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Abstract: Lectins facilitate cell–cell contact and are critical in many cellular processes. Studying
lectins may help us understand the mechanisms underlying tissue regeneration. We investigated the
localization of an R-type lectin in a marine annelid (Perinereis sp.) with remarkable tissue regeneration
abilities. Perinereis nuntia lectin (PnL), a galactose-binding lectin with repeating Gln-X-Trp motifs,
is derived from the ricin B-chain. An antiserum was raised against PnL to specifically detect a
32-kDa lectin in the crude extracts from homogenized lugworms. The antiserum detected PnL in the
epidermis, setae, oblique muscle, acicula, nerve cord, and nephridium of the annelid. Some of these
tissues and organs also produced Galactose (Gal) or N-acetylgalactosamine (GalNAc), which was
detected by fluorescent-labeled plant lectin. These results indicated that the PnL was produced in the
tissues originating from the endoderm, mesoderm, and ectoderm. Besides, the localizing pattern of
PnL partially merged with the binding pattern of a fluorescent-labeled mushroom lectin that binds to
Gal and GalNAc. It suggested that PnL co-localized with galactose-containing glycans in Annelid
tissue; this might be the reason PnL needed to be extracted with haptenic sugar, such as D-galactose,
in the buffer. Furthermore, we found that a fluorescein isothiocyanate-labeled Gal/GalNAc-binding
mushroom lectin binding pattern in the annelid tissue overlapped with the localizing pattern of PnL.
These findings suggest that lectin functions by interacting with Gal-containing glycoconjugates in
the tissues.

Keywords: acicula; annelid; epidermis; immunohistochemistry; lectin; nephridium; nerve cord; setae

1. Introduction

Lectins are carbohydrate-binding proteins critical in facilitating cell–cell contact, a
fundamental cellular process. For example, in animals, lectins are a critical component
of innate immunity. Lectins are also present in biological domains and viruses. They act
as receptors for various glycans, consisting of chains of monosaccharides, that cover the
surface of eukaryotic cells, the cell wall of bacteria and archaebacteria, and the capsid
or envelope of viruses. Cellular processes such as growth, quality controls, differentia-
tion, and cell death are regulated through the interaction between glycans and lectins.
Thus, glycobiology, or the study of glycan, is important for tissue regeneration and tissue
engineering research.

Lectin–glycan interactions are weak and reversible but quite specific. Although the
origins of the structures of lectins remain unclear, they may have evolved in response
to the development of glycan structures. Based on the primary structures of various
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families of lectins, around 30 structural folds have been indexed in the database (https:
//www.uniprot.org/database/DB-0231 accessed on 1 August 2021) [1].

A family of R-type lectin is produced by the animals of the phylum Annelida, of the
superphylum Lophotrochozoa [2], which have strong regenerative abilities and adaptabili-
ties to environmental changes such as chemicals, microorganisms, and climates. Each class
of Oligochaeta (earthworms) [3], Hirudinea (leeches) [4], Polychaeta (lugworms) [5,6], and
Echiura [7,8] in the phylum Annelida have been reported to produce R-type lectins. R-type
lectins are derived from the ricin B-chain, a protein toxin consisting of AB subunits, in
castor bean seeds. They usually have the three-leaf clover-like β-trefoil fold with Gln-X-Trp
(Q-X-W) sequences in each subdomain (https://unilectin.eu/unilectin3D/search?fold=b-
trefoil& accessed on 1 August 2021). The physiological function of the R-type lectins in an-
nelids is still unclear. Studying the R-type lectins may provide insight into the glycobiology
of tissue regeneration in annelids.

The biology of marine annelids has been extensively studied. Genus Perinereis, also
known as lugworms, is a type of benthos that belongs to the class Polychaeta in the phylum
Annelida. Perinereis sp. is widely found in the Suez Canal, Pacific Ocean, Indian Ocean,
and Red Sea [9]. They inhabit under the mud bottom of brackish water and subsist on
the organic matters in the sand. While it is well understood that lectins from different
organisms diverge in structural properties and biological activities, the localization of each
lectin in different tissues during development remains unclear.

Previously, we isolated PnL, a D-galactose-binding lectin of the R-type lectin family
with an anti-bacterial activity, from Perinereis sp. [5,10]. It was also found that lugworms
generate glycans in the tissue sections that produced galactose residues [11]. However,
to the best of our knowledge, the localization of lectins in different tissues has not been
surveyed. In this study, an antiserum was prepared against PnL by immunizing rabbits
with a polypeptide of 14 amino acids derived from the primary structure of PnL. We applied
the antiserum to the cross-sections of the annelids and found that PnL was specifically
localized around the body wall, gut, spindles, and neurons. Our study suggests that PnL is
co-localized with endogenous ligand glycans having Gal residues in some tissues.

2. Results
2.1. Detection of PnL in the Crude Extract of Lugworm Tissues

The anti-PnL antiserum against 14 amino acids sequence (Supplementary Figure S1,
K1, yellow sequence) detected a 32 kDa band in the crude extract by Western blotting
(Figure 1A, column anti-PnL). Three polypeptide fragments derived from PnL were reana-
lyzed and found to be similar to the N-terminal side domain of the earthworm lectin EW29
that contained two R-type lectin domains in the polypeptide. We found that the partial
primary structure of PnL shared similarities with R-type lectins, including two Q-X-Ws
and one P-X-W sequence characteristic of the R-type lectin family.

2.2. Diversified Localization Pattern of PnL in Lugworm Tissues

The localization patterns of PnL varied in the tissues of Perinereis sp. PnL was pro-
duced in the dorsal and ventral epidermis (gray triangles; Figure 1(C1–C3). PnL was
characteristically found in the setae and their bundles (white and meshed white, respec-
tively, in Figure 1(C1)), aciculum, oblique muscle, and nephridium (purple triangles in
Figure 1(B2)) of the lugworm. The nerve cords were also a characteristic point of lectin
localization (orange triangles in Figure 1(C3)). A weak signal was detected in the intestinal
mucosa (green triangles in Figure 1(C2,C3)).

https://www.uniprot.org/database/DB-0231
https://www.uniprot.org/database/DB-0231
https://unilectin.eu/unilectin3D/search?fold=b-trefoil&
https://unilectin.eu/unilectin3D/search?fold=b-trefoil&
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Figure 1. Localization of PnL in lugworm tissues. The PnL in the crude extract was detected by 

peroxidase staining of the HRP-conjugated goat anti-rabbit IgG raised against the PnL antibody (A). 

The bands in the crude extract and purified PnL (purple triangle) were also stained with Coomassie 

Brilliant Blue R-250. The numbers on the left and right are the molecular mass standards (st). Paraf-
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Figure 1. Localization of PnL in lugworm tissues. The PnL in the crude extract was detected by
peroxidase staining of the HRP-conjugated goat anti-rabbit IgG raised against the PnL antibody (A).
The bands in the crude extract and purified PnL (purple triangle) were also stained with Coomassie
Brilliant Blue R-250. The numbers on the left and right are the molecular mass standards (st).
Paraffin-embedded serial sections were observed using phase-contrast microscopy (B, (C1–C4), left).
The sections were also immunostained with the antiserum against PnL and Alexa 488-conjugated
secondary antibody, and observed using a fluorescence microscope KEYENCE BZ-9000 ((C1–C4),
right; λex/em = 488/520 nm). Photos in C correspond to the areas in B. The epidermis (gray triangles),
setae (white), bundle of chaeta (meshed white), acicula (blue), nerve cord (orange), nephridium
(purple), and intestine (green) are denoted. Scale bars: 300 µm (B), 100 µm (C).
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The magnified views revealed that PnL was secreted from specific cells in the epi-
dermis (Figure 2(A1)). Besides, PnL was localized at the origin of the setae at the acicula
(Figure 2(A2)). It was characteristic that lectins such as PnL were enriched at the nerve cord
and nephridium (Figure 2(A3,A4)). These patterns were similar to the localization of an
endogenous galectin in the tissues of American bullfrogs [12]. Overall, R-type lectin was
found in extracellular locations after secretion from specific cells at the epidermis, setae,
oblique muscle, acicula, nerve cord, and nephridium (Figure 2B).
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Figure 2. The tissues with PnL localization. (A) The epidermis (1, gray), acicula (2, meshed white),
nerve cord (3, orange), and nephridium (4, purple). (B) The overview of the tissues. The colors of the
arrows correspond to those in A. Scale bar: 50 µm.

2.3. Co-Localization of the R-Type Lectin and Glycan Ligands

In a previous study [11], we observed D-galactose (Gal)/N-acetyl D-galactosamine
(GalNAc)-containing glycans in the cross-sections of Perinereis sp. (Supplementary Figure S2).
Here, the localization pattern of the Gal/GalNAc-containing glycans was found to be
almost identical to the distribution of PnL. The superimposition of fluorescein isothio-
cyanate (FITC)-labeled Agaricus bisporus agglutinin (ABA) lectin detected setae, acicula,
nerve cord, nephridium, and the epidermis (Figure 3(A3,B3)). Alexa488-labeled anti-rabbit
immunoglobulin G (IgG) also detected similar patterns (Figure 3(A2,B2)). The pattern of
PnL and ABA-lectin binding overlapped in many tissues, including setae, acicula, and
nerve cord. These results suggest that PnL is present at the same location as an endogenous
ligand of a lectin (Figure 3(A4,B4)).
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Figure 3. The localization patterns of PnL and Agaricus bisporus agglutinin (ABA)-lectin bindings. The Perinereis sp.
tissues were 40× (A) or 80× (B) magnified, visualized with phase-contrast microscopy (1), anti-PnL detection by Alexa
488-conjugated antibody (red) (2), FITC-ABA lectin binding (green) (3), and a merging of both staining (4). The arrows
indicate the superimposed detecting (yellow). Setae (white), acicula (blue), nerve cord (orange), and epidermis (gray) are
shown. Scale bar: 300 µm (B).

3. Discussion

R-type lectins are representative of lectin families, and they have a subunit molecular
mass of around 15,000. From pharges to humans, lectin-encoding genes exist in all organ-
isms. Although the R-type lectins in different organisms have low similarity in amino acid
sequence, they usually have three Q-X-W motifs in a subunit and triple tandem repeat se-
quences consisting of 40–50 amino acids. Generally, an R-type lectin domain (or subunit) is
combined with another R-type lectin domain (or subunit), an enzymatic domain, or a toxin
domain (or subunit). Each lectin protein is well characterized biochemically. However, the
localization patterns of lectins in different tissues in an organism have not been elucidated.

Our immunohistochemical study found that PnL, an R-type lectin in marine annelids,
existed in the characteristic organs in lugworms. In addition, PnL was found to co-localize
with lectin ligands and glycans in the tissues, similar to the localization of galectins in
some vertebrate tissues [12,13]. Not many lectins derived from marine invertebrates
were extracted from tissue homogenates, so they seem to exist apart from tissues [14–16].
However, these lectins are found to locate around characteristic tissues such as the guts,
coelome, and spickles [17–19]. Together with these results, PnL provided more evidence
that this Gal-binding lectin locates at the surface of various tissues of PnL in lugworm
tissues and suggested binding with their endogenous ligands.

PnL is a 32-kDa polypeptide with a glycan-binding profile; it recognizes the D-
galactose residues in the glycans of glycoproteins and glycolipids [5]. Two Q-X-W and a
P-X-W sequence were found in the partial amino acid sequences of a cleaved PnL. Further-
more, the antiserum generated by immunizing rabbits with a PnL fragment could detect
PnL in various organs such as the epidermis, setae, acicula, nerve cord, and nephridium
in the annelid. These results indicated that PnL is produced in the tissues originating in
the endoderm, mesoderm, and ectoderm. In addition, glycans with D-Gal or D-GalNAc
residues at the reducing terminal were detected by FITC-labeled lectin staining at the same
place as PnL. This observation may explain why PnL and other R-type lectins in annelids
require haptenic sugar to separate from tissues when they are purified. These lectins bind
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to their endogenous ligands in the tissues; thus, the addition of haptenic sugar dissociates
the lectins from their glycan ligands.

Our results also help delineate the physiological functions of R-type lectins in annelids.
The R-type lectin domain is found in various kinds of proteins; it is present not only
in lectins but also in enzymes and toxins [2]. For example, pierisin, a famous toxin in
arthropods, consists of an adenosine diphosphate ribosylation enzyme and four R-type
lectin domains [20]. In the case of sea cucumber (phylum Echinodermata), a pore-forming
toxin having two R-type lectin domains results in fibrous multimerization to penetrate the
cell membranes on erythrocytes [21] whereas its configuration was similar to the Vibrio
toxin [22] in pathogenic bacteria.

In the case of bivalves, another group of animals of Lophotrochozoa, the R-type lectin
SeviL, in the gills, binds to characteristic asialo-GM1glycans of glycosphingolipids [23].
These R-type lectins that have a β-trefoil fold structure increase their transcription ac-
cording to the bacterial challenge test, suggesting that they have roles as innate immune
molecules [24,25]. In addition to the characteristic localization of the bivalves R-type lectin,
when the lectin was administrated to mammalian culture cells that express asialo-GM1 on
the cell surface, the lectin bound to the cells and induced signal transduction of the cell
growth regulation [23]. This suggests that even in the case of physiological condition, the
lectin–glycan interaction may act for cell regulative roles.

In addition to the presence of R-type lectin, D-galactose-containing glycosphingolipids
are also found in Oligochaeta [26]. Since the phylogenetic distance between Oligochaeta
and Polychaeta is not far, glycans with similar structures would have been found in
lugworms. These glycans will provide a clue to the physiological functions of R-type
lectins in the Lophotrochozoa. Transcriptome analysis has been performed in Perinereis
nuntia [27,28]. However, the complete sequence of the R-type lectins in the species has
not been delineated. Even so, R-type lectins are likely to present in many organs, bind to
their endogenous glycan ligands, and play a role in innate immunity in response to diverse
environmental cues. PnL was suggested to have consisted of only lectin domains, same as
the earthworm R-type lectin. Besides, this lectin previously showed in vitro antibacterial
potential [10]. In this way, R-type lectins are likely to present in many organs, bind to their
endogenous glycan ligands, and play a role in innate immunity in response to diverse
environmental cues.

It became evident that the lectin was produced by all three embryonic germ layers
of Perinereis sp. and co-localized with galactose-possessing glycoconjugates in lugworm
tissues. It will be of interest to isolate and identify the ligand glycoconjugates, such as gly-
cosphingolipids and glycoproteins, of PnL in annelids to dissect the physiological function
of the R-type lectins. Integrating the data from functional morphology, bioinformatics, and
biochemical studies of marine invertebrates with environmental science studies will be
necessary to achieve a comprehensive understanding of the roles of R-type lectins.

4. Materials and Methods

According to a previous report [5], partial amino acid sequences of PnL were shown
by Edman degradation to appear as a new primary structure. In this study, these partial
sequences were analyzed again using the basic local alignment search tool (https://blast.
ncbi.nlm.nih.gov/Blast.cgi accessed on 1 August 2021) and the protein domain database
Pfam (http://pfam.xfam.org/ accessed on 1 August 2021)

The antiserum against PnL was raised in rabbits (Sigma-Aldrich Japan, Tokyo, Japan).
A total of 10 mg of antigen, derived from the peptide sequence of CYFWLAPNQLWFYA
that appeared during the primary structure analysis [5], was injected 3 times during 50 days;
antiserum was collected using saturated NH3SO4.

PnL was purified from marine annelid Perinereis sp. (a fishing shop in Yokohama
City) [5]. The crude extract of marine annelid was prepared as follows; 5 grams (wet
weight) of the lugworm were homogenized to a paste with a razor blade and mixed
with 10 ml of Tris-buffered saline (TBS) (10 mM Tris(hydroxymethyl aminomethane)-HCl

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://pfam.xfam.org/
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(pH 7.4) containing 150 mM NaCl). The homogenates were centrifuged at 27,500× g in
50 mL centrifuge tubes for 1 h at 4 ◦C with a Suprema 21 centrifuge equipped with an
NA-4HS rotor (TOMY Co. Ltd., Tokyo, Japan). The pellets were homogenized again with
3 volumes (w/v) of TBS containing 50 mM galactose overnight at 4 ◦C. The homogenate
was centrifuged at 27,500× g for 1 h at 4 ◦C, and the supernatant was dialyzed against TBS
till free galactose was removed. The dialyzed crude supernatant was centrifuged again at
27,500× g for 1 h at 4 ◦C.

Crude annelid extract and purified PnL were separated using sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) [29] and electroblotted onto polyvinyli-
dene fluoride membrane at the constant current of 2 mA/cm2 for 30 min using the EZ-
FastBlot solution in a semi-dry system (AE-1460, ATTO Co Ltd, Tokyo, Japan) [30]. The
blotted membrane was blocked with EzBlockChemi (AE-1475, ATTO Co Ltd) at room
temperature, incubated with anti-PnL primary antibody rabbit serum (1:1000 dilution) and
HRP-conjugated secondary goat anti-rabbit IgG antibody for 1 h each, and colored with
the 3,3′,5,5′-tetramethylbenzidine solution EzWestBlueW (WSE-7140, ATTO Co Ltd) as per
the manufacturer’s instructions.

The cross-sections of the annelids were prepared according to a previous report [11].
Lugworms were fixed in 4% paraformaldehyde with 0.1% glutaraldehyde and 0.1 M
cacodylate (pH 7.4) at 4 ◦C for 2 h, dehydrated using an ethanol gradient, cleared in
Lemonsol (Wako Chemicals, Osaka, Japan), embedded in Histoprep (Wako Chemicals,
Osaka Japan), sliced into 4-µm sections on a microtome, and mounted on poly-L-lysine-
coated slides. The sections were deparaffinized in xylene, rehydrated in an ethanol gradient,
and treated with 0.45% hydrogen peroxide in methanol for 45 min at room temperature to
inhibit the endogenous peroxide activity.

The deparaffinized slides were blocked overnight with 1% (w/v) bovine serum albumin
containing TBS, incubated with anti-PnL antiserum (diluted 1:500 with TBS) and Cy3-
labeled anti-rabbit mouse IgG for 1 h each, counterstained with FITC-labeled lectins
(Cosmo Bio Ltd., Tokyo, Japan), and detected by a fluorescence microscope, KEYENCE
BZ-9000 (KEYENCE Co., Osaka Japan; λex/em = 494/520 nm or 550/570 nm or both) [11].

Supplementary Materials: The following are available online. Figure S1: Similarity alignment of
PnL peptide sequence with the primary structure of EW29 lectin. Figure S2: Binding pattern of
Agaricus bisporus agglutinin (ABA, a D-Gal/GalNAc-binding lectin) in the lugworm tissue section.
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