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A B S T R A C T

The importance of sample homogeneity and purity in protein crystallization is essential to obtain high-quality
diffracting crystals. Here, in an attempt to determine the crystal structure of thioredoxin 1 from whiteleg shrimp
Litopenaeus vannamei (LvTrx), we inadvertently crystallized the hexameric inorganic pyrophosphatase of
Escherichia coli (E-PPase) from a non-homogeneous sample product during the initial over-expression steps
and partial purification of LvTrx. The structure determination and identification of the crystallized protein were
derived from several clues: the failures in the Molecular Replacement (MR) trials using LvTrx coordinates as a
search model, the unit cell parameters and space group determination, and essentially by the use of the program
BALBES. After using the previously deposited E-PPase structure (PDB entry 1mjw) as a search model and the
correct space group assignation, the MR showed an E-PPase complexed with SO4

−2 with small changes in the
sulfate ion binding region when it compares to previously deposited E-PPases in the PDB. This work stresses the
importance of protein purity to avoid the risk of crystallizing a contaminant protein or how pure need to be a
protein sample in order to increase the possibility to obtain crystals, but also serves as a reminder that
crystallization is by itself a purification process and how the program BALBES can be useful in the crystal
structure determination of previously deposited structures in the PDB.

1. Introduction

To determine the three-dimensional coordinates of proteins by
crystallography, it is necessary first to purify and then generate crystals
of suitable size and quality for X-ray diffraction experiments. Although
significant work has been performed to develop protein crystallization
methodologies, protein crystallization remains as a bottleneck for
structural determination [1–4]. Purity is the first variable that is
essential to accomplish to obtain protein crystals [5–7] since con-
taminants within a protein batch may alter the crystal packing of a
growing crystal [8–10]. Studies on the effect of macromolecular
impurities on protein solubility and crystallizability are limited.
However, Skouri et al. in 1995 [6] measured the effect of 2% (w/v)
ovalbumin on lysozyme solubility over a concentration of 3–8% (w/v)
NaCl. They also conducted similar experiments exploring the effect on
lysozyme solubility using 1% (w/v) ovalbumin, 1% (w/v) conalbumin,

and 1% (w/v) bovine serum albumin. However, no significant effects
were observed in the crystalline packing.

Escherichia coli is the most used bacterial expression systems due
to the in-depth knowledge of this microorganism and for the high
amounts of heterologous proteins that can be produced. However,
despite its many advantages, particular conditions such as incubation
time or other stresses during the culture stage may favor the expression
of E. coli native proteins more than the heterologous protein expres-
sion. Such is the case of E-PPase expressed in conditions where the
energetic source is compromised to keep the culture alive [11]. In this
work, we describe the expression, purification, crystallization, structur-
al determination and coordinates analysis of the E-PPase complexed
with SO4

−2 as a result of crystallization experiments using a non-
homogeneous partially purified LvTrx sample.
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2. Materials and methods

2.1. Expression and purification

The E. coli PPase was similarly purified by previously published
studies of whiteleg shrimp thioredoxin 1 from Litopenaeus vannamei
(LvTrx) [11–13]. Cells of the host strain E. coli BL21 (DE3) trans-
formed with plasmid pET11a/LvTrx were grown on Luria-Bertani (LB)
agar plates [1% (w/w) tryptone, 0.5% (w/v) yeast extract, 1% (w/v)
NaCl] containing 200 µg ml−1 ampicillin at 310 K. A single colony was
picked and grown for plasmid isolation. A colony was inoculated into
50 ml LB broth containing 200 µg ml−1 ampicillin and incubated for
12 h at 310 K; part of the culture (25 ml) was used to inoculate l L of
LB medium with 200 µg ml−1 ampicillin. The culture was grown to an
absorbance of 0.6 at OD600. IPTG (isopropyl-β-thiogalactoside) was
added to the broth to a final concentration of 0.4 mM and grown for an
additional 12 h. The cells were then harvested by centrifugation
(24,000g, 30 min, 277 K) using a Beckman JA-14 rotor centrifuge
(Beckman Coulter, CA, USA) and washed in 0.9% NaCl (w/v). The cells
were resuspended in cold lysis buffer (100 mM Tris–HCl, pH 8.0)
containing Complete EDTA-free® protease-inhibitor cocktail (Roche
Molecular Biochemical, USA) and sonicated with three pulses per
1 min and one rest interval of 5 min per pulse on an ice bath. Cell
debris was removed by centrifugation (24,000g, 20 min, 277 K), and
the supernatant containing the soluble target protein was collected for
purification.

The supernatant was fractionated by two consecutive precipitation
steps at 50% and 85% ammonium sulfate saturation. The precipitate
was resuspended in buffer (10 mM Tris–HCl, pH 7.5) and heated at
343 K for 20 min. Cell debris was then removed by centrifugation
(24,000g, 20 min, 277 K). The supernatant was dialyzed two times at
277 K in ten times its volume in buffer (10 mM Tris–HCl, pH 7.5) and
the supernatant was loaded onto a 15 ml ion exchange column (Q-
Sepharose™ GE Healthcare, Sweden) pre-equilibrated and washed
with three column volumes of buffer (10 mM Tris–HCl, pH 7.5). The
sample was eluted with a pulse of 300 mM NaCl in the same buffer at a
flow rate of 1 ml min−1. Column fractions were collected and analyzed
by SDS-PAGE, and fractions with the enzyme were pooled and dialyzed
against buffer 10 mM Tris–HCl, pH 7.5, and concentrated. Protein
concentration was determined with the Bradford dye reagent (Bio-Rad
Laboratories, USA) [14].

2.2. Protein crystallization

Crystallization trials were performed using Crystal Screen and
Crystal Screen II kits from Hampton Research (Aliso Viejo, CA, USA)
by the hanging drop vapor-diffusion method at 291 K. The drops were
prepared manually in 24-well crystallization plates by mixing the
enzyme (2 µl) at 30 mg ml−1 with the reservoir solution (2 µl) contain-
ing 0.1 M sodium acetate, pH 4.6 and 2.0 M ammonium sulfate. DTT
was added to a final concentration of 5 mM directly in the crystal-
lization drops. Suitable crystals for diffraction were obtained in one
month. Crystals for data collection were then flash-cooled by immer-
sion in liquid nitrogen using 30% (v/v) glycerol into the mother
solution as a cryoprotectant.

2.3. Data collection and structure determination

Diffraction data were collected on beamline X6A of the National
Synchrotron Light Source (NSLS), Brookhaven National Laboratory
(BNL), USA, using an ADSC Quantum 270 detector. The X-ray
diffraction data were collected from a single crystal at 100 K (incident
wavelength, λ=0.975 Å). The diffraction images data were integrated
using XDS [15] and scaled with SCALA from the CCP4 suite
(Collaborative Computational Project, Number 4) [16]. Molecular
replacement was done with a cross-rotational search followed by a

translational search using the coordinates of E-PPase was performed
using the program PHASER [17] to obtain initial models and phases
(LLG=8383, RFZ=9.9, TFZ=11.9, being a trimer found in the asym-
metric unit). The models were improved based on manual inspection of
the 2Fo–Fc map after rigid-body refinement and geometric constraint
performed in REFMAC [18]. All further refinement was done using the
PHENIX suite [19]. The final model was completed and refined using
the programs PHENIX and COOT to a final Rwork/Rfree of 19.3/
23.5% [20]. Data collection and refinement statistics are summarized
in Table 1.

3. Results and discussion

3.1. Co-expression between a heterologous enzyme and E-PPase host
enzyme

During the initial attempts to establish a protocol for expressing
and purifying recombinant enzyme LvTrx [13], high levels of the over-
expressed LvTrx were not found among the presence of E. coli proteins
as a result of the long incubation period. After the ion exchange
chromatography step had been performed, a denaturing electrophor-
esis (15% SDS-PAGE) was applied, revealing different protein popula-
tions and proportions (Figs. 1a, 1b).

During the purification process and despite several attempts to

Table 1
Summary of crystallographic data collection and refinement. Values in parentheses are
for the highest resolution shell.

Parameters E-PPase PDB (4UM4)

Data collection statistics
X-ray source BNL NSLS Beamline X6A
Wavelength (Å) 0.975
Space group C 1 2 1

Unit-cell dimensions
120.0, 108.9,81.0

a, b, c (Å) 120.0, 108.9, 81.0
α, β, γ angles (°) 90.0, 97.0, 90.0

Resolution range (Å) 19.10–2.65
No. de reflections 61,030
No. of unique reflections 27,508
Completeness (%) 92.0 (94.0)
Rsym (%)1 6.0 (43)
Rmeas (%)2 7.9 (56)
I/σ(I) 10.3 (2.3)
Multiplicity 2.2 (2.2)
Asymmetric unit content Trimer

Refinement statistics
Rwork/Rfree (%) 19.3/23.5
B-value (Å2)
Protein 40.8

Ion/Ligand 83
Water 38

All atoms 50.8
Wilson plot B-value (Å2) 45.8

RMSD from ideal stereochemistry
Bond lengths (Å) 0.017
Bond angles (°) 1.88
Coordinate error (Maximum-Likelihood Base)
(Å)

0.12

Ramachandran plot (%)
Most favored regions 92.3

Additional allowed regions 4.8
Disallowed regions 2.9

1 Rsym=Σhkl Σi |Ii(hkl)−(I(hkl)| Σhkl Σi Ii (hkl), where Ii(hkl)and (I(hkl)) represent
the diffraction-intensity values of the individual measurements and the corresponding
mean values. The summation is over all unique measurements.

2 Rmeas is a redundancy-independent version of Rsym, Rmeas =∑h √nh/nh–1 ∑nh
i |

Îh–Ih, i| /∑h ∑nh
i Ih, i, where Îh=1/nh ∑nh

i Ih, i.
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improve it, we were unable to obtain a homogeneous sample.
Therefore, we decided to perform crystallization trials with the sample
as it was, which resulted in the E-PPase crystallization (after this
experiment the conditions to effectively over-express LvTrx were
obtained and published) [13]. A densitometric analysis of the SDS-
PAGE band profile presented in Fig. 1b estimates that 21% and 16% of
the sample used for crystallization correspond, respectively, to E-PPase
and LvTrx. Additionally, E-PPAses and LvTrx are 2 among 18 species
which generate a discrete band in the SDS-PAGE profile.

A likely explanation for why the E-PPase was favored throughout
the expression, purification, and the crystallization process is that the
purification protocol of E-PPase is very similar to the protocol for
recombinant LvTrx, specifically the heating step and ammonium

sulfate precipitation steps [22]. Taking into account that the purifica-
tion protocol of E-PPase requires 12 h for over-expression, this may
explain the co-expression with the recombinant LvTrx because 12 h of
expression was, in fact, an additional stress condition for the bacterial
culture. This long expression time reminds us that E-PPase is a
constitutively expressed protein that plays an important role in
macromolecular biosynthesis under stress conditions and is essential
for the viability of E. coli in the last stages of bacterial culture [11,23].

During the purification protocol of the recombinant LvTrx, the
sample was heated to a temperature of 343 K for 20 min. At this
temperature the LvTrx protein is stable, but it is also known that the
active conformation of bacterial PPases is stabilized by interactions
between monomers in a hexameric arrangement, being the thermo-

Fig. 1. a) Coomassie blue stain of SDS-PAGE of the sample that was crystallized. The first lane shows the markers (M). The second lane shows the non-homogenous sample used for
crystallization trials. The arrows indicate the identification of the LvTrx and E-PPase enzymes according to their molecular mass (12 kDa and 20 kDa, respectively). b) The relative
concentration of LvTrx and E-PPase were estimated using a densitometric analysis of the SDS-PAGE sample band profile. The densitometric analysis was performed by using the
program ImageJ [21].

Fig. 2. a) E-PPase trimer complexed with SO4
−2 in ribbon representation. b) Superposition of chain A, B and C, showing the SO4

−2 bound to the E-PPase. The images were generated by
CCP4mg and PDBsum, respectively [31,32].
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stability of bacterial PPases a primary property of the oligomer [24,25].
Thus, the E-PPase is stable at 343 K, maintaining LvTrx and the E-
PPase structurally stable during the purification process. Furthermore,
it has been shown that E-PPase is a common contaminant enzyme in
expression assays [26,27]. Retrospectively, including a gel filtration
purification step could help to separate the hexameric E-PPase from
the dimeric LvTrx.

In regards to the crystallization process, the reported crystallization
condition for recombinant LvTrx [13] is very similar to those for E-
PPase, potentially resulting in the favoring of the nucleation and crystal
formation process of E-PPase more than LvTrx due to E-PPase thermal
stability and probably also because E-PPase represent the highest
population, 21% of the total sample, among 18 species detected in the
SDS-PAGE profile of the sample used for crystallization (Fig. 1b). Our
results in other published works [12,13] conclude that the incubation
time for the over-expression of LvTrx was key in obtaining the
recombinant enzyme completely pure (5 h instead of 12 h), without
the presence of the E-PPase.

3.2. Molecular replacement and refinement

Originally, we were unable to determine the crystal structure of
LvTrx with the X-ray diffraction data collected and described in this
work. After we successfully determined the crystal structure of LvTrx
[13], we decided to go back to the X-ray diffraction data described here.
At initial stages of the phase determination process by MR using R 3 2
or H 3 2 as a space group, no solution could be found using the LvTrx
recombinant enzyme coordinates, even after trying different unit cell
parameters, and space groups (P 1; C 2; R 3 or H 3) or other average

search coordinate tricks (such as partial or multiple coordinates, use of
poly-Ala or poly-Gly models, among several approaches). After failing
with several trials of MR and exhausting all possible combinations
using the LvTrx coordinates for phase determination, we decided to
consider that the crystallized protein could be another one coming from
E. coli.

As an approximation to identify the protein, we decided to use the
space group H 3 2, due to the apparent better statistics concerning the
other space groups and unit cell candidates attempted while using
LvTrx coordinates.

The amplitudes from space group H 3 2 and the sequence from
LvTrx (sequence reference from UniProtKB was B1PWB9) were
submitted to the CCP4i BALBES interface server, which found a
solution structure by MR without user intervention [28]. The best
solution found by BALBES was using the PDB coordinates from entry
1mjw [29] with a space group H 3 2 and refinement Rwork/Rfree values
of 35/42%, which correspond to the inorganic pyrophosphatase from
E. coli. In fact, if we had not reduced the data in the space group H 3 2
and used it in BALBES, we would not have been able to estimate the
phases as readily. After the MR solution had appeared, we were able to
corroborate that approximately 95% of the crystallographic structures
of E-PPases deposited in the PDB belong to space group H 3 2, with
unit cell parameters very similar to the parameters determined in this
work.

The initial phases were obtained using the E-PPase coordinates
from E. coli as the best search model. However, the parameters of the
MR process resulted in a solution demonstrating an overlapping
between the crystallographic neighbor copies. To address the problem,
we used all the possible combinations of space groups and unit cell

Fig. 3. a-c) Representation of SO4
−2 interactions among the E-PPases reported in the PDB (entries1mjx, 1mjw, 1jfd). d) E-PPase structure derived in this work (PDB entry 4um4)

showing a different position of SO4
−2 interacting with residues Lys-104 and Tyr-55 at 2.6 Å and 3.0 Å, respectively. Figure prepared with LigPlot [35].
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parameters determined previously in this work. The best solution
belonged to space group C 1 2 1, with unit cell parameters a =120.0 Å,
b=108.9 Å, c=81.0 Å; a=90.0°, β=97° and γ=90.0°. Additionally,
POINTLESS [30] clearly supported the final space group selection. It
is important to remark, that space group C 1 2 1, is a novel space group
for E-PPases. The final model of the E-PPase consisted of a trimer in
the asymmetric unit in complex with SO4

−2 located in each monomer
active site at 2.65 Å resolution (Table 1 and Figs. 2a, 2b).

3.3. E. coli PPase crystal structure

The crystal asymmetric unit contained three subunits, each includ-
ing 175 amino acid residues with all the residues clearly visible in the
final electron density map (2Fo–Fc map). The biological hexamer is
generated using crystallographic symmetries. In the active site crevice,
we found fourteen amino acids residues limiting the cavity: Asp-42,
Asp-65, Asp-67, Asp-70, Asp-97, Asp-102, Glu-20, Glu-31, Arg-43,
Lys-29, Lys-104, Lys-142, Tyr-55 and Tyr-141. All these amino acid
residues are also involved in binding Mg+2 ions [33]. However, the
structure presented here does not have metal ions bound as shown in
previously determined structures for E. coli PPase [34].

The three-dimensional structure of E-PPase at 2.65 Å resolution
shows the presence of a sulfate ion bound to the active site of each of
the three copies found in the asymmetric unit. These sulfate ions were
previously reported bound to E-PPases PDB entries 1jfd at 2.20 Å,
1mjw at 1.95 Å and 1mjx at 2.15 Å [29,34]. The coordinates presented
in this work show the different position and residue interactions of
SO4

−2 (Lys-104, Tyr-55 and Lys-29) in comparison to the previously
reported structures (Lys-29, Arg-43, Lys-142, and Tyr-141) mentioned
above, probably because of the absence of Mg+2 ions (Fig. 3a-c).

In summary, a clear solution was found for the E-PPase structure
by obtaining a trimer in the asymmetric unit with final refinement
Rwork/Rfree values of 19.3/23.5%, indicating that this structure is
closely related to the other E-PPases previously reported and deposited
at PDB, with the only difference being in the SO4

−2 position and an
increase of 100 Å3 in the volume of the active site cavity in comparison
with PDB entry 2auu which has Mg+2 ions bound (volume calculated in
Mole Server) (Fig. 3d) [36].

4. Conclusion

This article highlights how the presence of different proteins in a
sample used to set up crystallization experiments may favor the growth
of crystals from a non-expected protein. However, while it is known
that the use of non-homogeneous samples compromises the crystal-
lization process, this work emphasizes how the use of every program or
approach available, such as the search of MR models mining the PDB
based on the unit cell parameters, as is implemented in BALBES [28],
is pivotal to find solutions in extreme protein crystallography structure
determinations when an unknown model actually exist in the PDB.
Finally, at least with the data generated in this work, a sample which
represents 21% of the total protein used for crystallization is capable of
crystallizing. If we generalize this observation, it is likely to consider
that to ensure the crystallization of a specific protein in the correct
conditions; this protein needs to represent at least 80% of the total
sample used for crystallization.
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