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Objectives: To build and evaluate a deep learning radiomics nomogram (DLRN) for
preoperative prediction of lung metastasis (LM) status in patients with soft tissue
sarcoma (STS).

Methods: In total, 242 patients with STS (training set, n=116; external validation set,
n=126) who underwent magnetic resonance imaging were retrospectively enrolled in
this study. We identified independent predictors for LM-status and evaluated their
performance. The minimum redundancy maximum relevance (mRMR) method and least
absolute shrinkage and selection operator (LASSO) algorithm were adopted to screen
radiomics features. Logistic regression, decision tree, random forest, support vector
machine (SVM), and adaptive boosting classifiers were compared for their ability to
predict LM. To overcome the imbalanced distribution of the LM data, we retrained each
machine-learning classifier using the synthetic minority over-sampling technique
(SMOTE). A DLRN combining the independent clinical predictors with the best
performing radiomics prediction signature (mRMR+LASSO+SVM+SMOTE) was
established. Area under the receiver operating characteristics curve (AUC), calibration
curves, and decision curve analysis (DCA) were used to assess the performance and
clinical applicability of the models.

Result:Comparisons of the AUC values applied to the external validation set revealed that
the DLRN model (AUC=0.833) showed better prediction performance than the clinical
model (AUC=0.664) and radiomics model (AUC=0.799). The calibration curves indicated
good calibration efficiency and the DCA showed the DLRN model to have greater clinical
applicability than the other two models.

Conclusion: The DLRN was shown to be an accurate and efficient tool for LM-status
prediction in STS.
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INTRODUCTION

Soft tissue sarcomas (STS) are rare malignant neoplasms having
unpredictable clinical and pathologic behaviors (1). Approximately
25%–30% of patients with STS have distant metastasis (DM), which
is associated with a poor prognosis (2, 3), with this DM rate rising to
50% in high-grade STS (4). The lung is the most common site of
DM (5),with approximately 80% of DM cases occurring in STSs of
the extremities (6). When complete lesion resection of pulmonary
metastases can be made, the 3-year survival rates of patients with
metastasizing STS can reach 30%–46% (7–9). Thus, with the risk of
lung metastases (LM) from STS, there is a need to supply systemic
therapy at the earliest possible time (10). In this condition, more
aggressive chemotherapy or cancer treatment targeted to the
histopathology of the STS could be carried out (11, 12). The
accurate and early identification of LM risks in the period of STS
therapy is thus of central importance because it could potentially
indicate the most appropriate treatment and enhance
overall survival.

The most common appearance of LMs of STSs is as a
pulmonary nodule. However, chest computed tomography (CT)
cannot effectively differentiate metastatic lung nodules from non-
metastatic ones, and positron emission tomography (PET)-CT
scan supplies few extra clinical benefits because of its high false-
negative rate for lung nodules ≤ 10 mm in diameter (13).

Radiomics is a promising prospect that involves the
extraction of large numbers of high-throughput analysis
features from medical images, and can consequently be used to
screen for vital features for use in models for quantitative
oncology diagnostics (14, 15). Although radiomics can
quantitatively represent intra-tumoral heterogeneity (14),
partial volume effects may mean that the heterogeneity of
small lesions may not be accurately quantified (16). Hatt et al.
(17) suggested that for tumors < 10 cm3, radiomics texture
features have no additive value in outcome forecasting. Most
early LM lesions are usually small and may therefore not be
suitable for radiomics analysis; for a single pulmonary nodule,
puncture biopsy is undoubtedly a more appropriate strategy.
Nevertheless, when multiple lung nodules (including metastatic
and non-metastatic nodules) are present, false negatives can
sometimes occur because of sample selection. In summary,
analysis of lung nodules cannot always effectively identify the
LM status of STS.

Past studies have suggested that tumor-related risk factors,
such as the grade of malignancy and size of the tumor, are
prognostic factors for the DM status of STS (18, 19). Although
magnetic resonance imaging (MRI) is indispensable for the
routine management of patients with STS, conventional
imaging assessment relying on the manual evaluation of
semantic features of masses by expert radiologists can suffer
from a relative paucity of features, and it neglects a large amount
of information on tumor heterogeneity (20). Radiomics uses
analyzable image information to improve the clinical decision
strategy, and can enhance the performance of oncology diagnosis
and prognosis (21). Deep learning (DL), which involves
convolutional neural networks, has frequently been applied to
radiological imaging features and has shown very good
Frontiers in Oncology | www.frontiersin.org 2
performance in cancer prognosis (22). At least two radiomics
models using primary lesion evaluation to predict DM-status in
STS have been described (23, 24), and a DL model using PET and
MRI texture features of the primary lesion was constructed to
predict the LM-status in STS (12). However, a model based on
MRI handcrafted radiomics (HCR) and DL features to predict
LM-status in STS has not yet been reported.

The purpose of our study was therefore to construct a DL
radiomics nomogram (DLRN) using a three-center dataset for
the preoperative prediction of LM status in STS.
MATERIALS AND METHODS

Patients and Tumor Characteristics
All organizations that participated in this retrospective study
achieved approval from their hospital ethics review board and a
waiver for the provision of written consent. A total of 351
patients were retrospectively identified for enrollment into this
study. All patients underwent preoperative MRI and chest CT
examinations at one of three hospitals and were confirmed as
having STS by postoperative pathology between May 2008 and
September 2020. Supplementary Item A1 lists the inclusion and
exclusion criteria applied to the patients. Finally, 242 patients
(median age 53, from 1 to 93) were enrolled in the current study,
and were divided into a training set of 116 patients from
Institution 1 (Affiliated Hospital of Qingdao University,
Qingdao, China) and an external validation set consisting of
126 patients from Institutions 2 and 3 (Institution 2: Shandong
Provincial Hospital Affiliated to Shandong First Medical
University, Jinan, China; Institution 3: The Third Hospital of
Hebei Medical University, Shijiazhuang, China). Preoperative
clinical information, including age, gender, TNM stage, and
semantic MRI features, was obtained. The TNM staging was
evaluated using the preoperative MRI and CT according to the
American Joint Committee on Cancer (AJCC) Staging Manual
(8th Edition). Pathological results were confirmed by a
pathologist (F.H.) with 12 years of experience in soft tissue
disease diagnosis. The final histopathologic results of the 242
STS patients are shown in Table S1. LM was confirmed by
continued progression of the pulmonary nodule on regular
postoperative CT examinations or by histopathological
diagnosis of puncture or surgical resection samples.

MRI and Semantic Feature Acquisition
All patients underwent preoperative MRI examinations,
including axial T1-weighted imaging (T1WI) and axial fat-
suppressed T2-weighted imaging (FS-T2WI). Supplementary
Item A2 lists the MRI acquisition settings, and the analysis of
the MRI semantic features is summarized in Supplementary
Item A3.

Region-of-Interest Delineation and
Radiomics Feature Extraction
A schematic of the radiomics analysis is shown in Figure 1.
Region-of-interest (ROI) segmentation in three dimensions was
June 2022 | Volume 12 | Article 897676
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applied with ITK-SNAP software (version. 3.8.0, http://www.
itksnap.org). A total of 1379 HCR features were derived from
each ROI (the extraction flow is shown in Supplementary
Item A4).

For the deep leaning-based feature extraction process, we
used the deep convolution network ResNet34 as DL feature
extractor (25). The model was pre-trained on Image-Net
dataset based on Pytorch 1.4.0 platform for transfer learning.
The output of the last convolutional layer of ResNet-34 were
used as DL features. After elimination of null features, 104 deep
leaning-based features (54 from T1WI and 50 from FS-T2WI)
were forwarded into the following processes.

Combat Compensation Methodology
The combat compensation methodology (26) was used to
remove the effects of different protocols and scanners, with the
method filtering out technical inconsistencies in MRI radiomics
features (27). In this study, combat was applied to decrease the
inconsistencies of multi-central radiomics features.

Handcrafted Radiomics and Deep
Learning Signature Building
After the combat compensation method, all hand-crafted
radiomics features were standardized to z-score. The feature
selecting method of minimum redundancy maximum relevance
(mRMR) was applied to select the top 15 features. Then, the least
absolute shrinkage and selection operator (LASSO) algorithm
was used to further screen the feature parameters. The LASSO
algorithm compresses the regression coefficients of some features
to zero, and a 10-fold cross verification method was applied to
select the best weight coefficient l. The selected features were
combined with their respective coefficients using a linear
Frontiers in Oncology | www.frontiersin.org 3
combination formula to form the radiomics model. Five
machine-learning classifiers were compared: logistic regression,
decision tree, random forest, support vector machine (SVM),
and adaptive boosting; and the method with the best
prediction performance was used to construct a predictive
radiomics signature.

Finally, the following prediction models were built: (1) an
HCR model, including T1WI and FS-T2WI handcrafted
radiomics features; (2) a DL model, including T1WI and FS-
T2WI DL extracted features; and (3) a handcrafted and
radiomics-DL combined (HD-Combined) model, including
both HCR features and DL features from T1WI and FS-T2WI.
Each machine-learning model was first trained without
subsampling and then retrained with the synthetic minority
oversampling technique (SMOTE) (28, 29).

Clinical Model and Building of the Deep
Learning Radiomics Nomogram
The statistically significant preoperative clinical characteristics
were screened using univariate logistic analysis. Characteristics
with P < 0.10 were then entered into a multivariate logistic
regression. Those characteristics with a P value < 0.05 were
identified as independent predictors for a risk of LM and were
used to establish a preoperative clinical model. Finally, the
independent risk predictors and the best performing radiomics
signature model were combined to construct the DLRN.

Performance Assessment of the Deep
Learning Radiomics Nomogram and
Different Models
The area under the receiver operating characteristics curve
(AUC) and accuracy were used to access the LM-status
A

B

D E

C

FIGURE 1 | Schematic of the radiomics analysis.
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prediction capability of the clinical model, radiomics signature
models, and DLRN when they were applied to the training set
and external validation set. The DeLong test was performed to
evaluate the difference of each model’s AUC. Calibration curves
were used to assess the fitting of the models. The clinical
reliability and practicability of the models were evaluated by
decision curve analysis (DCA).

Follow-up Surveillance and
Survival Analysis
Postoperative follow-up examinations of the patients using MRI
or CT were performed every 3–6 months for the first 2 years and
then once a year subsequently. The time from operation to the
time of the patient survival endpoint outcome, such as imaging
examination identification of lesion recurrence, day of last
follow-up examination, or day of death with no evidence of
progression, was counted as progression-free-survival (PFS). The
censoring criteria for the patients were no matter emigration, or
the 31 October 2020, whichever came first.

Kaplan-Meier survival curves were used for PFS analysis, and
the log-rank test was used to analyze the survival situation and
compare the PFS probability of patients in different metastasis
risk groups. The DLRN model was enrolled into the PFS
stratification evaluation.
Frontiers in Oncology | www.frontiersin.org 4
Statistics
All statistical procedures were performed using R software (v 3.4.4,
http://www.r-project.org) and R packages we used in each step were
shown in Table S2. All p-values of < 0.05 were considered
statistically significant. Student’s t-test was used for continuous
variables and the chi-square test for class-based variables. Uni-
and multi-variate logistic analysis were applied in SPSS software
(IBM, v 25.0).
RESULTS

Clinical Information Screening and
Model Construction
The preoperative clinical information and semantic MRI features
of the 242 patients with STS are shown in Table 1. The univariate
and multivariate logistic regression results are shown in Table 2.
According to the results of the univariate logistic regression
analysis, four clinical parameters showed a significant
contribution to the prediction of the LM-status of patients
with STS. However, following the multivariate logistic
regression, only one clinical parameter (T-stage) was included
in the clinical model construction. The AUC values of the clinical
TABLE 1 | Patient’s Clinical information and MRI semantic features between non-metastasis and metastasis group in the training and external validation set.

Training set (N = 116) External validation set (N = 126)

Non-metastasis(N =
96)

Metastasis(N =
20)

P Non-metastasis (N =
107)

Metastasis
(N = 19)

P

Age (years) (mean ± SD) 51.31 ± 18.851 48.10 ± 17.741 0.485 51.51 ± 17.159 49.74 ± 20.448 0.687
Gender Male 62 12 0.698 63 15 0.097

Female 34 8 44 4
T-stage 1 33 3 0.002 28 3 0.022

2 44 7 55 6
3 11 2 17 5
4 8 8 7 5

N-stage 0 86 15 0.161 98 14 0.022
1 10 5 9 5

MRI Semantic Features
Number Solitary 62 16 0.181 76 15 0.478

Multiple 34 4 31 4
Depth Deep 37 10 0.344 56 55 0.036

Superficial 59 10 51 14
Heterogeneous SI at T1WI <50% 62 8 0.041 53 9 0.862

≥50% 34 12 54 10
Heterogeneous SI at T2WI <50% 50 6 0.072 48 7 0.516

≥50% 46 14 59 12
Tumor volume of necrosis MRI
signal

0 20 5 0.590 22 1 0.265
1%–50% 55 9 60 12
>50% of tumor
volume

21 6 25 6

Peritumoral edema No 20 5 0.178 28 4 0.045
Limited 62 9 71 10
Extensive 14 6 8 5

Location Limb 93 19 0.648 61 9 0.202
Trunk wall 2 1 16 4
Head and neck 0 0 2 2
Internal trunk 1 0 28 4
June 2022 |
 Volume 12 | Article 8
SD, standard deviation; Calculated from student t-test or Mann–Whitney U test for ordinal variables and chi-square test or Fisher exact test for categorical variables, where appropriate.
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model were 0.696 on the training set and 0.664 on the external
validation set (Table 3).

Feature Screening and Performance of the
Radiomics Signatures
Overall, 949 HCR features from T1WI and 772 from FS-T2WI
showed high stability (ICC > 0.75), and these were combined
with 54 T1WI-DL features and 50 FS-T2WI-DL features for
inclusion in the subsequent investigations. In the screening with
the mRMR-LASSO algorithm, one HCR feature and five DL
features had non-zero coefficients and were used in the HD-
Combined model (Figures 2A–C). The features included in each
model are shown in Table S3, while Table S4 shows the
predictive performance of all radiomics signatures. The HD-
Combined signature trained by the SVM classifier had the best
performance, with AUC of 0.806 and accuracy of 0.849 on the
external validation set. Table S5 shows the performance of all
radiomics signatures combined with the SMOTE algorithm. The
HD-Combined signature trained by the SVM classifier combined
with the SMOTE algorithm attained the best performance, with
AUC of 0.799 and accuracy of 0.881 on the external validation
set. The HD-Combined SVM-SMOTE signature was selected to
construct the DLRN because it gave the best accuracy for LM
prediction in the external validation set.

Validation of the Deep Learning Radiomics
Nomogram and Patient Risk Stratification
A DLRN was constructed combining the HD-Combined SVM-
SMOTE signature with the independent preoperative clinical LM
Frontiers in Oncology | www.frontiersin.org 5
predictor (Figure 3A), and Table 3 shows its predictive
performance. The AUCs showed significant difference between
DLRN and clinical model (0.833 vs. 0.664, P < 0.05) on the
external validation set. The AUCs were not significant different
between DLRN and radiomics model (0.833 vs. 0.799, P = 0.394).
The accuracy value of DLRN (0.897) is higher than that of clinical
model (0.849) and radiomics model (0.881). Figures 3B, C shows
the calibration curves of the DLRN, indicating that the DLRN was
appropriate in both data sets. The DCA of the DLRN indicated it
had better usefulness than the other two models (Figure 3D). As
shown in the Kaplan–Meier survival curve, the DLRN model
significantly stratified patients according to PFS in both the
training and external validation sets (both log rank P < 0.01;
Figures 3E, F). The median PFS times of low-LM-risk subsets
were not reached in either of the sets, and the median PFS times of
high-LM-risk subsets were 21.0 months in the training set and 18.5
months in the external validation set.
DISCUSSION

The objective of the current study was to build and validate LM
risk prediction models based on MRI radiomics measured from
the primary STS lesion. We found that in the LM-status
prediction, the DLRN model of STS showed enhanced
performance compared with the radiomics signatures and the
clinical model alone, suggesting the incremental value of the
DLRN to the current diagnostic management of STS. In this
multi-institution study, the DLRN offered preferable prognostic
TABLE 3 | Results of clinical model, radiomics model and DLRN predictive performance.

Set Model AUC (95%CI) ACC ER SEN SPE PPV NPV P

Training DLRN 0.936 (0.874-0.999) 0.914 0.086 0.650 0.969 0.813 0.930 Reference
Radiomics model 0.914 (0.876-0.953) 0.755 0.245 0.463 1.000 1.000 0.691 0.551
Clinical model 0.696 (0.564-0.827) 0.828 0.172 0.000 1.000 NA 0.828 <0.001

External validation DLRN 0.833 (0.732-0.933) 0.897 0.103 0.474 0.972 0.750 0.912 Reference
Radiomics model 0.799 (0.675-0.922) 0.881 0.119 0.263 0.991 0.833 0.883 0.394
Clinical model 0.664 (0.523-0.805) 0.849 0.151 0.000 1.000 NA 0.849 0.034
June
 2022 | Volu
me 12 | Artic
CI, confidence interval; ACC, accuracy; ER, error rate; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; NA, not available.
TABLE 2 | Results of univariate and multivariate logistic regression analysis in soft-tissue sarcoma patients.

Univariate Logistic Analysis Multivariate Logistic Analysis

OR (95%CI) P OR (95%CI) P

Radi-socre 5.540 (2.814-10.907) <0.001 6.617 (2.755-15.891) <0.001
Age 0.991 (0.966-1.017) 0.482
Gender 0.823 (0.306-2.208) 0.698
T-stage 2.201 (1.351-3.583) 0.002 2.943 (1.266-6.838) 0.012
N-stage 0.349 (0.104-1.165) 0.087 0.153 (0.023-1.007) 0.051
Number 0.456 (0.141-1.473) 0.189
Depth 0.627 (0.238-1.651) 0.345
Heterogeneous SI at T1WI 0.366 (0.136-0.981) 0.046 1.211 (0.126-11.677) 0.869
Heterogeneous SI at FS-T2WI 0.394 (0.140-1.112) 0.079 1.284 (0.131-12.577) 0.830
Tumor volume with MRI signal compatible with necrosis 1.092 (0.531-2.246) 0.810
Peritumoral edema 1.340 (0.614-2.922) 0.462
Location 0.979 (0.209-4.582) 0.979
le
OR, odds ratio; CI, confidence interval.
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ability (AUC=0.936 and 0.833, accuracy=0.914 and 0.897, for
training and external validation sets, respectively), better clinical
application, and was well calibrated. Additionally, the DLRN
provided satisfactory PFS risk stratification of the patients.

In a previous study, Li (30) et al. found that certain clinical
features, including age, histological subtype, primary location,
tumor size, grade, and depth of extremities in STS, could be used
as predictors of DM. Different patients may have different
metastatic potential because of STS cell heterogeneity. In our
study, our semantics-based clinical model showed poor
differentiating performance, suggesting the limited value of
visual MRI features and preoperative clinical data for
prediction of LM in STS.

Radiomics is a promising approach that involves the
extraction of large numbers of high-throughput analysis
features, consequently allowing screening for vital features for
use in models for quantitative oncology diagnostics (31, 32). In
this study, the HD-Combined model showed good prediction
performance that was significantly higher than the semantics-
based clinical model on both training and external validation
sets. This indicates that visual features reflect relatively little of
Frontiers in Oncology | www.frontiersin.org 6
the information present in images and neglect a large amount of
information on tumor heterogeneity (14). We found that our
HCR feature-based predictive model showed unconvincing
performance in the differentiation, performing similar to the
clinical model on the external validation set. A possible reason
for this was our ROI selection; in this study, the HCR features
were extracted from the primary tumor region rather than the
peritumoral region. Past studies revealed that peritumoral
radiomics features can be vital imaging biomarkers for tumor
metastasis prediction (33). Therefore, further research is
necessary to investigate whether peritumoral HCR feature-
based radiomics could enhance the prediction model
performance. The DL-feature-based model showed improved
performance over the HCR model according to both AUC and
accuracy. There might be two reasons for this. First, DL
algorithms are able to create their own features for the
classification (34). Radiomics models combined with DL
features showed good performance in tumor prognosis
evaluation (22). Second, our DL models included DL-features
extracted from peritumoral regions, which have been identified
as vital areas for cancer prognosis prediction (35).
A

B C

FIGURE 2 | Selection of MRI hand-crafted radiomics and deep learning features. (A) The six radiomics features with non-zero coefficients in the HD-Combined
model. (B) The coefficients plot (as ln l). (C) Selection of the tuning parameter (l). l=0.057(ln l=-2.86) was applied.
June 2022 | Volume 12 | Article 897676
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The best-performing HD-Combined model included 1 HCR
feature and 5 DL features, suggesting that the DCNNs may have
derived quantitative information reflecting the risk of LM
occurring in STS. As displayed in Figure S1, the DCNN
activation maps highlighted certain parts of the tumors with
high predictive value for LM status, with these regions being
suppressed in tumor with lower values. We deduce that the
highlighted regions in the activation maps may have greater
association with cancer metastasis. The adopted HCR feature of
“gray-level co-occurrence matrix Cluster_Prominence” can
quantify the skewness and asymmetry of gray-level variability
in the tumor ROI, which may be unrecognized by the naked eye.
Frontiers in Oncology | www.frontiersin.org 7
A previous study suggested that gray-level co-occurrence matrix
features possessed energetic capacity to predict tumor metastasis
status and had an indispensable role in radiomic signature
construction (36).

In terms of simplicity and efficiency, we combined the mRMR
and LASSO feature screening with five classifiers to establish the
machine learning algorithm. The mRMR method is a novel
feature screening algorithm that can screen radiomics features
with more credible coefficients and fewer redundancies (37).
LASSO is an algorithm generally applied to data with high
feature dimensions to reduce the number of features and avoid
over-fitting in the model construction process (38). SVM is a
A

B D

E F

C

FIGURE 3 | (A) Deep learning radiomic nomogram (DLRN). (B) Calibration curve of the DLRN on the training set. (C) Calibration curve of the DLRN on the external
validation set. (D) Decision curve analysis of the DLRN. (E, F) Kaplan-Meier survival analysis of the DLRN model on the training and external validation sets.
June 2022 | Volume 12 | Article 897676
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practical machine learning classifier with convincing
generalization abilities for non-visual features (39). Combining
all these capacities, the mRMR-LASSO regression algorithm
integrated with the SVM classifier achieved the best prediction
performance in the MRI-radiomics analysis.

LM masses were present in less than 20% of the patients with
STSs, and therefore a data unbalance problem cannot be ignored.
An unbalanced sets problem can potentially generate a negative
effect on the application of machine-learning classification
approaches (40, 41), and can be solved by using state-of-the-
art subsampling techniques that synthesize new data points in
the minority subset, which are regard as “suitable” policies in
machine learning (41). The performance of the HD-Combined
signature showed slightly enhanced accuracy (from 0.849 to
0.881 in the external validation set) when combined with the
SMOTE algorithms, and gave results similar to those in a
previous study (40).

DM occurs in approximately 25%–30% of patients with STS
(2, 3), leading to a poor prognosis. Approximately 80% of DM
cases in STS occur in the lung (6). In our study, lung nodules
occurred in 32% (78/242) of patients and 50% (39/78) of them
were LMs. Combining the follow up and post-operative
pathological data, among all these LM cases, only 33% (13/39)
of them were confirmed as single LM, and 66% (26/39) of them
were multiple ones. For a single suspected LM nodule, puncture
biopsy is undoubtedly an appropriate strategy. However, when
multiple suspected LM nodules exist, false negatives caused by
sample selection can occasionally occur. Thus, when multiple
suspected LM nodules are present, preoperative recognition of
true LM lesions is clinically important. Our DLRN gave a
prognostic accuracy of 0.897 on the external validation set.
Therefore, for a patient with a high risk of LM, selection as an
operative candidate is necessary because complete resection of
LM lesions can enhance survival time (7–9). The clinical use of
this DLRN could not only prevent unnecessary surgery but also
reduce the cost burden from regular postoperative examinations
and the fear associated with false-positive diagnoses.

Another discovery was that the current DLRN showed
satisfactory risk stratification performance for the PFS of
patients in the training and external validation sets, which
reflects the reality that STS patients with LM have a poor
prognosis (2, 3). Past studies have suggested that radiomics
features can be used as predictors of survival outcomes in
patients with STS. Spraker et al. (42) found that an STS
radiomics model could predict overall survival, and Peeken
et al. (43) found that an FS-T2WI-based radiomics model
achieved good prognostic performance in overall survival risk
stratification. In our study, we established a DLRN model to
evaluate survival prediction and showed convincing stratification
of patients according to PFS. This model therefore has promising
prospects in the long-term management of patients with STS and
a high risk of LM.

The current study had several limitations. First, selection bias
may occur whenever strict criteria are applied. Second, our study
only contained patients from China. STS can have different
biology and etiology in different races or countries; how this
Frontiers in Oncology | www.frontiersin.org 8
would affect our nomogram is unknown. Third, because of the
small number of patients who underwent contrast-enhanced
MRI scans, contrast-enhanced images were not included in our
study. Further MRI sequences, such as dynamic contrast-
enhanced MRI, diffusion-weighted imaging, diffusion kurtosis
imaging, and intravoxel incoherent motion, could be collected
and included in future studies to improve the model. Finally,
although pleasing external validation results were acquired in our
study, a large number of Gordian techniques in radiomics
flow (e.g. automated segmentation, progressive isotropic
interpolation, and stable feature screening) need to be enrolled
in further studies to enhance the robustness and generalization of
the radiomics model.

In conclusion, the current DLRN had good performance for
predicting LM status in STS, and could offer essential
information for formulating the treatment strategy.
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