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Abstract

Characterization of tissue architecture promises to deliver insights
into development, cell communication, and disease. In silico spatial
domain retrieval methods have been developed for spatial tran-
scriptomics (ST) data assuming transcriptional similarity of neigh-
boring barcodes. However, domain retrieval approaches with this
assumption cannot work in complex tissues composed of multiple
cell types. This task becomes especially challenging in cellular reso-
lution ST methods. We developed Vesalius to decipher tissue
anatomy from ST data by applying image processing technology.
Vesalius uniquely detected territories composed of multiple cell
types and successfully recovered tissue structures in high-
resolution ST data including in mouse brain, embryo, liver, and
colon. Utilizing this tissue architecture, Vesalius identified tissue
morphology-specific gene expression and regional specific gene
expression changes for astrocytes, interneuron, oligodendrocytes,
and entorhinal cells in the mouse brain.
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Introduction

From the smallest cell to the largest organ, we find patterns of orga-

nization supporting homeostasis within organisms. Each cell func-

tions in the context of its neighbors, and each group of structured

cells functions in the context of tissue architecture. The investiga-

tion of this multi-level organization promises to deliver insight into

development, cellular communication, and disease.

One approach to probe into the organization of tissues and cells

is by using spatial transcriptomics (ST) (Burgess, 2019; Rao et al,

2021). ST is a set of methods that recover gene expression while

maintaining the spatial component intact. Several ST methods have

been developed in the last few years and fall into two categories:

image-based approaches using fluorescence in situ hybridization

(FISH) and sequencing-based approaches using spatially resolved

barcodes. Image-based ST approaches including seqFISH (Lubeck

et al, 2014; Eng et al, 2019; Lohoff et al, 2021) or merFISH (Chen

et al, 2015) provide sub-cellular resolution ST. Image-based techniques

rely on the pre-selection of target mRNA species and—due to the chal-

lenge of distinguishing overlapping fluorescent signals—are limited to

a smaller number of genes sampled at a time (Zhuang, 2021).

In contrast to image-based ST, sequencing-based ST techniques

such as 10X Visium (St�ahl et al, 2016), Seq-Scope (Cho et al, 2021),

or Slide-seq (Rodriques et al, 2019; Stickels et al, 2021) provide a

non-biased and genome-wide quantification of mRNA species. Tech-

nological advances have made it possible to obtain sequencing-

based ST data on cellular and even sub-cellular resolutions. Tissue

territory detection in high-resolution ST data will strengthen our

understanding of tissue architecture and its associated marker genes

providing further opportunities to study transcriptomic changes due

to local environment and tissue morphology.

Several tools including Seurat (Satija et al, 2015), BayesSpace

(Zhao et al, 2021), STAGATE (Dong & Zhang, 2022), SpaGCN (Hu

et al, 2021), SEDR (preprint: Fu et al, 2021a), and Giotto (Dries

et al, 2021) have been developed to understand tissue architecture

from ST data. Seurat leverages reference single-cell data sets to map

barcode identities to their respective location in ST data. While this

approach demonstrates the cellular heterogeneity of tissues, the task

of recovering and extracting anatomical regions is still challenging

due to their cellular complexity. On the contrary, BayesSpace and

Giotto provide distinct models both utilizing Hidden Markov random

fields. Their respective methods attempt to cluster barcodes together

under the assumption that neighboring barcodes are likely part of

the same cluster if transcriptionally similar. These methods have

performed well in low-resolution Visium 10X data (Dries et al, 2021;

Zhao et al, 2021). However, this assumption will not necessarily

hold in complex tissue containing multiple cell types as neighboring

barcodes are just as likely to represent a different cell type in high-

resolution ST data. Approach using auto-encoders and adaptive

graph attention auto-encoders can generate a spatially aware latent

space upon which clustering methods are applied. This has been
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achieved by (preprint: Fu et al, 2021a; Dong & Zhang, 2022). The

recovery of anatomical structures containing multiple cell types is

extremely arduous and has relied on manual isolation. One solution

to this challenge is to link anatomical territories from companion

hematoxylin and eosin (H&E) staining images to their spatial tran-

scriptomic assay (Bergenstr�ahle et al, 2020; preprint: Pham et al,

2020; Hu et al, 2021; preprint: Peng et al, 2021; Palla et al, 2022).

However, techniques such as Slide-Seq (Rodriques et al, 2019;

Stickels et al, 2021) do not provide these companion images. Fur-

thermore, the segmentation of anatomical territories in images

remains challenging without manual annotation (Gurcan et al, 2009;

Vu et al, 2019; Kurc et al, 2020).

To address these limitations, we developed Vesalius—an R pack-

age—designed to perform in silico anatomization and isolation of

tissue territories without the use of H&E companion images. Vesal-

ius converts the transcriptome into an RGB color code that is then

embedded into an image. By leveraging a variety of image analysis

techniques, Vesalius can recover complex tissue territories in the

mouse brain, mouse embryo, diseased liver, and colon. Comprehen-

sive tests using simulated data indicate that Vesalius can identify tis-

sue territories even when the tissue is composed of multiple cell

types while other competitors often identify numerous unwanted

patches. Identified territories are used to discover tissue

morphology-specific gene expression as well as changes in the tran-

scriptome of astrocytes, interneuron, oligodendrocytes, and entorhi-

nal cells in the mouse brain depending on the tissue territory.

Results

Vesalius embeds the transcriptome in the RGB color space

The core concept of the Vesalius algorithm is to represent the tran-

scriptome of a barcode as a color in the RGB color space and build

images upon which image analysis techniques can be applied (Fig 1

A and B). To embed the transcriptome into images, Vesalius first

preprocesses sequencing-based spatial transcriptomic data by log

normalizing and scaling counts values and extracting highly vari-

able features and reduces dimensionality via principal component

analysis (PCA). Next, Vesalius uses Uniform Manifold Approxima-

tion and Projection (UMAP) to project PCs into three dimensions

and embed the latent space into the RGB color space (see Materials

and Methods—Fig EV1A). Alternatively, Vesalius can also embed

PC loading values into the RGB color space for a more targeted

view of data variance (see methods—Appendix Fig S1). Vesalius

handles the uneven location of barcodes in the ST assay by expand-

ing punctual coordinates into multi-pixel tiles using Voronoi Tessel-

lation. Images are constructed by associating color codes to their

respective tile.

Next, Vesalius applies image analysis techniques to extract tissue

territories (Fig 1B; Appendix Fig S2). After balancing the color his-

togram and smoothing (see Materials and Methods), image segmen-

tation based on k-means clustering is applied to produce color

clusters that can be further subdivided into territories. Image pro-

cessing parameters can be finely tuned depending on the user’s

interest and the ST method used. Vesalius checks if barcodes are

within a certain capture radius of each other. Vesalius will assign

barcodes belonging to the same color cluster into separate territories

if they are far enough from each other in 2D space (see Materials

and Methods—Fig EV1B).

The isolation of anatomical territories and image representation

of ST data with Vesalius enhances ST analysis by providing a

territory-based framework (Fig 1C). Isolated territories can be fur-

ther clustered to recover the finer details of cellular organization.

Territories can be compared to investigate territory-specific gene

expression. Neighboring territories can be manipulated to recover

tissue border gene expression and gene expression patterns arising

within specific anatomical structures.

Vesalius outperforms other spatial domain tools in
heterogenous territories

To assess the performance of Vesalius, we simulated ST data under

four different regimes: pure, exponential, uniform, and dotted (Fig

EV1C). We compared the performance of Vesalius against Seurat

(Satija et al, 2015), BayesSpace (Zhao et al, 2021), Giotto (Dries

et al, 2021), SpaGCN (Hu et al, 2021), SEDR (preprint: Fu et al,

2021a), and STAGATE (Dong & Zhang, 2022) in these simulated data

sets. The pure regime contains a single cell type in each territory.

The uniform regime contains n different cell types in each territory,

and each cell type appears in equal proportion. The exponential

regime contains n cell types, and the overall proportion of each cell

type changes between territories following an exponential pattern.

For uniform and exponential regime, we evaluated the performance

of each tool with n = 3, 4, and 5 cell types in each territory. Finally,

the dotted regime consists of a background tissue territory in which

five circular territories are placed. Both the background and circular

territories contain a random number of cell types (between 1 and 3).

In all regimes, simulated data sets contain 6,000 “cells” divided

between territories (see Materials and Methods—Dataset EV1).

To quantitatively assess the performance of Vesalius compared

with other tools, we used an Adjusted Rand Index (ARI)

(Rand, 1971). While ARI scores are often used to compare clustering

performance, they may be affected by cluster granularity and as

such we also compared the performance of each tool using a varia-

tion of information (VI) metric (Meilǎ, 2007). Overall, Vesalius out-

performed competing tools in all regimes (Kruskal–Wallis and

Wilcoxon rank-sum test for multiple comparisons with n = 10

▸Figure 1. Describing Tissue territories with Vesalius.

A Vesalius embeds ST data into RGB-colored images. This is achieved by preprocessing ST data and reducing dimensionality. In parallel, punctual ST coordinates are
converted into tiles. Finally, the UMAP latent space (or PCA loading values) is transformed into an RGB color space, and the color code attributed to each barcode is
assigned to its respective tile.

B Vesalius applies image analysis techniques to RGB images describing the transcriptional landscape of a tissue with the aim of isolating tissue territories.
C Vesalius enables a territory-based ST framework including spatial territory clustering, territory comparison, tissue border expression, and morphology-driven

expression.

2 of 16 Molecular Systems Biology 18: e11080 | 2022 � 2022 The Authors

Molecular Systems Biology Patrick C N Martin et al



A  Embedding the transcriptome into RGB images

B Image Analysis and Territory Isolation

C Territory based Spatial Transcriptomics Analysis

       Spatial 
Transcriptomics

Dimensionality 
   Reduction

Coordinate 
    Tiling

Embed Latent Space
    into RGB image

Histogram Equalization

Regularization & Smoothing

Segmentation & Territory Isolation

  Territory 
Clustering

   Territory 
Comparison

Tissue Border 
  Expression

Morphology Driven 
      Expression

Figure 1.

� 2022 The Authors Molecular Systems Biology 18: e11080 | 2022 3 of 16

Patrick C N Martin et al Molecular Systems Biology



simulation replicates per regime—P-values shown in Fig 2A and B)

in both ARI scores and VI scores (Fig 2A and B). Only STAGATE

provided a similar ability to recover tissue territories in subset of

simulation regimes when comparing both ARI and VI scores. Addi-

tionally, Vesalius has the lowest run time among spatial domain

tools with a run time 3 to 20 times lower than competing tools

(Kruskal–Wallis and Wilcoxon rank-sum test for multiple compar-

isons with n = 80 simulation replicates over all regimes—P-value

< 2.2e-16 shown in Fig 2C).

In these simulations, Vesalius successfully recovered territories

across all conditions (Fig 2D). Vesalius can clearly distinguish terri-

tories containing single cell types (pure), different cell types (uni-

form) or differences in cell-type proportions (exponential). In

contrast to other tools that drastically overestimate the number of

tissue patches, Vesalius merges smaller territories spots into larger

neighboring ones (dotted). However, this loss of smaller territories

can easily be recovered by downstream analysis of isolated territo-

ries. BayesSpace, SpaGCN, SEDR, and STAGATE partially recovered

territories in the uniform, pure, and dotted regimes. In all cases,

these tools overestimate the number of true territories and struggle

to clearly distinguish territories that contain multiple cell types or

cell types in varying proportions. Seurat did not clearly recover tis-

sue territories; however, this is unsurprising since Seurat was not

designed to recover tissue territories. It is remarkable that Giotto did

not recover any territory even in the pure regime and only identified

numerous small patches.

Vesalius overcomes the challenge of isolating tissue territories
containing heterogenous cell populations

High-resolution sequencing-based ST methods promise an unbiased

and spatially resolved view of the transcriptome. Yet, most tissues

contain multiple cell types, and it can be challenging to recover uni-

form anatomical structures especially when no companion H&E

images are provided. To demonstrate Vesalius’s ability to isolate tis-

sue territories, we used Slide-seq V2 that provides a high-resolution

sequencing-based ST assay for mouse hippocampus and embryo

(Data ref: Stickels et al, 2021).

Vesalius identified 41 territories in the mouse hippocampus

(Puck_200115_08) including the CA field, the dentate gyrus, and the

corpus callosum (Fig 3A—Image is from Allen Institute; Data ref:

Lein et al, 2007). Territories characterized by too little barcodes

(< 50) and too far away from another territory were described as

isolated (see Materials and Methods). Territories recovered by

Vesalius are characterized by uniform regions that match well with

reference annotation (Fig 3A). In contrast to Vesalius, BayesSpace

(Zhao et al, 2021) and Seurat (Satija et al, 2015) recover tissue terri-

tories insofar as these structures are characterized by a homogenous

population of cells but produce numerous small patches potentially

due to the heterogenous nature of the brain tissues (Figs 3B and

EV2, and EV3).

We observed a similar phenomenon when we analyzed the

mouse embryo Slide-seqV2 data set (Puck_190926_03). Vesalius

was able to recover 28 uniform territories such as the embryonic

liver and eye (Fig 3C). As expected, it is not easy to define clear ter-

ritories with BayesSpace and Seurat as numerous small regions were

identified (Figs 3D and EV4, and EV5).

Vesalius illustrates tissue territories in a broad range of
ST data sets

The challenge of heterogeneity is further amplified in sub-cellular

resolution ST data as the transcriptome of each cell will likely be

spread between multiple barcodes. Seq-Scope (Date ref: Cho et

al, 2021) is an ST assay with a resolution smaller than 1um. To test

whether we can still recover territories, we applied Vesalius to

murine Seq-Scope (Data ref: Cho et al, 2021) data in early-onset

liver failure and crypt-surface colon (Fig 3E and F). Vesalius illus-

trates hepatocellular zonation with both pericentral hepatocytes

(Hep. PC) and periportal hepatocytes (Hep. PP) (Fig 3E). We were

also able to recover a territory of injured hepatocytes (Injured

Hep.). Deciphering of tissue structure proved to also be successful

in the colon where Vesalius shows territories related to smooth

muscle, the crypt base, and the crypt surface (Fig 3F). Interestingly,

our results suggest the emergence of different layers within the

smooth muscle and crypt base.

Next, we challenged Vesalius to recover tissue territories when a

smaller number of genes are being probed simultaneously. We used

seqFISH data taken from embryo slices (Data ref: Lohoff et al, 2021)

and demonstrate that Vesalius can recover tissue territories within

image-based ST data (Fig 3G). We were able to summarize tissue

territories including different regions of the brain such as the fore-

brain, midbrain, and hindbrain. Interestingly, our results suggest

that this distinction might be overly simplistic as we observed a sup-

plementary layer at the interface between the brain and the cranial

mesenchyme.

▸Figure 2. Vesalius outperforms other Spatial domain tools in heterogenous territories.

A Adjusted Rand Index score between Vesalius, BayesSpace, Giotto, Seurat, STAGATE, SpaGCN, and SEDR. Overall, Vesalius outperforms other tools in retrieving spatial
domains in high-resolution simulated data sets (Kruskal–Wallis and star notation using Wilcoxon rank-sum test for the multiple comparisons with n = 10 simulation
replicates).

B The high performance of Vesalius compared with competitors is also highlighted using the variation of information score, which is more robust against cluster
granularity. Boxplot shows VI scores over 10 simulation replicates (Kruskal–Wallis and star notation using Wilcoxon rank-sum test for the multiple comparisons with
n = 10 simulation replicates).

C Vesalius has the lowest run time among spatial domain tools with a run time 3–20 times lower than competing tools (Kruskal–Wallis and star notation using
Wilcoxon rank-sum test for the multiple comparisons with n = 80 simulation replicates).

D Example of simulated ground truth and prediction by each tool in four simulated regimes (Dotted, Exponential, Pure, and Uniform). The label above each plot
describes the simulation run in the following format Tool–Regime–Number of territories–Number of cells–Simulation replicate. For example, Vesalius Uni 3 3 1
describes Vesalius’s prediction in the uniform regime, which contains three territories each with three cell types in replicate 1.

Data information: Box plots show five summary statistics: the median, two hinges representing the interquartile range (IQR) and two whiskers representing 1.5 times the
IQR from the median. All dots are considered as outliers from this distribution.
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Finally, we investigated whether Vesalius could recover tissue

territories in lower-resolution ST such as it is the case in Visium

10X. Vesalius was able to accurately recover tissue territories in

broad range of samples in both mouse brain and kidney (Fig 3H and

I) but also human breast cancer (Fig 3J). Our results suggest a

ringed structure surrounding the kidney medulla.

Isolating territories highlights the finer details of
spatial patterning

We have shown that Vesalius is able to recover and isolate tissue

territories from high-resolution ST data, especially tissue territories

containing heterogenous cell populations. The isolation of territories

enables an in-depth view of spatial patterning uncovering subtle

expression patterns, new anatomical compartments, and spatially

resolved transcriptional shifts.

For instance, the analysis of the isolated CA field recovers all

three CA field cell types namely CA1 pyramidal cells, CA2 pyramidal

cells, and CA3 pyramidal cells (Fig 4A). In contrast, BayesSpace and

Seurat were unable to recover all three sections (Fig 3B). We identi-

fied Pcp4, Rgs14, and Necab2 as marker genes for CA2, which is

consistent with recent proteomics study for CA2 against CA1

(Gerber et al, 2019). The in situ hybridization (ISH) images against

these genes taken from the Allen Brain Atlas (Lein et al, 2007) vali-

date our prediction (Fig 4B, Appendix Fig S3). Further investigation

of Pcp4 expression illustrates that this gene has a strong expression

in the thalamus and a comparatively weak expression in the CA2

field (Fig 4C) and territory isolation by Vesalius enabled detection

of the CA2 field in this noisy data.

The isolation of the third ventricle and the medial habenula fur-

ther demonstrates how subtle gene expression patterns can be

retrieved by using Vesalius. Indeed, the medial habenula and the

third ventricle are divided into distinct spatial compartments (Fig 4

D). We observed an upper and lower medial habenula compartment

characterized by distinct gene expression patterns. Overall, 119

genes were differentially expressed (P < 0.05—Wilcoxon rank-sum

test) between both compartments (Dataset EV3 and EV4). For exam-

ple, Gabbr2 showed a higher expression in the lower medial habe-

nula compartment (Fig 4E—left) while Calb2 showed a higher

expression in the upper compartment (Fig 4E—right). The medial

habenula is highlighted in red. Similarly, the third ventricle

exhibited 288 differentially expressed (P < 0.05—Wilcoxon rank-

sum test) between the upper compartment and lower compartment

(Dataset EV3 and EV4). Nnat is more strongly expressed in the

lower third ventricle (Fig 4F—left), and its expression pattern coin-

cides with the ependymal cell layer that lines the ventricular system.

By contrast, the expression of Enpp2 was located in the upper third

ventricle (Fig 4F—right) and is absent from the ependymal cell

layer. The third ventricle is highlighted in red. Interestingly, we also

found a distinct cluster of ependymal cells lining the third ventricle

(Fig 4D).

In Slide-seq V2 embryo data, the developing eye displayed subtle

transcriptional patterning (Fig 4G). Anterior Lens Epithelial Cells

are characterized by two distinct spatial patterns organized in a con-

centric fashion. We observed a similar effect in Lens Vesicle cell dis-

tribution. We compared gene expression between Anterior Lens

Epithelial cell layers and found 81 differentially expressed genes

(Dataset EV2). For example, Cryba4 was highly expressed in the

inner layer while Ccnd2 was expressed in the outer layer (Fig 4H—
top row). Similarly, differential gene expression analysis between

Lens Vesicle cells returned 74 differentially expressed genes includ-

ing Pmel and Aldh1a1 (Fig 4H).

While it remains unclear if these shifts represent novel cell types

in the developing eye or spatially resolved developmental cues,

Vesalius provides an easy, robust, and reproducible way of access-

ing this information via territory isolation in high-resolution ST.

Cells show territory-specific gene expression in the
mouse hippocampus

Territory isolation enables us to study territory-specific genes for the

same cell type. To ensure that we are only accounting for the tran-

scriptome of a single cell type, we first ran Robust Cell Type Decom-

position (Cable et al, 2021) (RCTD) on Slide-seq V2 mouse

hippocampus data (see Materials and Methods). We selected all bar-

codes (n = 12,013) that contained a single cell type or homotypic

spots and used these annotations to assign cell types across the

mouse hippocampus. Next, we isolated territories corresponding to

the cortex (1 to 6 and 8 in Fig 3A) and thalamus (28 and 33 in Fig 3

A). We used Vesalius to compare cells that appear in both territories

(> 30 cells) and discovered 73 differentially expressed genes

(P < 0.01—Wilcoxon rank-sum test) across four cell types

◀ Figure 3. Vesalius recovers uniform anatomical territories in high-resolution ST data.

A Vesalius accurately recovers tissue territories in Slide-seqV2 data taken from the mouse hippocampus and surrounding brain (Puck_200115_08). A comparison with
the Allen Brain Atlas reference atlas illustrates that Vesalius recovers many structures such as the dentate gyrus, corpus callosum, and the CA field.

B BayesSpace and Seurat applied to the same data set recover structures insofar as these structures contain homogenous cell populations. The identified clusters are
dispersed over the entire tissue section and thus do not represent a clear tissue territory.

C Vesalius recovered uniform tissue territories in the mouse embryo (Slide-seqV2—Puck_190926_03). The microscopy image highlights the section of the embryo used
to produce Puck_190926_03 (image taken from Slide-seq V2; Stickels et al, 2021).

D BayesSpace and Seurat recover structures insofar as these structures contain homogenous cell populations. The identified clusters are dispersed over the entire
tissue section and thus do not represent a clear tissue territory.

E Vesalius identified tissue territory using Seq-Scope early-onset liver failure (Sample 2117). Vesalius highlights various hepatocyte populations such as pericentral
hepatocytes (Hep. PC), periportal hepatocytes (Hep. PP), and injured hepatocytes (Injured Hep.).

F Vesalius identified tissue territory using Seq-Scope in healthy colon (Sample 2111). Territory isolation in the colon shows various structures and layers including the
smooth muscle, the crypt surface, and the crypt base.

G Vesalius recovers tissue territories in seqFISH data in mouse embryo (right) and can distinguish between different brain regions compared with the single-cell
annotation (left).

H–J In low-resolution Visium 10X data sets, Vesalius accurately recovers tissue territories in a broad range of tissue such as mouse brain (H), mouse kidney (I), and
human breast cancer (J).
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(astrocytes, interneuron, oligodendrocytes, and entorhinal cells)

(Dataset EV4). We illustrate the differential expression of Cpe in

Astrocytes and Nrgn in entorhinal cells in Fig 5A. Astrocytes exhibit

a stronger expression of Cpe in the thalamus compared with the cor-

tex, while entorhinal cells show a higher expression of Nrgn in the

cortex.

Investigation of territories reveals gene expression patterns
linked to neighboring tissues and tissue morphology

We also tested whether gene expression patterns could be linked to

the morphology of a territory. Each territory provided by Vesalius

can be manipulated using morphological operators (see Materials

and Methods) or even divided into layers. The use of morphological

operators for example permits the inclusion of additional barcodes

that are part of the neighboring tissue. A territory divided into layers

can be used to compare gene expression between the center of the

structure and the edge of the structure.

Inflation and barcode clustering of the dentate gyrus (DG-GCL)

revealed that this territory included a thin layer of barcodes belong-

ing to the Dentate Gyrus—sub-granular zone (DG-SGZ) and the den-

tate gyrus—molecular layer (DG-ML) (Fig 5B). Differential gene

expression analysis displayed two genes Cst3 and Apoe expressed at

the border between the DG-GCL and the DG-SGZ (see Dataset EV3).

Allen Brain Atlas ISH images corroborate these results by displaying

a higher expression of both genes at the border of the DG-GCL and

the DG-SGZ (Fig 5C). While increased expression of Cst3 and Apoe

could result from a high cellular density at the border, our results

demonstrate how Vesalius can aid in recovering subtle spatially

driven gene expression or cellular patterns at the border between

tissues.

We also isolated, dilated, and performed a layer analysis of the

corpus callosum. Remarkably, we found high expression of Stmn4

and Kif5a in the innermost layers (Fig 5D). Mean expression of both

genes gradually increased toward the core of the corpus callosum.

The ISH images for Stmn4 taken from the Allen Brain Atlas showed

a stripe of Stmn4 expression (Fig 5D). Kif5a also shows a stripe and

strong expression toward the center of the murine brain. The corpus

callosum is highlighted in red. All differentially expressed genes are

listed in the Appendix (Dataset EV3 and EV4).

Discussion

Spatial transcriptomics—as a technique—has demonstrated its abil-

ity to recover the transcriptome of cells within the context of a tissue

(Rao et al, 2021). This technical advancement has highlighted the

influence of spatial context and cellular microenvironment on the

transcriptome of cells (Hunter et al, 2021). Alongside experimental

development, computational frameworks have been developed

to analyze these new data sets (Satija et al, 2015; preprint: Pham

et al, 2020; Dries et al, 2021; Hu et al, 2021; preprint: Peng et al,

2021; Zhao et al, 2021; preprint: Fu et al, 2021a; Dong &

Zhang, 2022; Palla et al, 2022). However, it remains challenging to

accurately recover spatial domains especially when these domains

contain a multitude of cell types. Here, we present Vesalius—an R

package to effectively perform in silico anatomization of high-

resolution ST data. Vesalius provides a reproducible framework for

the isolation and in-depth analysis of tissue territories.

The key to Vesalius’s effectiveness in recovering heterogenous

tissue territories resides in the embedding of the transcriptome into

image arrays (Figs 1A and EV1A). The application of image process-

ing techniques to these RGB images retrieves tissue territories with-

out any assumption about the transcriptome of neighboring cells. In

this context, an anatomical structure is characterized by its tran-

scriptome and overall cell composition. Taken together, Vesalius

can easily segment tissue territories containing heterogenous cell

populations (Figs 2A–D and 3). In contrast, computational tools

such as BayesSpace (Zhao et al, 2021) and Giotto (Dries et al, 2021)

assume that neighboring spots are likely to be part of the same clus-

ter if they are transcriptionally similar. While this assumption holds

in lower resolution or in homogenous tissues, high-resolution ST

data sets recover the cellular complexity of tissues and thus neigh-

boring spots are not always guaranteed to be of the same cell type.

We demonstrate the challenge of dealing with heterogenous terri-

tories by benchmarking BayesSpace (Zhao et al, 2021), STAGATE

(Dong & Zhang, 2022), SpaGCN (Hu et al, 2021), SEDR (preprint:

Fu et al, 2021a), Giotto (Dries et al, 2021), Seurat (Satija et al,

2015), and Vesalius in simulated data sets. Our simulations were

designed to include different scenarios that could arise from real

high-resolution ST data (Fig EV1C). Overall, Vesalius is the highest

performing algorithm across all regimes (Fig 2A–D). BayesSpace did

not identify clear separations between territories once heterogeneity

was introduced. In all cases, Giotto was unable to recover any clear

territory even in the pure regime. Seurat also falters, but this reflects

the fact that Seurat was never designed to recover spatial domains

accurately but rather cluster similar transcriptomes together.

STAGATE and SpaGCN performed reasonably well at recovering

simulated tissue territories; however, both tools tend to overesti-

mate the number of territories present. The performance of SEDR

was low in most regimes, but the drop in performance was most

notable in highly heterogenous simulation regimes. Vesalius can

◀ Figure 4. In-depth analysis of isolated territories reveals the finer details of spatial patterning.

A Mapping of clustered barcodes in the isolated CA field. Vesalius recovers all 3 CA pyramidal layers.
B CA2 pyramidal layer was enriched with, among others, Pcp4, a canonical CA2 layer marker. The ISH image taken from the Allen Brain Atlas corroborates the

positioning of the CA2 layer within the isolated CA field.
C Pcp4 expression within the CA2 layer is lost in favor of stronger expression in the thalamus.
D The isolated medial habenula and third ventricle show distinct spatial compartments after barcode clustering.
E ISH image describing a medial habenula lower compartment marker (Gabbr2) and a medial habenula upper compartment marker (Calb2). The medial habenula is

highlighted in red.
F ISH images of lower third ventricle marker (Nnat) and upper third ventricle marker (Enpp2).
G Barcode clustering and mapping of the embryonic eye (E12.5) show that Anterior Lens Epithelial cells and Lens Vesicle cells are separated into distinct layers.
H Differential gene expression analysis between Anterior Lens Epithelial Cell layers revealed that the expression of Cryba4 was restricted to the inner layer while Cnnd2

was expressed in the outer layer. Similarly, Pmel was expressed in the outer Lens Vesicle cell layer and Aldh1a1 was expressed in the inner layer.
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recover territories much more accurately, especially in cases where

a territory contains multiple cell types, or each territory is character-

ized by a shift in cell-type proportion. While Vesalius does tend to

merge territories together in our dotted simulations, we demonstrate

that isolation of uniform territories in real ST data provides a conve-

nient way to investigate the finer details of ST data.

Vesalius shows a strong ability to recover tissue territories in

high-resolution ST data such as Slide-seq V2 in both mouse hip-

pocampus and mouse embryo (Fig 3A–C). Territories are uniform

and provide tissue territories that may contain multiple cell types.

BayesSpace can recover anatomical structures in Slide-Seq V2 as

long as these structures are composed of similar cell types (Figs 3B–
D and EV2–EV4). These results are comparable to those produced

with Seurat (Fig 3B–D and EV3–EV5) that does not consider the spa-

tial component at all and simply maps cell cluster to their respective

locations. The current trend in sequencing-based ST is to increase

resolution (Vickovic et al, 2019; Liu et al, 2020; Cho et al, 2021;

preprint: Fu et al, 2021b), and achieving sub-cellular resolution will

prove extremely challenging to analyze whether heterogeneity is not

considered carefully. We demonstrate the broad applicability of

Vesalius in high-resolution ST by recovering tissue territories in

both Seq-Scope (Cho et al, 2021) and seqFISH (Lohoff et al, 2021)

data sets (Fig 3E–G). This application of Vesalius can also be suc-

cessfully performed in lower-resolution data sets such as Visium

10X (St�ahl et al, 2016; Fig 3H–J).
Isolation of spatial territories enhances the analysis of ST data.

The clusters provided by BayesSpace and Seurat do not provide a

convenient way of comparing spatial territories (Fig EV2–EV5), and
sub-clustering does not equate to spatial domain analysis due to the

widespread of barcodes within clusters. We exemplify how the iso-

lation of uniform territories provides an easy and reproducible way

of investigating the finer details of spatial patterning. The CA2 field

is often lost and merged with the CA1 and CA3 field (Fig 3B), yet

we were able to recover all three CA fields in the mouse hippocam-

pus after territory isolation (Fig 4A). The isolation of territories

ensures that weaker expression patterns such as the expression of

Pcp4—a CA2 field marker—are not lost in favor of stronger ones

(Fig 4B and C). This approach also illustrated that the medial habe-

nula and third ventricle were in fact divided into compartments

(Fig 4D). For example, we showed that 119 genes are differentially

expressed between medial habenula compartments with the expres-

sion of Gabbr2 and Calb2 delineating the position of both compart-

ments in ISH images taken from the Allen Brain Atlas (Fig 4E). The

isolation of the embryonic eye (Fig 4G and H) displayed transcrip-

tional shifts that could either indicate novel cell types or spatially

resolved developmental cues occurring during development. Finally,

we were able to use isolated territories and demonstrate that cells in

the mouse hippocampus exhibit territory-specific gene expression

patterns: Astrocytes in the cortex showed a higher expression of Cpe

compared with astrocytes in the thalamus (Fig 5A). These results

demonstrate how crucial spatial context is to understand the tran-

scriptome of cells and how it can provide a new way of annotating

cell types based on their spatial location.

Vesalius’s unique way of representing territories also lends itself

to the manipulation of territories and investigating gene expression

in the context of neighboring tissues. For instance, we identified an

increased expression of Cst3 and Apoe at border of the DG-GCL and

DG-SGZ (Fig 5B and C). We also discovered a heightened expres-

sion of Kif5a and Stmn4 at the center of the corpus callosum (Fig 5

D).

Finally, the concept of embedding the transcriptome into images

offers the possibility to leverage powerful tools and concept devel-

oped in the field of computer vision. We hope that Vesalius will

provide a new avenue for the investigation of ST data. Overall,

Vesalius is an effective tool to recover spatial domains in high-

resolution ST data and isolate territories for further analysis. We

demonstrate that the isolation of spatial domains uncovers the finer

details of spatial patterning and capitalizes on the wealth of infor-

mation contained in high-resolution ST data. Vesalius complements

other ST analysis methods, enhances potential biological insights,

and may help in providing an additional layer to cell-type annota-

tion based on their spatial location.

◀ Figure 5. Investigation of territories reveals gene expression patterns linked to neighboring tissues and tissue morphology.

A Differential gene expression analysis between cells contained in the cortex and the thalamus shows that spatial location influences gene expression. Astrocytes in the
cortex are enriched with Cpe, while entorhinal cells in the thalamus are enriched with Nrgn.

B Barcode clustering of the isolated dentate gyrus reveals transcriptional dissimilarity between each dentate gyrus (DG) layer.
C Differential gene expression analysis between DG Granule cell layer and DG sub-granular zone displayed a high expression of Cst3 and Apoe at the border between

layers. Cst3 and Apoe border expression is corroborated by Allen brain Atlas ISH images.
D Layered expression pattern of Stmn4 and Kif5a within the isolated corpus callosum showed a higher expression at the center of the corpus callosum. ISH images

corroborate the spatial expression pattern of both genes. Corpus callosum contained within red lines.

Materials and Methods

Reagents and Tools table

Software Reference or source

R programming Language (4.0.3) https://www.r-project.org/

Anaconda3-2022.05-Linux-x86_64 https://www.anaconda.com/products/distribution

Vesalius 1.0.1 https://patrickcnmartin.github.io/Vesalius/
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Reagents and Tools table (continued)

Software Reference or source

Seurat 4.0.1 https://satijalab.org/seurat/

STAGATE 1.0.1 https://github.com/QIFEIDKN/STAGATE

SEDR https://github.com/JinmiaoChenLab/SEDR

SpaGCN 1.2.5 https://github.com/jianhuupenn/SpaGCN

BayesSpace (Modified from 1.3.1) https://github.com/patrickCNMartin/BayesSpace

Giotto 1.1.0 https://github.com/RubD/Giotto

RCTD (Spacexr) https://github.com/dmcable/spacexr

mclust 5.4.7 https://cran.r-project.org/web/packages/mclust/index.html

mcclust 1.0 https://cran.r-project.org/web/packages/mcclust/index.html

ggpubr_0.4.0 https://cran.r-project.org/web/packages/ggpubr/index.html

Methods and Protocols

Preprocessing
Preprocessing of data prior to Vesalius image building was handled

by the Seurat package (Satija et al, 2015). Data sets were loaded,

log normalized, and scaled using the default Seurat settings. Vari-

able features (n = 2,000) were extracted prior to PCA. Log normal-

ization was preferred for preprocessing as it would provide a fair

comparison with other tools and methods. Selecting the number of

principle components used for analysis can be achieved by using

the Seurat JackStraw function or the Seurat ElbowPlot function.

Cell-type deconvolution
To infer the cell-type identity of individual beads in Slide-seq V2

data sets, RCTD (Robust Cell Type Decomposition) was used (Cable

et al, 2021). RCTD is an R package that decomposes the cell-type

mixtures of spatial beads at single-cell resolution. RCTD is trained

with pre-labeled single-cell RNA-sequencing (scRNA-seq) data sets

predicts the cell types of each bead. We selected RCTD as a decon-

volution tool as it was purposefully designed for fine-resolution spa-

tial transcriptomics data such as Slide-seq. We conducted

simulation under doublet mode, which is recommended for Slide-

seq data sets (Cable et al, 2021). It assumes that each bead contains

up to two different cell types. We trained RCTD using scRNA-seq

data set for hippocampus (Saunders et al, 2018) that consists of

27,953 genes and 113,507 cells annotated with 17 cell types. The

scRNA-seq data set was obtained from the publicly available reposi-

tory, DropViz. The results of the cell-type decomposition were vali-

dated by cell-type markers accompanied with the scRNA-seq data

set from hippocampus (preprint: Kim et al, 2022).

Vesalius—Transcriptome embedding into the RGB color space
To embed the transcriptome into the RGB color space, Vesalius first

computes principal component analysis (PCA) followed by a 3-

dimensional Uniform Manifold Approximation and Projection (UMAP).

UMAP latent space is min-max normalized for each barcode Bi:

B0
i ¼ Bi�min Bð Þ

max Bð Þ�min Bð Þ : (1)

The normalized 3-dimensional space can simply be converted

into an RGB color space (Appendix Fig S1A).

We used the default 30 PCs for UMAP projections. Alterna-

tively, Vesalius can directly use PCA loading values in which

case Vesalius selects a PC slice composed of three principal

components—one for each color channel (RGB). For each color

channel c and for each barcode Bi, Vesalius takes the sum of

the absolute value of all loading values associated with Bi in

color channel c:

B0c
i ¼ ∑

n

k¼1

Lkj j (2)

With k = 1. . .n and n being the number of non-zero loading

values L associated with barcode B0c
i .

For each color channel, Vesalius returns a numerical array of

length equal to the number of barcodes. To ensure that these

values are within color space bounds, each color channel is

min-max normalized. As three PCs are selected in a “slice”

(e.g., PC1, PC2, and PC3) and RGB color space contains three

dimensions, Vesalius simply assigns the color value obtained

from each PC into each color space dimension (red, green, and

blue—Fig EV1A).

Vesalius—Building images arrays from spatial transcriptomics

Each ST data set contains a set of coordinates describing the x and y

position of each barcode/spot. As the coordinates will not necessar-

ily be uniformly distributed and contiguous, Vesalius expands punc-

tual coordinate values into tiles using Voronoi tessellation and fills

each tile using rasterization. First, we filter stray barcodes by com-

paring barcode density in a grid covering the entire ST assay and

removing any barcodes that fall into a grid section with a low bar-

code density (determined based on quantiles of grid density). Next,

we produce a Voronoi diagram using the remaining barcodes. Each

tile is then converted into a pixel set via rasterization. The color

code obtained for each barcode is then assigned to its tile. RGB

image arrays are three-dimensional arrays, and as such each color

channel in the image will receive a distinct set of color value for

each latent space dimension (UMAP or PCA). The tiles associated

with each barcode remain the same between color channels. Option-

ally, Vesalius can resize the image output using nearest-neighbor

interpolation as default. All barcodes will be retained after image

resizing.
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Vesalius—Image processing and segmentation
Image arrays are handled internally by the imager (Barthelm�e &

Tschumperl�e, 2019) and imagerExtra R packages, which contain a

set of image processing methods such as blurs, segmentation, and

image manipulation. Images can be regularized with nonlinear total

variation-based noise removal algorithms (Rudin et al, 1992). Vesal-

ius provides an iterative segmentation approach to reduce the color

space of an image and extract territories.

First, the image array is smoothed using either Gaussian blur,

median blur, box blur, or a combination of the aforementioned

methods. Second, color values are clustered in k clusters using K-

means clustering. The choice of k is left to the user and will depend

on the level of territory refinement the user wishes to have. Multiple

rounds of smoothing and segmentation may be applied. In the

instance that multiple values of k are used, Vesalius will smooth

and segment the image as described above and repeat the process

for all values of k. A decreasing k value at each round will itera-

tively decrease the color space.

To decrease computational time, the clustering is only applied to

the center pixel value. The center pixel is defined by the pixel corre-

sponding to the original barcode location before tessellation and ras-

terization. Vesalius also provides the option to smooth and segment

images using all pixels instead. Using all pixels for segmentation

produces sharper segments between homogenous territories. How-

ever, this sharpness in homogenous territories may come at the cost

of increased noise in heterogenous territories.

Vesalius—Isolating territories
Once barcodes have been assigned to a color cluster, each color

cluster is further subdivided into territories. For every barcode pre-

sent in a color cluster, Vesalius checks for all barcodes that are

within a certain capture radius of each other and assigns them to a

territory (Fig EV1B). This process is repeated for all barcodes in a

color cluster until they have all been assigned to a territory. Vesalius

repeats this process for each color cluster. The capture radius is

defined as the distance value that corresponds to the proportion of

maximum distances between all barcodes in the ST assay. First,

Vesalius computes a distance matrix between all barcodes in 2D

space and extracts the maximum possible distance between bar-

codes. A user-selected parameter defines the proportion of this max-

imum distance that should be used as a capture radius. Territories

may be assigned to the isolated group. This group is defined by ter-

ritories that did not contain enough cells (user-defined parameter)

and outside of the capture radius (user defined).

While the number of color clusters is fixed by k (or final k) as

described above, the final number of territories may vary depending

on parameter selection used throughout the analysis. This includes

image processing and territory isolation. The selection of these

parameters depends on the users’ interests and how they wish to

explore ST data. In the context, the value of k serves a similar role

as the granularity resolution in Louvain or Leiden clustering.

Simulating high-resolution ST data and tissue heterogeneity
To benchmark Vesalius in high-resolution ST data sets containing

heterogenous tissues, we simulated ST data using Slide-seq V2 after

cell-type deconvolution. First, we applied RCTD (Cable et al, 2021)

to deconvolute cell types and selected barcodes that contained a sin-

gle cell type (n = 12,013). From these barcodes, we selected cell

types that contained at least 50 different barcodes leaving 11,957

barcodes across 13 cell types. This approach ensures that we more

closely mimic the biology of heterogenous tissue rather than ST

assay technical limitations. Next, we generated 6,000 random x and

y coordinate pairs that will be assigned to a territory. For each terri-

tory, we randomly sampled cell types and barcodes under four dif-

ferent regimes: pure, uniform, exponential, and dotted (Fig EV1C).

The pure regime contains a single randomly sampled cell type in

each territory and randomly selected barcodes for that cell type. The

uniform regime contains n cell types in equal proportion. Each terri-

tory contains different sets of randomly sampled cell types. The

exponential regime contains n cell types in unequal proportion:

Pl ¼ el

∑
n

l¼1

el
(3)

where n is the number of different cell types and Pl is the proportion

of cell type l. Each territory contains the same cell types in different

proportions. The pure, uniform, and exponential regimes are divided

into three equally sized territories. Finally, the dotted regime con-

tains a background territory in which five circular territories are

placed. The radius of each territory is randomly selected, and the

center of each territory is placed upon a randomly selected coordi-

nate pair. Each territory including the background contains a random

number of cell types (between 1 and 3 cell types), and for each cell

type, we randomly sample barcodes. To further increase the com-

plexity of the dotted regime, we also allow for overlaps between ter-

ritories. While the input parameters to our simulation should

produce six total territories, allowing overlaps means that some terri-

tories may completely mask another. To reduce any potential cell-

type bias, we ran the simulation 10 times each time randomly select-

ing different cell types and different barcodes. The simulated data set

produced at each sampling round was the same between each tool,

and a summary of the cell types sampled at each round can be found

in Dataset EV1. The code used to run simulations and method com-

parison (see below) can be found here: https://github.com/

patrickCNMartin/Vesalius/tree/main/methodComp.

Method comparison
We compared the performance of Vesalius to the performance of

other methods such as Seurat (Satija et al, 2015), BayesSpace (Zhao

et al, 2021), SpaGCN (Hu et al, 2021), SEDR (preprint: Fu et al,

2021a), STAGATE (Dong & Zhang, 2022), and Giotto(Dries et al,

2021) in our simulated data sets.

BayesSpace required a minor modification to accommodate

Slide-seq V2 as well as our simulated data sets. We adapted the

.find_neighbors function to select neighbors based on Euclidean dis-

tance in 2D space and select the 6 closest neighbors. We added a

new platform named “SS” for Slide-Seq. The forked and modified

version of BayesSpace is available at: https://github.com/

patrickCNMartin/BayesSpace.

Simulated data provide ground-truth data sets that can be used to

compare each tool in high-resolution data sets. We assessed each

tool’s ability to recover each territory using and Adjusted Rand Index

(Rand, 1971) and variation of information metric (Meilǎ, 2007). ARI
scores are affected by the granularity of the clustering and the varia-

tion of information metric provides an alternative measure of
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performance. It is important to acknowledge that even though Seurat

is consistently used for spatial domain retrieval benchmarking, Seu-

rat is not designed to retrieve spatial domains and is expected to per-

form poorly in highly heterogenous tissues.

Statistical analysis was performed to compare overall perfor-

mance between methods over 10 simulation replicates. We first

tested for normality using a Shapiro–Wilks test, and then we tested

the homogeneity of variance with a Bartlett test using base R func-

tionality. We compared all groups with a Kruskal–Wallis test and

used a Wilcoxon rank-sum test for multiple comparisons. P-values

for the Kruskal–Wallis are shown in the figure (Fig 2A–C), and mul-

tiple comparisons are shown using start notation for clarity. Com-

parisons were carried out using the ggpubr R package.

All code related to the comparison between methods can

be found here: https://github.com/patrickCNMartin/Vesalius/tree/

main/methodComp

Vesalius—Differential gene expression and territory markers
Marker genes and differentially expressed genes can be extracted

from each territory. This process can be carried out in a fivefold

manner:

• Territory vs all other territories combined

• Territory vs all other territories individually

• Territory(ies) vs territory(ies)

• Cells within a territory(ies) vs cells within a territory(ies)

• Layer in territory vs layer in territory

To be considered for differential expression analysis, genes must

pass a set of criteria. First, genes must be present in a certain per-

centage of barcodes in at least one territory (> 10% of beads as

default). Second, the log fold change must be above a certain thresh-

old (logFC ≥ 0.25). It should be noted that this threshold is applied

in the case of upregulation as well as downregulation. Remaining

genes are tested for significant differential gene expression by using

a Wilcoxon rank-sum test (Bonferroni corrected P-value < 0.05).

Gene expression patterns can be visualized by using the

viewGeneExpression function provided in the Vesalius package.

Gene expression can be visualized over the entire slide or in an iso-

lated territory. For visualization, gene expression is min-max nor-

malized.

Vesalius—Territory dilation, erosion, filling, and cleaning
By using image representation of territories, Vesalius provides a

convenient way to manipulate territories using image morphology.

Vesalius encompasses dilation, erosion, filling, and cleaning into a

single function. We summarize image morphologies using a “mor-

phology factor” described by an array of integers. Positive integers

increase territory size, while negative integers decrease territory

size. Numerical arrays of positive and negative integers provide fill-

ing and cleaning morphologies. For example, in the case of a clean-

ing morphological operator, a morphology factor array v = [−5,5]
will first erode the territory by 5 pixels and then dilate the territory

by 5 pixels.

Vesalius—Territory layering and layered gene expression
Isolated territory layering is achieved by capturing territory edges

and removing barcodes belonging to the edge and repeating the

process until no more barcodes remain. First, the isolated territory

is converted to a black and white image and X-Y Sobel edge detec-

tion is applied. All barcodes that share a pixel with the detected

edge are pooled into a layer and removed from the territory. The

edge detection and pooling process are repeated until all barcodes

have been assigned to a layer. Layers can be combined by merging

neighboring layers together (Fig EV1D). Differential gene expression

between layers is carried out using a Wilcoxon rank-sum test (Bon-

ferroni corrected P-value < 0.05 & logFC ≥ 0.25). Visualization of

gene expression between layers is provided by the viewLay-

eredExpression in the Vesalius package. Layers are described by

their normalized and averaged expression values.

Cell clustering and annotation
Clustering analysis of isolated territories was carried out using the

Seurat package. Clusters and territories were manually annotated

using their respective genetic markers. Markers were extracted from

each cluster using the FindAllMarkers function provided by Seurat

and the extractClusterMarkers function provided by Vesalius.

FindAllMarkers compares clusters between each other (in the iso-

lated territory), while extractClusterMarkers compares clusters to all

other barcodes present in the slide. This distinction ensures that we

recover subtle differences between cell types and territory-specific

gene expression.

We used the default Wilcoxon rank-sum test for marker extrac-

tion. Identified markers were compared with Allen Brain Atlas (Lein

et al, 2007) (https://mouse.brain-map.org/), the lifeMaps/geneCard

database (Edgar et al, 2013) (https://discovery.lifemapsc.com/in-

vivo-development), or panglaodb database (Franz�en et al, 2019)

(https://panglaodb.se/) to assign cell type to clusters and territories.

Manual annotation of cell clusters was preferred over automated

methods to ensure correct tissue annotations, rare cell-type annota-

tion and finally to maintain subtle spatially driven patterning. Cell-

type markers used for annotation are available in Dataset EV2.

Analyzed publicly available datasets
Slide-seq V2: Single Cell Portal. https://singlecell.broadinstitute.org/

single_cell/study/SCP815/highly-sensitive-spatial-transcriptomics-

at-near-cellular-resolution-with-slide-seqv2#study-summary. Seq-

Scope: Deepblue. https://deepblue.lib.umich.edu/data/concern/

data_sets/9c67wn05f. seqFISH: https://content.cruk.cam.ac.uk/

jmlab/SpatialMouseAtlas2020/. Visium 10X: https://www.10x

genomics.com/resources/datasets. ISH Images: Allen Brain Atlas.

https://mouse.brain-map.org/. Reference Single cell: DropViz.

http://dropviz.org/

Data availability

The modified version of BayesSpace to accommodate Slide-seqV2:

GitHub. https://github.com/patrickCNMartin/BayesSpace. Vesalius:

GitHub. https://patrickcnmartin.github.io/Vesalius/index.html.

Vesalius Analysis: GitHub. https://patrickcnmartin.github.io/

Vesalius/articles/Vesalius_Analysis/Vesalius_analysis.html. Vesal-

ius Method Comparison and Simulation: GitHub. https://github.

com/patrickCNMartin/Vesalius/tree/main/methodComp.

Expanded View for this article is available online.
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