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Background: Increasing evidence has suggested that inflammation is related to

tumorigenesis and tumor progression. However, the roles of immune-related

genes in the occurrence, development, and prognosis of glioblastoma

multiforme (GBM) remain to be studied.

Methods: The GBM-related RNA sequencing (RNA-seq), survival, and clinical

data were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue

Expression (GTEx), Chinese Glioma Genome Atlas (CGGA), and Gene

Expression Omnibus (GEO) databases. Immune-related genes were obtained

from the Molecular Signatures Database (MSigDB). Differently expressed

immune-related genes (DE-IRGs) between GBM and normal samples were

identified. Prognostic genes associated with GBM were selected by Kaplan–

Meier survival analysis, Least Absolute Shrinkage and Selection Operator

(LASSO)-penalized Cox regression analysis, and multivariate Cox analysis. An

immune-related gene signature was developed and validated in TCGA and

CGGA databases separately. The Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) analyses were performed to explore biological

functions of the signature. The correlation between immune cell infiltration and

the signature was analyzed by single-sample gene set enrichment analysis

(ssGSEA), and the diagnostic value was investigated. The gene set enrichment

analysis (GSEA) was performed to explore the potential function of the

signature genes in GBM, and the protein–protein interaction (PPI) network

was constructed.

Results: Three DE-IRGs [Pentraxin 3 (PTX3), TNFSF9, and bone morphogenetic

protein 2 (BMP2)] were used to construct an immune-related gene signature.

Receiver operating characteristic (ROC) curves and Cox analyses confirmed

that the 3-gene-based prognostic signature was a good independent
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prognostic factor for GBM patients. We found that the signature was mainly

involved in immune-related biological processes and pathways, and multiple

immune cells were disordered between the high- and low-risk groups. GSEA

suggested that PTX3 and TNFSF9weremainly correlated with interleukin (IL)-17

signaling pathway, nuclear factor kappa B (NF-kB) signaling pathway, tumor

necrosis factor (TNF) signaling pathway, and Toll-like receptor signaling

pathway, and the PPI network indicated that they could interact directly or

indirectly with inflammatory pathway proteins. Quantitative real-time PCR

(qRT-PCR) indicated that the three genes were significantly different between

target tissues.

Conclusion: The signature with three immune-related genes might be an

independent prognostic factor for GBM patients and could be associated with

the immune cell infiltration of GBM patients.
KEYWORDS
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Introduction

Glioblastoma multiforme (GBM) is the most common and

aggressive primary brain tumor, accounting for about 50% of all

gliomas (1). The highly invasive nature and relapse rate prevent

long-term survival despite surgical removal, radiation,

chemotherapy, and targeted therapy (2, 3). After current

standard therapy, the mean overall survival (OS) of GBM

patients was 14.6 months, 2-year survival rate was 26.5%, and

5-year survival rate was about 5% (4, 5).

Increasing evidence has demonstrated that inflammation is a

relevant marker to promote tumorigenesis and progression (6).

Inflammation can advance the proliferation and survival of

tumor cells (7) and improve the blood circulation of the

tumor (8). Immune-related genes are widely studied in the

field of inflammatory diseases such as osteoarthritis (9), and

some researchers also have deeply explored the correlation

between immune-related genes and kidney renal clear cell

carcinoma (10), breast cancer (11), and pancreatic cancer (12).

However, the roles of immune-related genes in the occurrence,

development, and prognosis of GBM remain to be researched.

The immune microenvironment is composed of glioma-

associated immune cells, such as microglia, macrophages, and

B cells, and immunoregulatory factors, such as interleukin (IL)-

6, IL-10, and transforming growth factor b (TGF-b), which
regulate the progression of glioma (13). The immune

microenvironment is intimately connected to the emergence,

invasion, and metastasis of tumor and plays a critical role in

tumor diagnosis, prevention, and prognosis (14, 15). As a new

approach to cancer treatment, the development of

immunotherapy brings new dawn to GBM patients. However,
02
there are limited results in the current research and application

of GBM (16). Therefore, it is imperative for effective clinical

decision-making to develop GBM prognostic biomarkers and

establish a prognostic model.

Bioinformatic methods were used in our study to explore the

immune-related genes in GBM, establish a prognostic model,

and obtain deeper insight in the relationship and interaction

pathways between GBM and the immune microenvironment,

which can generate inspiration for the early diagnosis, prognosis

improvement, and development of new therapeutic targets.
Materials and methods

Data sources

GBM-related RNA sequencing (RNA-seq) (with high count

value) and clinical data of 157 GBM patients, including 148

GBM patients with survival information and nine GBM patients

without survival information, and five matched normal brain

samples were acquired from The Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/repository) database. Moreover,

we acquired the RNA-seq (with high count value) of 209

normal brain samples from the Genotype-Tissue Expression

(GTEx) database. The Chinese Glioma Genome Atlas (CGGA)

dataset with complete survival information was downloaded and

used as the validation set, including 237 GBM samples. GSE4290

dataset, including 77 GBM samples and 23 normal samples, was

downloaded and used to screen differentially expressed genes

(DEGs). Immune-related gene sets [Hallmark gene set and Gene

Ontology (GO) annotation] were acquired from the Molecular
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Signatures Database (MSigDB) (17–19) and merged to obtain

immune-related genes.
Identification of differentially expressed
immune-related genes

The batch effect used “sva” R package between TCGA and

GTEx (20). Next, DEGs between normal brain samples and

GBM samples of TCGA and GTEx databases were screened

using the “limma” package of R software with the following

criteria: |log2 fold-change (FC)| >1 and P < 0.05 (21, 22).

Similarly, DEGs between normal brain samples and GBM

samples from the GSE4290 dataset were obtained.

Furthermore, differentially expressed immune-related genes

(DE-IRGs) were obtained by taking the intersection of the

DEGs obtained from TCGA and GTEx, the DEGs of the

GSE4290 dataset, and the immune-related genes.
Evaluation of the differentially expressed
immune-related gene model

According to the median expression of the DE-IRGs, the

patients in TCGA database were divided into a target gene high-

expression group (n = 74) and a target gene low-expression

group (n = 74). First, the DE-IRGs associated with prognosis

were screened using Kaplan–Meier survival analysis with P-

value <0.05. Second, Least Absolute Shrinkage and Selection

Operator LASSO-penalized Cox regression analysis via the

“glmnet” R package (23) was used to filter false-positive genes.

Finally, multivariate Cox analysis was used to retain the

model genes.

The 148 GBM samples with complete survival information

in TCGA and GTEx databases were divided into a training set

and a test set according to 1:1, and 237 GBM samples with

complete survival information in the CGGA dataset were used as

the validation set. According to the median risk score, GBM

patients were separated into the high- and low-risk groups. The

risk score was calculated as follows: risk score = ∑bgene(i) ×Exp
gene(i) (1=1-n) in which b represents regression coefficient.
Independent prognostic analysis and
development of a predictive nomogram

Based on the sample of 148 TCGA patients with complete

clinical information, we incorporated the risk model, age,

gender, and other clinicopathological factors into the risk

model for univariate Cox independent prognostic analysis.

Then, we included the clinicopathological factors into the

multivariate Cox analysis. Additionally, we generated a

nomogram to predict the survival years for the GBM patients
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using the “rms” (https://CRAN.R-project.org/package=rms) and

“survival” packages (24). Lastly, Harrell’s concordance index (C-

index) and calibration curves were employed to evaluate the

prediction accuracy of the nomogram (25).
Gene ontology functional and Kyoto
encyclopedia of genes and genomes
pathway enrichment analysis

The DEGs between the high- and low-risk groups were

selected by DESeq2 (|log2(FC)| ≥1, P ≤ 0.05); then, GO and

KEGG analysis was conducted with the “clusterProfiler” of R

package (26). The infiltrating scores of 24 immune cells and the

immune-related pathways were calculated with single-sample

gene set enrichment analysis (ssGSEA) (27) in the high- and

low-risk groups. According to the results of the ssGSEA, the

differences in immune cell infiltration between high- and low-

risk groups were analyzed.
Identification of the diagnostic value of
prognostic genes

Receiver operating characteristic (ROC) curves were then

employed to investigate the model’s predictive validity, and the

area under the curve (AUC) was calculated with TCGA dataset

and GSE4290 dataset using the “survivalROC” package in R

software (28, 29). The “GGploT2” R package was used to

compare the differences among Pentraxin 3 (PTX3), TNFSF9,

and bone morphogenetic protein 2 (BMP2) genes in clinical

factors O6-methylguanine-DNA methyltransferase (MGMT)

methylation, age, gender, 1p/19q codeletion, and isocitrate

dehydrogenase (IDH) mutation.
Single-sample gene set enrichment
analysis of signature genes

The ssGSEA was conducted based on the gene list sorted by

Spearman correlation coefficient between the specified signature

gene and every gene of TCGA dataset to explore the significant

biological processes and pathways associated with the

signature gene.
Construction of protein–protein
interaction network

The protein–protein interaction (PPI) network was

constructed by the Search Tool for the Retrieval of Interacting

Genes (STRING, version: 11.0, https://string-db.org) database

(30) to recognize its potential interaction relationships at the
frontiersin.org
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protein level between the model genes and immune-related

pathway genes. A confidence >0.6 was included in the PPI

networks. The PPI network was visualized by Cytoscape 3.8.0

software (http://www.cytoscape.org/index.html) (31).

Clinical tissue collection

All validation samples were collected with the consent of the

patient, and ethical permission was obtained from Huashan

Hospital Affiliated to Fudan University. During 2021, seven

postoperative clinical specimens from five adult male patients

with glioblastoma were collected from the Department of

Neurosurgery in our hospital, including five tumor tissue

samples and two adjacent tissue samples.

Quantitative real-time PCR

Total RNA was extracted by TRIzol reagent (cat.: 356281) in

five GBM samples (CA) and two normal samples. The Synthesis

All-in-OneTM First-Strand cDNA Synthesis Kit (cat.: G33330-

500) was used to synthesize the first-strand cDNA. Quantitative

PCR was performed using 2× Universal Blue SYBR Green qPCR

Master Mix (cat.: G3326-05). The primers included the

following: BMP2-F: GTTTTGATGTCACCCCCGCT, BMP2-R:

TCCAGTCATTCCACCCCACG; PTX3-F: CTATTTTATTCC

CAATGCGTT, PTX3-R: CCAGTTTGTTCTCCTCTCCAC;

TNFSF9-F: TGTTCTGCTGATCGATGGG, TNFSF9-R: CAGT

GTGAAGATGGACGCC; GAPDH-F: CCCATCACCATCT

TCCAGG, GAPDH-R: CATCACGCCACAGTTTCCC. The

relative mRNA expression data were calculated with the

2−DDCt method.

Statistical analysis

All statistical analyses were conducted in the R

programming language and environment (version 4.0.3).

Kaplan–Meier curves were generated by R package

“survminer” (version 0.4.9), P-values were calculated by log-

rank tests. Univariate and multivariate Cox regression analyses

were conducted to analyze the related factors affecting the OS of

GBM patients. Spearman rank correlation was acquired to

analyze the correlations between the DEGs and infiltrating

immune cells. P < 0.05 was set as criterion.

Results

Identification of differentially expressed
genes and differentially expressed
immune-related genes

The study flowchart of this article is shown in Figure 1.

TCGA and GTEx data were merged to remove batch effects by
Frontiers in Oncology 04
analysis of the DESeq2 package (32). After batch effect

correction, batch differences between GTEx and TCGA

normal samples became relatively small, while between-group

differences between GTEx normal samples and TCGA tumor

samples became larger (Figures 2A, B).

We obtained 214 normal samples and 157 tumor samples

from TCGA and GTEx. Then, a total of 9,983 DEGs between 214

normal samples and 157 tumor samples, including 4,944

upregulated DEGs and 5,039 downregulated DEGs, were

screened (Figures 2C, D). In the differential expression analysis

in the GSE4290 gene set, including 23 normal samples and 77

tumor samples, 3,203 genes were found to be differentially

expressed, among which 1,377 were upregulated and 1,826

were downregulated (Figures 2E, F). Finally, a total of 160 DE-

IRGs were significantly different between the tumor samples and

normal samples in the DEG analysis for the Gene Expression

Omnibus (GEO) cohort and TCGA cohort, including 115

upregulated DE-IRGs (Figure 2G) and 45 downregulated DE-

IRGs (Figure 2H).

Identification of prognostic differentially
expressed immune-related genes

A total of five genes were identified as prognosis-associated

genes by Kaplan–Meier survival analysis: IL34 (P = 0.0071),

SAA1 (P = 0.0085), PTX3 (P = 0.015), BMP2 (P = 0.016), and

TNFSF9 (P = 0.019) (Figure 3). Moreover, LASSO Cox

regression identified four genes (IL34, PTX3, BMP2, TNFSF9)

with the lambda = 0.06 (Figure 4A). Finally, PTX3, BMP2, and

TNFSF9 were selected and used to establish a DE-IRG signature

based on their expression in the regression coefficient acquired

from the multivariate Cox regression analysis (Figure 4B).

Namely, the risk score of each patient was calculated

according to the following formula: risk score = ∑bgene(i) ×

Exp gene(i) (1=1-n)= 0.2576 ×Exp PTX3 +0.2716 × Exp BMP2 +

(-0.2763) ×Exp TNFSF9.
Evaluation of the differentially expressed
immune-related gene signature-based
risk model in the training set

The three DE-IRGs were utilized to establish a DE-IRG

signature. Based on the median value of the risk score, the

patients with GBM were stratified into high- or low-risk group

(Figure 5A). The risk score and the survival status of each patient

were shown in the prognostic curve and a scatter plot,

respectively (Figure 5A). We can see that the death cases were

mainly distributed in the high-risk group from the scatter plot

(Figure 5A). The Kaplan–Meier OS curves of the two groups

were significantly different, which show that the high-risk group

has a poorer prognosis than that of the low-risk group (P =

0.0056; Figure 5B). The area under the curve (AUC) values of a
frontiersin.org
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time‐dependent ROC curve for 1-, 2-, 3-, 4-, and 5-year OS were

0.766, 0.817, 0.649, 0.649, and 0.649, respectively (Figure 5C),

and the 3-gene-based risk model had considerable prognostic

predictive validity. The gene expression profiles of the three

genes were shown in the heat map (Figure 5D).
Validation of a 3-gene-based prognostic
model using the test set and Chinese
glioma genome atlas dataset

To confirm the stability of the 3-gene-based prognostic

model, we then used it to predict OS in the test set (n = 74)

and CGGA dataset (n = 248) using the median risk score as the

cutoff. As shown in Figures 6A and 7A, the test set and CGGA

dataset were classified into a low-risk group and a high-risk

group, from which the scatter plot indicated that the live cases

were mainly distributed in the low-risk group. The Kaplan–

Meier OS curves of the test set (P = 0.025) and CGGA dataset

(P = 0.029) were shown to have good prognoses in both high-

and low-risk groups. The AUC values of a time‐dependent ROC

curve for 1-, 2-, 3-, 4-, and 5-year OS were higher than 0.6

(Figures 6C, 7C). The heat map showed that the gene expression
Frontiers in Oncology 05
profiles of the three genes have a similar tendency. Combining

the results from the training set, test set, and CGGA dataset, the

3-gene-based prognostic model built in this study had

satisfactory specificity and sensitivity.
Independent prognostic analysis of the
risk score

Univariate and multivariate Cox regression analyses were

performed to evaluate the prognostic significance of the 3-gene-

based prognostic model combined with clinicopathologic

parameters. In the sample of 148 TCGA patients with

complete clinical information, univariate Cox regression

analyses indicated that the P-values of the risk score (P =

1.316e-06) and age (P = 3.276e-04) were <0.05 (Figure 8A). In

addition, multivariate Cox regression analysis indicated that the

risk score (P = 6.935e-06) and age (P = 1.102e-03) were

independent prognostic factors (Figure 8B). Next, the

nomogram was designed with the risk score model and age.

Furthermore, the C-index of the nomogram was 0.66, indicating

that the nomogram model had a certain predictive value

(Figure 8C). Because the number of samples with a survival
FIGURE 1

Flowchart of the present study.
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A CB D

E GF H

FIGURE 2

Identification of DEGs and DE-IRGs. (A) Primordial principal component analysis (PCA) of all samples. (B) PCA of all samples after batch
correction. (C) Volcano plot for DEGs between TCGA and GTEx. The transverse reference line represents -log10(adjust. P-value) = 0.05, and the
longitudinal reference line represents log2FC = ± 1. (D) Heat map (Top100) for DEGs between TCGA and GTEx. Blue indicates low expression,
and red indicates high expression. (E, F) Volcano plot and heat map (Top100) for DEGs in the GSE4290 dataset. (G, H) Upregulated immune-
related genes and downregulated immune-related genes after matching the DEGs from the above analyses.
FIGURE 3

Kaplan–Meier survival curves of five single genes (P < 0.05): IL34 (P = 0.0071), SAA1 (P = 0.0085), PTX3 (P = 0.015), BMP2 (P = 0.016), and
TNFSF9 (P = 0.019).
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period of more than 4 and 5 years was too few to draw the

corresponding calibration curve, the calibration curve results for

only 1–3 years were presented in Figure 8D, which exposed that

the survival rate obtained by the model was nearly equal to the

actual survival rate.
Diagnostic value of model genes

We plotted single-gene ROC curves for the three model

genes in TCGA dataset and the GSE4290 dataset, respectively, as

shown in Figures 9A, B. The AUC values of the three model

genes are more than 0.7, indicating a satisfactory accuracy of

prediction. Meanwhile, there was no significant difference in the

expression of the three genes in clinical factors such as MGMT

methylation, age, and gender, while there were significant

differences in gene BMP2 and PTX3 between 1p/19q

codeletion and IDH mutation (Figures 9C, D).
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Correlation analysis of immunity and
inflammation in high- and low-risk
groups

We obtained 1,563 DEGs in the high- and low-risk groups of

the training test, including 862 upregulated DEGs and 701

downregulated DEGs (Figure 10A). Next, the results of GO

analysis of DEG signature showed that these DEGs were

significantly enriched in 251 biological process (BP) terms, 37

molecular function (MF) terms, and 12 cellular component (CC)

terms. The top enriched GO terms for GO-BP terms were

neutrophil activation, T-cell activation, neutrophil-mediated

immunity, etc.; for GO-MF terms were cytokine activity and

signaling receptor activator activity; and for GO-CC terms were

collagen-containing extracellular matrix and external side of

plasma membrane. The top 15 GO-BP/MF/CC terms were

visualized in Figures 10B-D. In the results of KEGG analysis,

we found 32 significantly enriched KEGG pathways that were
A

B

FIGURE 4

Identification of prognostic DE-IRGs. (A) The diagram of gene coefficient and the error diagram of cross validation in LASSO Cox regression.
(B) Forest plot of the risk model constructed by the multivariate Cox regression analysis. HR is the hazard ratio, and lower/upper 95% CI is the
95% confidence interval of the risk value.
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presented in Figure 10E, and the cytokine–cytokine receptor

interaction pathway was most enriched.

To further explore the correlation between the risk score and

immune status, we quantified the enrichment scores of diverse

immune cell subpopulations and related functions or pathways with

ssGSEA.We screened 15 immune cells for differences in infiltration

between the high- and low-risk groups (Figures 10F, G). Then, we

calculated Spearman correlations of three model genes with 15

differential immune cells. As shown in Figure 10, TNFSF9 was

positively correlated with CD8 T cells (r = 0.22, P < 0.01), cytotoxic

cells (r = 0.37, P < 0.01), dendritic cells (DCs) (r = 0.18, P < 0.05),

immature dendritic cells (iDCs) (r = 0.43, P < 0.01), macrophages

(r = 0.49, P < 0.01), neutrophils (r = 0.44, P < 0.01), natural killer

(NK) CD56dim cells (r = 0.27, P < 0.01), T cells (r = 0.3, P < 0.01),

Tgd (r = -0.35, P < 0.01), Th1 cells (r = 0.46, P < 0.01), Th17 cells

(r = 0.25, P < 0.01), and Th2 cells (r = -0.18, P < 0.05). PTX3 was

positively correlated with CD8 T cell (r = 0.23, P < 0.01), cytotoxic

cells (r = 0.28, P < 0.01), DCs (r = 0.35, P < 0.01), eosinophils (r =

0.46, P < 0.01), iDCs (r = 0.48, P < 0.01), macrophages (r = 0.62, P <

0.01), neutrophils (r = 0.55, P < 0.01), NK CD56dim cells (r = 0.36,

P < 0.01), NK cells (r = 0.3, P < 0.01), T cells (r = 0.17, P < 0.05), Th1
Frontiers in Oncology 08
cells (r = 0.32, P < 0.01), and Th17 cells (r = 0.21, P < 0.05). BMP2

was positively correlated with CD8 T cell (r = 0.3, P < 0.01) and NK

CD56bright cells (r = 0.36, P < 0.01).

Spearman correlations of three model genes and

inflammatory factors were also calculated, showing results

with P-values <0.05 (Figure 11). The PTX3 was positively

correlated with CXCL8, CCL2, CXCL1, PTGS2, IL6, STAT3,

IL4R, IL1B, ALOX5, FCGR3A, NFKB1, IL1A, CD33, CCR5,

TGFB1, IL10, IL23A, HIF1A, CD4, CXCR4, FCGR3B, CXCR3,

IL4, and IL13. The TNFSF9 was positively correlated with IL10,

CD33, ALOX5, FCGR3A, IL4R, CD4, TNF, CXCL1, IL1B, IL1A,

IL6, CXCL12, CCR5, ACKR1, CCL2, CD8A, CXCR4, CXCL8,

TGFB1, FCGR3B, PTGS2, CXCR3, IL23A, NDUFA2, IL12B,

IL23R, and IL12A. The BMP2 was just positively correlated with

PTGS2, ACKR1, IL6, HIF1A, CXCL12, and IL12A.

Single-sample gene set enrichment
analysis of model genes

Furthermore, to explore the molecular functions underlying the

GBM, gene set enrichment analysis (GSEA) was used to analyze the
A

C

B

D

FIGURE 5

Evaluation of the DE-IRG signature-based risk model in the training set (n = 74). (A) The prognostic curve and a scatter plot for the training set. (B) The
Kaplan–Meier OS curves of the high- and low-risk groups for the training set (P = 0.0056). (C) ROC curve for the training set (AUC >0.6). (D) The heat
map of the gene expression profiles of the three model genes in the training set.
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possible functional pathways of the three model genes. In the

ssGSEA of PTX3, 196 pathways were enriched, including B-cell

receptor signaling pathway, Chemokine signaling pathway, IL−17

signaling pathway, and Inflammatory mediator regulation of TRP

channels. In the ssGSEA of TNFSF9, 164 pathways were enriched,

mainly enriched in Chemokine signaling pathway, IL−17 signaling

pathway, Inflammatory bowel disease, and other pathways. We

found that the four genes directly related to inflammatory factor

pathways of PTX3 were enriched the same as the TNFSF9, which

included the IL-17 signaling pathway, NF-kB signaling pathway,

TNF signaling pathway, and Toll-like receptor signaling pathway

(Figures 12A, B). In the ssGSEA of BMP2, 54 pathways were

enriched. We selected 10 pathways related to immunity and various

diseases and cancers for display (Figure 12C).

A gene interaction network was constructed to illustrate the

relationships between the model genes and the four genes

directly related to inflammatory factor pathways (Figure 12D)

that included 274 nodes and 4,526 edges. The gene interaction

networks related to PTX3, TNFSF9, and BMP2 were extracted to

draw subnetworks (Figure 12E), which were composed of 26
Frontiers in Oncology 09
nodes and 126 edges. It can also be seen that compared with the

other two genes, BMP2 was connected to more nodes.
Expression level of model genes in target
tissues

The results of qRT-PCR showed that BMP2 (P = 0.0214) and

PTX3 (P = 0.0168) expression in GBM was significantly higher

than in paracancerous tissue (Figures 13A, B), and TNFSF9 (P =

0.0078) expression in GBM was significantly lower than in

paracancerous tissue (Figure 13C).
Discussion

Immune inflammatory response plays an important role in

the occurrence and proliferation of tumor cells, angiogenesis in

tumor tissues, and invasion and metastasis of cancer cells.

Among them, innate immune cell infiltration and the
frontiersin.org
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FIGURE 6

Validation of a 3-gene-based prognostic model using the test set (n = 74). (A) The prognostic curve and a scatter plot for the test set. (B) The
Kaplan–Meier OS curves of the high- and low-risk groups for the test set (P = 0.025). (C) ROC curve for the test set (AUC >0.6). (D) The heat
map of the gene expression profiles of the three model genes in the test set.
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production and aggregation of inflammatory chemokines are

typical manifestations of the tumor-related inflammatory

response. Immune inflammatory response can activate a series

of molecular biological signaling pathways bound up with tumor

cell generation, proliferation, and metastasis (33–35). As part of

the tumor environment, the inflammatory microenvironment is

also correlated with tumor occurrence. Inflammatory cytokines

in the tumor focus and blood circulation may be necessary for

the proliferation and metastasis of tumor cells (36). Studies had

shown that the immune inflammatory response was involved in

the formation of glioma (37).

At present, many types of prognostic signatures have been

constructed for GBM (38, 39). Based on data from TCGA and

CGGA, Fan et al. (40) identified 426 DEGs after comparing

global gene expression patterns in GBM samples and controls.

Upon univariate and LASSO regression analyses, seven DEGs

were considered of prognostic value, i.e., CLEC5A, HOXC6,

HOXA5, CCL2, GPRASP1, BSCL2, and PTX3 (40). Based on

demographic and clinical measures, prognostic nutritional index

and neutrophil/lymphocyte ratio have been identified to be

independent prognostic factors for GBM patients (39).
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Tewarie et al. (41) had summarized and analyzed the research

related to establishing GBM prognosis models from 2010 to

2019. Despite the increasing development of survival prediction

models for GBM patients, only seven models have been validated

retrospectively in an external patient cohort (42–48), and none

has been validated prospectively (41). Gittleman et al. (47) built a

nomogram using the Cox proportional hazards model and

identified the factors that increased the probability of shorter

survival that included advanced age, male gender, lower

Karnofsky performance score (KPS), subtotal resection, and

unmethylated MGMT status. This model has been deployed as

a publicly available prediction tool. However, due to the

complexity of GBM, no model has been applied as a

standardized tool to guide clinical decision-making, which

leaves sufficient space for further research. This study

thoroughly explored the factors related to the prognosis of

GBM for immune-related genes and conducted rigorous

validation group analysis using the datasets from different

sources. The prognostic model was solidly verified according

to the results of qRT-PCR analysis of clinical samples. Compared

with the existing studies, this article focuses on the construction
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FIGURE 7

Validation of a 3-gene-based prognostic model using the CGGA validation set (n = 248). (A) The prognostic curve and a scatter plot for the
validation set. (B) The Kaplan–Meier OS curves of the high- and low-risk groups for the validation set (P = 0.029). (C) ROC curve for the
validation set (AUC >0.6). (D) The heat map of the gene expression profiles of the three model genes in the validation set.
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of a GBM prognosis model in the direction of immune-related

genes, which may not consider the comprehensiveness of the

prognosis model. However, it did not ignore the external patient

cohort verification and biological verification, which provided a

reliable theoretical basis for further prospective research.

Inflammation is closely related to tumorigenesis and

development (6); emerging treatment methods of GBM such

as immunotherapy are mainly guided by the inflammatory

microenvironment mechanism (16). The DE-IRGs provided in

our article may pioneer new thinking of GBM therapeutics.

In previous studies, PTX3, a member of the pentraxin

superfamily, is rapidly produced by multiple cell types in

response to primary inflammatory signals (49, 50). The high

expression of PTX3 may be regulated by JNK-Jun, IKK/nuclear

factor kappa B (NF-kB), and Wnt signaling pathways, so as to

promote the expression of epithelial–mesenchymal transition

(EMT)-related proteins and enhance the migration and invasion

abilities of tumor cells (51). As a key molecule of bone

metabolism, PTX3 overexpression can affect osteoclast

differentiation and promote bone metastasis of breast cancer

and gastric cancer (52). PTX3 may promote the stemness of

tumor cells through Hedgehog and Hippo-YAP signaling

pathways, so as to expedite tumor growth and malignant

progression (53). The overexpression of PTX3 is a poor
Frontiers in Oncology 11
prognosis sign in lots of cancer types such as lung cancer (54),

cervical cancer (55), colorectal cancer (56), pancreatic cancer

(57), breast cancer (58), gastric cancer (59), melanoma (60), and

squamous cell carcinoma of the head and neck (61). However,

PTX3 also has the inhibitory effect on angiogenesis and is able to

moderate malignant progression in bladder cancer (52), multiple

myeloma (62), fibrosarcoma (63), and prostate cancer (64).

When it comes to GBM, PTX3 can promote the proliferation

and metastasis of glioma cells, which has been found to indicate

a terrible prognosis (65).

TNFSF9 (CD137L), the counterreceptor for CD137 (4-1BB)

and a member of the tumor necrosis factor (TNF) ligand

superfamily (66), can be expressed on the surface of antigen-

presenting cells (APCs) as a transmembrane protein, and the

stimulation can be transmitted to APCs through reverse TNFSF9

signal (67). TNFSF9 signal plays a role in activating and secreting

pro-inflammatory cytokines in monocytes and inhibiting the

release of anti-inflammatory cytokines such as IL-10 (68). In

addition, TNFSF9 signal has the ability to induce the activation,

migration, survival, and differentiation of monocytes (69) and

has also been proven to participate in NK cell-mediated

antitumor immunity (70). The studies found that TNFSF9

facilitates antitumor immunity in liver cancer (66) and

inhibited the proliferation of small cell lung cancer cells and
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FIGURE 8

Independent prognostic analysis of the risk score. (A) Univariate Cox regression analysis in the training set. (B) Multivariate Cox regression
analysis in the training set (P < 0.05). (C) The nomogram designed with the risk score model and age (C-index = 0.66). (D) The 1–3-year
calibration curve.
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induced apoptosis (71). However, Wu et al. (72, 73) discovered

that TNFSF9 promotes the metastasis of pancreatic cancer

through Wnt/Snail signal transduction and regulates M2

polarization of macrophages through Src/FAK/p-Akt/IL-1b
signal transduction. In the field of glioma, research focusing

on TNFSF9 is rare, and only a few studies ended up just at the

stage of clinical data analysis. Mu et al. (74) reported that GBM

patients with a high expression of TNFSF9 had a longer OS, but

Cui et al. (75) showed that there was no significant correlation

between the level of TNFSF9 and GBM patient survival.

BMP2, bone morphogenetic protein 2, belongs to the

transforming growth factor b (TGF-b) superfamily (76). They

play an important role in the growth and development of the

body by coordinating the differentiation, proliferation, and

apoptosis of cells in different tissues and organs (77). Many

studies have revealed that BMPs not only regulate bone and

cartilage but also exert a variety of biological processes in the

development of cancers (78), including breast cancer (79), ovarian

cancer (80), and lung cancer bone metastasis (81). The expression

level of BMP2 is related to the degree of tumor malignancy and

GBM patient survival; therefore, it is being considered as a
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prognostic marker for glioma (82, 83). BMP2 increased the

differentiation and apoptosis of glioma in a concentration-

dependent manner (84) through the downregulation of both

MGMT and hypoxia-inducible factor-1 (HIF-1) (xref>/xref>). In

addition, BMP2 has also been reported to render glioblastoma stem-

like cells more susceptible to temozolomide treatment through

destabilization of HIF-1 (82, 85).

In our study, 15 immune cells were screened for differences

in infiltration between high- and low-risk groups and were

confirmed to be closely associated with model genes. For

instance, TNFSF9 and PTX3 were mostly correlated with

macrophages, and BMP2 was mostly relevant to CD8 T cells.

The rise of macrophages may represent a negative feedback from

downregulated immune cells. Tumor-associated macrophages

have been reported to contribute to a poor prognosis of GBM

patients (38, 86), which is consistent with the fact that

macrophages increased in the high-risk group in our article.

CD8 T cells are the principal force to eliminate glioma cells, but

they are easily exhausted and cannot be effectively

supplemented, accounting for a low proportion in the GBM

immune microenvironment (87). NK cells are one type of
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FIGURE 9

Diagnostic value of model genes (AUC >0.7) and significant differences in gene BMP2 and PTX3 between 1p/19q codeletion and IDH mutation
(P < 0.05). (A) Single-gene ROC curve for the three model genes in TCGA dataset. (B) Single-gene ROC curve for the three model genes in the
GSE4290 dataset. (C) Compared with 1p/19q non-codeletion, BMP2 was high expression in 1p/19q codeletion, while PTX3 was low expression.
(D) In contrast with the IDH wild type, BMP2 showed a strong expression in IDH mutation, while PTX3 showed a weak expression.
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immune cells recruited first to the glioma area. They can secrete

perforin and granzyme to induce apoptosis or necrosis of target

cells, without limitation from major histocompatibility complex
Frontiers in Oncology 13
(MHC) (88). The function of NK cells was inhibited, especially

in high-grade glioma (89). Myeloid-derived suppressor cells

(MDSCs) are heterogeneous cells, including immature
A CB
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FIGURE 10

Correlation analysis of immunity and inflammation in the high- and low-risk groups. (A) Volcano plot for DEGs between the high- and low-risk
groups. (B–D) The top 15 terms enriched by GO-BP/MF/CC functional enrichment analyses. (E) Thirty-two pathways enriched by KEGG
functional enrichment analysis. (F) Difference of 15 immune cell infiltrations between the high- and low-risk groups. (G) Spearman correlation
between three model genes and 15 differential immune cells. * p<0.05 vs. control; ** p<0.01 vs. control; *** p<0.001 vs. control; **** p<0.0001
vs. control; ns, not statistically significant.
FIGURE 11

Spearman correlations of three model genes and inflammatory factors (P < 0.05).
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macrophages, granulocytes, and iDCs. There is abundant

infiltration of MDSCs in glioma tissue. Its phagocytosis

decreases, and the expression of immunosuppressive molecules

IL-10, TGF-b, and B7H1 increases, so as to inhibit the

differentiation of DCs, reduce the cytotoxicity of NK cells, and

induce T-cell apoptosis (90).

To consummate our research, the possible functional pathways

of the three model genes were excavated. IL-17, produced by Th17

cells, was demonstrated to promote tumor development through

the induction of a tumor-promoting microenvironment at tumor

sites (91). Cui et al. (75) reported a direct correlation between

progression-free survival and low incidence of IL-17-producing

cells, suggesting that the presence of IL-17-producing cells may be a

good prognostic marker for gliomas. NF-kB transcription factor

and NF-kB pathway are overexpressed in leukemia, gastrointestinal

tumors, especially in glioma cells, suggesting the correlation
Frontiers in Oncology 14
between the development of glioma and various NF-kB-mediated

immune responses. When NF-kB signal is abnormal, especially

overexpression, it can accelerate the division cycle of tumor cells

and disorder the immune regulation function, leading to tumor

immune evasion (92). Taking immune cells and immune factors as

nodes, immune-related pathways connect them in a series and

weave the complex inflammatory response network around GBM,

which together form a complex tumor immune microenvironment.

The treatment of recurrent and progressive GBM is still a

challenging problem in oncology. In recent years, immunotherapy

has achieved great success in the treatment of malignant tumors,

and many attempts have been implemented to the experimental

and even clinical treatment of glioma (93). Preclinical studies have

shown that blocking programmed cell death protein-1 (PD-1) or

cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) can

significantly inhibit the growth of glioma cells and prolong the
A CB

D E

FIGURE 12

Single-sample gene set enrichment analysis (ssGSEA). (A–C) The ssGSEA of PTX3, TNFSF, and BMP2, including gene enrichment scores, hit and
ranked list metric. (D) The PPI network between the model genes and the four genes directly related to inflammatory factor pathways
(confidence = 0.6). (E) The PPI subnetwork related to PTX3, TNFSF9, and BMP2.
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survival time of experimental animals (94). Targeting glioma-

specific antigens such as EGFRvIII, IL13Ra2, and HER2 also

showed anti-glioma effects in mouse models (95). So far, these

immunotherapies have not been proven to be effective in large-scale

phase III clinical trials (96), which may be attributed to blood–brain

barrier, tumor heterogeneity, and glioma inhibitory immune

microenvironment (97).

In order to further develop immunotherapy for GBM, our

research explored immune-related genes, which can participate

in the construction of the GBM prognosis model, and analyzed

the related immune cells and immune signaling pathways across

the board. The comprehensiveness of our study is still

insufficient, and the patient information such as chemotherapy

and radiotherapy is not included in the establishment of the

prognosis model, which is due to the lack of relevant

information in the datasets. Due to the limitations of objective

conditions, the conclusions have not been adequately verified by

in vivo or in vitro experiments, and the foundation for further

mechanism research remains to be consolidated. Similar to other

GBM prognostic models, this model still lacks prospective

evidence, which reminds us of the necessity of continuing to

pay attention to the research advances on these model genes in

designing and implementing clinical prospective research.

Conclusion

The signature with three immune-related genes (PTX3,

TNFSF9, and BMP2) might be an independent prognostic

factor of GBM patients and could be associated with the

immune cell infiltration of GBM patients.
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FIGURE 13

Expression level of model genes in target tissues verified by qRT-PCR (the average value of three repeated experiments). (A, B) BMP2 (P = 0.0214) and
PTX3 (P = 0.0168) expression in GBM was significantly higher than that in control tissue. (C) TNFSF9 (P = 0.0078) expression in GBM was significantly
lower than that in control tissue.
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78. Gomez-Puerto M, Iyengar P, Garcıá de Vinuesa A, Ten Dijke P, Sanchez-
Duffhues G. Bone morphogenetic protein receptor signal transduction in human
disease. J Pathol (2019) 247(1):9–20. doi: 10.1002/path.5170

79. Wang S, Jiang H, Zheng C, Gu M, Zheng X. Secretion of BMP-2 by tumor-
associated macrophages (TAM) promotes microcalcifications in breast cancer.
BMC Cancer (2022) 22(1):34. doi: 10.1186/s12885-021-09150-3

80. Choi YJ, Ingram PN, Yang K, Coffman L, Iyengar M, Bai S, et al. Identifying
an ovarian cancer cell hierarchy regulated by bone morphogenetic protein 2. P Natl
Acad Sci USA (2021) 118(46). doi: 10.1073/pnas.2117843118. Correction to
Supporting Information for Choi.

81. Chai X, Yinwang E, Wang Z, Wang Z, Xue Y, Li B, et al. Predictive and
prognostic biomarkers for lung cancer bone metastasis and their therapeutic value.
Front Oncol (2021) 11:692788. doi: 10.3389/fonc.2021.692788
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