonal element of the inverse

of the information matrix in maximum likelihood analysis [15–18].

Each element of the information matrix, however, comprises

complex forms of matrix algebra including a matrix inverse. It is

therefore unfeasible to derive var(ŝs2
G) directly from the inverse of

the information matrix. We show below an equivalent approach to

obtain var(ŝs2
G) under the simple regression framework.

For unrelated individuals, where the phenotypic correlation

between individuals is small, mixed linear model analysis using the

REML approach is asymptotically equivalent to simple regression

analysis of pairwise phenotypic similarity/difference on pairwise

genetic similarity, as measured by identity-by-descent (IBD) or

identity-by-state (IBS) at genome-wide markers [17–20]. Under

such circumstance, a regression of the cross-product of the

phenotypes is equivalent to using both the squared difference

and squared sum of the pairwise phenotypes, and using the cross-

product is equivalent to using maximum likelihood [19]. The

model for the regression-based analysis can be written as

zij~mzbAijzeij ð2Þ

where zij~yiyj with yi and yj being the phenotypes of individuals i

and j (iwj), Aij is the ij-th element of the GRM A, and eij is the

residual of this regression. There are n~N(N{1)=2&N2=2
observations (contrasts) in the regression. The regression coeffi-

cient b is equivalent to s2
G because

b~cov(Aij ,yiyj)=var(Aij)~cov(Aij ,gigj)=var(Aij)

~E(Aijgigj)=var(Aij)~s2
GE(A2

ij)=var(Aij)

~s2
G

In such a simple regression, the sampling variance of the estimate

of the regression coefficient is

var(ŝs2
G)~var(b̂b)~var(eij)=½n var(Aij)� ð3Þ

If the samples are unrelated and the phenotypes have been

standardized with mean of 0 and variance of 1, then E(zij)~0 and

var(zij)~1. Since var(Aij) is small, there is hardly any variance in

zij that can be explained by Aij so that var(eij)&var(zij)~1. We

therefore have

var(ŝs2
G)&2=½N2 var(Aij)� ð4Þ

Under circumstances when var(Aij) is large, for example when the

GRM is calculated from pedigree data, a substantial proportion of

variance in zij could be explained by Aij , so that var(eij) will be

smaller than var(zij) and the sampling variance of estimate of

genetic variance will be reduced accordingly. In general, var(Aij)

and the residual variance in equation (2) depend on the number of

SNP that are used to calculate the GRM and their correlation

structure. Although var(Aij) can be calculated empirically from

the data, theoretical work suggest it is approximately 261025 for

genome-wide coverage of common SNPs in human populations

Author Summary

Genome-wide association studies (GWAS) have identified
thousands of genetic variants for hundreds of traits and
diseases. However, the genetic variants discovered from
GWAS only explained a small fraction of the heritability,
resulting in the question of ‘‘missing heritability’’. We have
recently developed approaches (called GREML) to estimate
the overall contribution of all SNPs to the phenotypic
variance of a trait (disease) and the proportion of genetic
overlap between traits (diseases). A frequently asked
question is that how many samples are required to
estimate the proportion of variance attributable to all
SNPs and the proportion of genetic overlap with useful
precision. In this study, we derive the standard errors of
the estimated parameters from theory and find that they
are highly consistent with those observed values from
published results and those obtained from simulation. The
theory together with an online application tool will be
helpful to plan experimental design to quantify the
missing heritability, and to estimate the genetic overlap
between traits (diseases) especially when it is unfeasible to
have the traits (diseases) measured on the same individ-
uals.

Power to Detect Genetic (Co)Variance
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[21]. Since the phenotypic variance is usually estimated with very

high precision,

var(ĥh2
G)&var(ŝs2

G)&2=½N2 var(Aij)�~105=N2 ð5Þ

This suggests that the standard error (SE) of ĥh2
G depends only on

sample size, and is approximately 316=N. We show by simulations

based on real genotype data (Text S1) that this approximation is

very accurate (Figure 1 and Table S1). The SEs calculated from

the approximation theory are also highly consistent with those

reported from our previous studies for human height and body

mass index (BMI). For example, the reported SE of ĥh2
G for height

was 0.083 using 3925 unrelated samples [3] and 0.029 for both

height and BMI, irrespective to ĥh2
G, using 11586 unrelated samples

[22], and the SE calculated from the approximation theory is

0.081 for N = 3925 and 0.027 for N = 11586.

Bivariate analysis (traits measured on the same
individuals)

For a bivariate analysis where the two traits are measured on the

same individuals, the mixed linear model can be written as [6]

y1~g1ze1 for trait #1 and y2~g2ze2 for trait #2 ð6Þ

where y1 and y2 are N61 vector of phenotypes, g1 and g2 are N61

vectors of genetic effects with g1*N(0,s2
G1A) and

g2*N(0,s2
G2A), e1 and e2 are N61 vectors of residuals with

e1*N(0,s2
e1I) and e2*N(0,s2

e2I), and N is the sample size. The

variance covariance matrix is

var
y1

y2

� �
~

s2
G1Azs2

e1I sG1G2Azse1e2I

sG1G2Azse1e2I s2
G2Azs2

e2I

" #

where sG1G2 is the genetic covariance between the two traits and

se1e2 is the residual covariance. The genetic variance and

covariance components can also be estimated using REML [6].

The genetic correlation is estimated as r̂rG~ŝsG1G2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝs2

G1ŝs2
G2

q
.

Since r̂rG is a non-linear function of ŝsG1G2, ŝs2
G1 and ŝs2

G2, there

is no explicit derivation for var(ŝsG1G2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝs2

G1ŝs2
G2

q
). Reeve (1955)

and Robertson (1959) provided an approximation of var(̂rrG)
in the context of balanced pedigree design as

(1{r2
G)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(ĥh2

G1)var(ĥh2
G2)

q
2h2

G1h2
G2

[23,24] and Koots and

Gibson (1996) proposed a modified version as

(1{r2
P)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(ĥh2

G1)var(ĥh2
G2)

q
2h2

G1h2
G2

[25], where rP is the phenotypic

correlation between the traits. However, both approximations

have an unsatisfying property that var(̂rrG) will approach 0 if rG or

rP is close to 1. We derived an approximation, which does not

have this problem (Text S2), i.e.

var(̂rrG)&
(1{rGrP)2z(rG{rP)2

h2
G1h2

G2N2 var(Aij)
ð7Þ

As described above, var(Aij)&2|10{5 for a GRM estimated from

common SNPs in unrelated individuals in human populations,

Figure 1. Standard error of the estimate of variance explained by all SNPs vs. sample size. The first three columns are the averaged
standard error observed from 100 simulations under three heritability levels. The last column is the predicted standard error from our approximation
theory. The plotted data can be found in Table S1.
doi:10.1371/journal.pgen.1004269.g001
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therefore SE(̂rrG)& 224
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{rGrP)2z(rG{rP)2

h2
G1h2

G2

s
. When

rG~rP~0, i.e. the traits are completely independent,

SE(̂rrG)&
224

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

G1h2
G2

q . We tested equation (7) by simulations

based on real genotype data (Text S1). The simulation results

suggest that the approximation is reasonably accurate (Table 1).

For real data analysis, we previously estimated the genetic

correlation between intelligence at age 11 years and in old age

of 0.62 with a SE of 0.23 using 1729 samples [5], consistent with

the predicted SE of 0.22 from the approximation theory.

Bivariate analysis (traits measured on different sets of
individuals)

For a bivariate analysis where the two traits are measured on

different sets of individuals, e.g. height in males and blood pressure

in females, the variance-covariance matrix is [6]

var
y1

y2

� �
~

s2
G1A1zs2

e1I1 sG1G2A12

sG1G2A12 s2
G2A2zs2

e2I2

" #

where y1 is an N161 vector of phenotypes in sample set #1 (e.g.

males), and y2 is an N261 vector of phenotypes for in sample set

#2 (e.g. females), with N1 and N2 being the sample sizes of the two

sets. A1 is an N16N1 GRM for individuals in sample set #1, A2 is

an N26N2 GRM in sample set #2 and A12 is an N16N2 GRM

between the two sets of samples. s2
G1 and s2

G2 are the genetic

variance for the two traits. s2
e1 and s2

e2 are the residual variances

with the corresponding identify matrix I1 and I2. sG1G2 is the

genetic covariance between traits. Since the two traits are

measured on different sets of samples, the residual covariance is

ignored because it is assumed that there is no covariance between

the unrelated individuals apart from that caused by genetic factors.

The genetic correlation is also estimated as r̂rG~ŝsG1G2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝs2

G1ŝs2
G2

q
,

however, the sampling variance of r̂rG is different from that

described above. Since the traits are measured in different sets of

samples, cov(ŝs2
G1,ŝs2

G2)~cov(ŝs2
G1,ŝsG1G2)~cov(ŝs2

G2,ŝsG1G2)~0.

Therefore, from a second order Taylor series approximation

[15]

var(̂rrG)&r2
G

var(ŝs2
G1)

4s4
G1

z
var(ŝs2

G2)

4s4
G2

z
var(ŝsG1G2)

s2
G1G2

� �
ð8Þ

This approximation involves the sampling variance of ŝsG1G2. We

show below an equivalent approach to obtain var(ŝsG1G2).

Analogous to the univariate analysis, estimation of genetic

covariance by a bivariate mixed linear model analysis is

asymptotically equivalent to the following linear regression model

z12(ij)~mzbA12(ij)zeij ð9Þ

where z12(ij)~y1(i)y2(j) i.e. the product of phenotypes between the

i-th individual in set #1 and the j-th individual in set #2, and

A12(ij) is the ij-th element of the GRM A12, i.e. the genetic

relationship between the i-th individual in set 1 and the j-th

individual in sample set #2. The regression coefficient is

equivalent to genetic covariance between the two traits because

b~cov(A12(ij),y1(i)y2(j))=var(A12(ij))~cov(A12(ij),g1(i)g2(j))=var(A12(ij))

~E(A12(ij)g1(i)g2(j))=var(A12(ij))~sG1G2E(A2
12(ij))=var(A12(ij))

~sG1G2

If the two sample sets are independent and phenotypes for both

traits have been standardized with mean of 0 and variance of 1,

then E(z12(ij))~0 and var(z12(ij))~1. Since var(A12(ij)) is small,

var(eij)&var(z12(ij))~1. We then have var(ŝsG1G2)&var(eij)=
½N1N2 var(A12(ij))�&1=½N1N2 var(A12(ij))�.

We know from the derivations above that var(ŝs2
G1)&

2=½N2
1 var(A1(ij))� and var(ŝs2

G2)&2=½N2
2 var(A2(ij))�. For unrelated

individuals sampled from the same population, var(A1(ij))~

var(A2(ij))~var(A12(ij))~var(Aij), we therefore get

var(̂rrG)&
r2

G(N2
1 h4

G1zN2
2 h4

G2)z2h2
G1h2

G2N1N2

2h4
G1h4

G2N2
1 N2

2 var(Aij)
ð10Þ

This was also tested by simulations (Text S1) and the approx-

imated standard errors were highly consistent with those observed

from simulations, especially when sample size was large (Table 1).

When rG~rP~0, i.e. two traits are completely independent,

var(̂rrG)&1=½h2
G1h2

G2N2 var(Aij)� for traits measured on the same

sample, and var(̂rrG)&1=½h2
G1h2

G2N1N2 var(Aij)� for traits mea-

sured on different samples. Therefore, for independent traits, the

ratio of sampling variance of genetic correlation between the two

traits measured on the same sample to that on different samples is

simply N1N2=N2.

Case-control studies
For case-control studies, the proportion of variance in case-

control status (0 or 1) that is explained by all SNPs on the observed

scale (h2
O) can be estimated using a linear model [4]. Therefore, the

same approximations to the sampling variance of genetic variance

and genetic correlation for quantitative traits can be applied

directly to case-control studies. As shown in equation (5), in a

univariate analysis, the sampling variance of SNP-based heritabil-

ity depends only on sample size and variance in genetic

relatedness, independent of the properties of the phenotype, so

that var(ĥh2
O) is also approximately 2=½N2 var(Aij)� in a case-control

study with N being the total number of cases and controls. We

show in Table 2 that the observed standard errors of the estimates

of h2
O from published studies are highly consistent with those

predicted from our approximation theory.

To calculate power, however, we would need to specify h2
O,

which is a parameter with non-intuitive properties, and depends

on the prevalence of the disease in the population (K), the

proportion of variance in disease liability that is captured by the

SNPs at population level, and the proportional of cases in the

sample (v). For this reason we define h2
L as the variance explained

by all SNPs at the population level on the unobserved underlying

scale of disease liability, and use a linear transformation to

transform h2
O to h2

L on the liability scale [4], i.e. h2
L~ch2

O and

var(ĥh2
L)~c2 var(ĥh2

O) with c~(1{K)2=½v(1{v)i2�. We then get

var(ĥh2
L)~

2(1{K)4(NcasezNcontrol)
2

N2
caseN2

controli
4 var(Aij)

ð11Þ

where Ncase is the number of cases, Ncontrol is the number of
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controls, and i is the selection intensity which is a function of K [4].

We illustrate in Figure 2 the dependency of the SE of h2
L on disease

prevalence (K) and proportion of cases in the sample (v) due to the

transformation.

As shown in equation (10), in a bivariate analysis where traits

are measured on different sets of samples, the sampling variance of

genetic correlation depends on sample sizes, trait heritabilities and

the genetic correlation parameter, which is also independent of the

properties of the phenotypes. Therefore, in a bivariate analysis of

two independent case-control disease studies,

var(̂rrG)&
r2

G(N2
1 h4

O1zN2
2 h4

O2)z2h2
O1h2

O2N1N2

2h4
O1h4

O2N2
1 N2

2 var(Aij)
ð12Þ

where N1 and N2 are the total numbers of cases and controls of the

two case-control studies, respectively. This also applies to a

bivariate analysis of a quantitative trait and a cases-control disease

study on different sets of samples, i.e.

var(̂rrG)&
r2

G(N2
1 h4

OzN2
2 h4

G)z2h2
Oh2

GN1N2

2h4
Oh4

GN2
1 N2

2 var(Aij)
ð13Þ

These two equations can also be expressed with respect to h2
L,

given h2
O~h2

L=c (see above). We show in Table 3 that the reported

SEs of rG from bivariate analyses of psychiatric diseases are also

highly in line with the predicted SEs from the approximation

theory.

Statistical power
Statistical power is calculated from the population value of the

parameter and its sampling variance, which was derived above. If

the parameter is h, where h is either the proportion of phenotypic

variance captured by SNPs (h2
G) in the univariate case or the

Table 2. Standard errors of the estimates of variance explained by all SNPs on the observed scale (h2
O) from published analyses of

case-control studies for a number of diseases vs. those predicted from the approximation theory.

Disease Ncases Ncontrols Prevalence h2
O SE(Obs.) SE(Approx.)

Multiple sclerosis [34] 1604 1953 0.001 0.851 0.088 0.089

Alzheimer’s disease [34] 3290 3849 0.020 0.364 0.049 0.044

Endometriosis [34] 3154 6981 0.080 0.231 0.036 0.031

Schizophrenia [7] 9087 12171 0.010 0.410 0.015 0.015

Bipolar disorder [7] 6704 9031 0.010 0.441 0.021 0.020

MDD [7] 9041 9381 0.150 0.177 0.017 0.017

ASD [7] 3303 3428 0.010 0.310 0.046 0.047

ADHD [7] 4163 12040 0.050 0.253 0.020 0.020

Ncases: number of cases. Ncontrols: number of controls. SE(Obs.): reported standard error of the estimate of h2
O from real data analysis. SE(Approx.): standard error of h2

O

calculated from our approximation theory. MDD: major depression disorder. ASD: autism spectrum disorders. ADHD: attention-deficit/hyperactivity disorder.
doi:10.1371/journal.pgen.1004269.t002

Figure 2. Standard error (SE) of the estimate of variance explained by all SNPs on the underlying scale (h2
L) from a univariate

analysis of a case-control study vs. total number of cases and controls (sample size). The SE is predicted from the approximation theory
given different levels of disease prevalence (K) and proportion of cases in the sample (v).
doi:10.1371/journal.pgen.1004269.g002
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genetic correlation (rG) in the bivariate case, then ĥh2=var(ĥh2) is

asymptotically distributed as a non-central x2 with 1 degree of

freedom and non-centrality parameter (NCP) of l~h2=var(ĥh2).
Given l and the type-I error rate of a, statistical power is the

probability that a non-central x2 variable is larger than the central

x2 threshold that is determined by a. We show in Figure 3 the

statistical power based on the sampling variance from our

approximation theories to detect h2
G in a univariate case and rG

in a bivariate case under a range of scenarios. For example, for a

quantitative trait, approximately 8900, 4500, 3000 and 2300

independent individuals are required to detect h2
G of 0.1, 0.2, 0.3

and 0.4 with .80% power at a type-I error rate of 0.05,

respectively. For two quantitative traits measured on the same

sample, approximately 7000, 4700, 2500 and 1600 independent

individuals are required to detect rG of 0.2, 0.4, 0.6 and 0.8 with .

80% at a type-I error rate of 0.05, respectively.

Online tool
We have also developed an online calculator (GCTA Power

Calculator, http://spark.rstudio.com/ctgg/gctaPower), as part of

the GCTA [13] software package (http://ctgg.qbi.uq.edu.au/

software/gcta), using R-Shiny (http://shiny.rstudio.org) to calcu-

late the SE of genetic variance or genetic correlation and statistical

power given user-defined parameters.

Discussion

We have derived the approximate sampling variance of the

estimate of variance explained by all common SNPs (h2
G) for a

quantitative trait or case-control study of a disease, and genetic

correlation (rG) between two quantitative traits, between two

diseases, or between a quantitative trait and a disease, using

genome-wide SNP data in unrelated individuals. We believe that

the derivations and the online tool will be helpful for researchers to

determine how many samples are required to detect h2
G (or rG) and

to estimate h2
G (or rG) with adequate precision before collecting the

genotype data.

The sampling variance of ĥh2
G for a complex trait is inversely

proportional to sample size (N) and the variance in SNP-based

genetic relatedness (var(Aij)), and independent of h2
G. The

sampling variance of r̂rG between two complex traits is a function

of rG, N of the two samples, h2
G of the two traits and var(Aij) when

the traits are measured on different samples, and further depends

on the phenotypic correlation (rP) when traits are measured on the

same samples. All the approximation theories apply to case-control

studies of diseases since the case-control data can be analysed

using a linear model on the observed 0–1 scale. The sampling

variance for the estimate on the observed scale can then be

transformed to that on the underlying liability scale using well-

established theory. The standard errors (square root of sampling

variance) of either ĥh2
G or r̂rG observed in published studies were all

highly consistently with those predicted from our approximation

theories, which were also confirmed by simulations based on real

genotype data.

Analytical expressions for the sampling variance of the estimates

of genetic (co)variance from pedigree analyses have been around for

over 50 years [17,26], and statistical power can be derived from

these by using the sampling variance and population value of the

parameter. However, these expressions are typically for specific

structured pedigrees, such as fullsib or halfsib families or twin pairs.

There are to our knowledge no simple approximations for general

pedigrees, because the inverse of the variance-covariance matrix
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is required and this is conditional on the actual pedigree

structure. The sampling variance of the estimated parameters in

a general complex pedigree is usually derived post hoc after the

analysis has been performed.

Methods for calculating the power of detecting quantitative trait

loci (QTL) in family-based linkage studies have been investigated

extensively in the past two decades [16–18,27]. These methods

were developed to calculate the power of detecting a QTL but can

be generalized for variance components estimation, e.g. estimating

the genetic variance using pedigree information. The non-centrality

parameter of the test-statistic from a maximum likelihood analysis of

variance components is NCP~E(2 ln L1){E(2 ln L0)~{E
(lnDV1D)zlnDV0D, where L is the likelihood function, and V0 and

V1 are the variance covariance matrix under the null and

alternative hypotheses respectively [17,18]. For a specific balanced

pedigree design, e.g. fullsibs or nuclear families, the determinant (or

inverse) of the V matrix can be computed explicitly, so that the NCP

can be calculated without making approximation [16,17]. For an

arbitrary pedigree, lnDVD can be calculated approximately using

Taylor expansions given the variance in family relatedness [18,27].

Therefore, all these methods explicitly or implicitly require a known

pedigree. When the correlations between relatives are small, the first

order approximation of the NCP in Rijsdijk et al [18] can be written

in our notations as NCP&
P
iwj

var(Aij)h
4
G&N2h4

G var(Aij)=2,

which is the same as we derived (i.e. h4
G=var(ĥh2

G), see Equation

(4) for var(ĥh2
G)), even though our deviations were based on least

squares regression analysis in unrelated samples whereas the

derivations in Rijsdijk et al [18] were based on maximum likelihood

approach in family data. This approximation is reasonably accurate

when correlations between relatives are small for a pedigree-based

design, which is not an issue for a population-based design where

the genetic relationships between unrelated samples are very small

as demonstrated in Yang et al [3]. We show by simulations (Text S1)

that for a univariate analysis the LRT statistics calculated based on

REML are highly consistent with the chi-squared test-statistics

Figure 3. Statistical power of detecting genetic variance (correlation) under different study designs. a) Univarite analysis of a
quantitative trait. b) Univariate analysis of a case-control study assuming equal number of cases and controls (v = 0.5) and heritability of liability (h2

L)
of 0.2. c) Bivariate analysis of two quantitative traits measured on the same set of individuals, assuming heritability of 0.2 for both traits. d) Bivariate
analysis of two case-control studies on independent sets of samples, assuming equal numbers of cases and controls for each disease, and equal
sample size (total number of cases and controls), equal heritability of liability (h2

L = 0.2) and equal prevalence (K = 0.01) for both diseases.
doi:10.1371/journal.pgen.1004269.g003
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calculated by the Wald test using the sampling variance either

observed from the simulations or predicted from our approximation

theory (Figure S1).

For a given population, a set of common SNPs and the method

of calculating the genetic relationship matrix that we have used

here, var(Aij) is a fixed quantity because it depends only on

effective population size of the human populations [28]. We used

var(Aij)~2|10{5, which was calculated from theory based upon

an effective population size of 10,000. Variance in genetic

relatedness (and therefore power of detection) can decrease by

including many rare SNPs in calculating the GRM because adding

more rare SNPs increases the effective population size reflecting

recent population expansion. The variance in relatedness can also

increase by sampling closer relatives (see below for more

discussion) or, for example, by creating a relationship matrix

based upon haplotype information. Modifying the GRM can also

affect the variance of the off-diagonal elements. For example by

applying a weighting of SNPs depending on linkage disequilibrium

the variance in the estimates of genetic relationships will decrease

so that the sampling variance of the estimate of SNP-based

heritability will be increased [29]. Although we derive the theory

and show the results based on the SNPs on the whole genome, our

approximation theories are also applicable in analyses using a

subset of SNPs, e.g. SNPs from a single chromosome. In that case,

var(Aij) used in the approximation equations should be either

observed empirically from data or derived from theory [28] based

on the subset of SNPs.

If there are unknown related samples in the data (cryptic

relatedness), ĥh2
G will possibly be inflated due to shared environ-

ment between close relatives and/or the effects of causal variants

in LD with the SNPs but captured by family relatedness, and

var(ĥh2
G) will be deflated due to the increase of var(Aij). In fact, the

interpretation of ĥh2
G changes if there is a substantial proportion of

close relatives in the data [30,31]. This, however, affects GWAS

result in a similar way, where the SE of the estimate of a SNP

effect from a single SNP analysis (e.g. linear regression for a

quantitative trait and logistic regression for a case-control study)

will be deflated, causing an inflation of the test-statistics GWAS

(often called ‘‘genomic inflation’’ [32]). For the estimation of h2
G

using all common SNPs, to avoid possible confounding from

shared environments and uncaptured causal variants, we suggest-

ed in Yang et al. (2010) a stringent threshold, i.e. 0.025, to remove

cryptic relatedness from the data so that the estimate of h2
G can be

compared directly to the results from GWAS in response to the

‘‘missing heritability’’ problem [2]. In practice, observing a much

smaller SE of ĥh2
G using all common SNPs than that predicted from

theory is a caveat suggesting substantial cryptic relatedness

remaining in the data.

Using the same experimental design of a sample of conven-

tionally unrelated individuals, the experimenter can increase

power by increasing sample size. Fortunately, power increases

quadratically with sample size because every new sample is

contrasted with all existing samples. The sampling variance of the

estimate of the genetic correlation is generally much larger than

that of the proportion of variance explained from a univariate

analysis, consistent with the theory of the sampling variance of

genetic correlations in pedigree designs [33].
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