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Inferring drug–drug interactions (DDIs) is an essential step in drug development and drug
administration. Most computational inference methods focus on modeling drug pharmacokinetics,
aiming at interactions that result from a common metabolizing enzyme (CYP). Here, we introduce a
novel prediction method, INDI (INferring Drug Interactions), allowing the inference of both
pharmacokinetic, CYP-related DDIs (along with their associated CYPs) and pharmacodynamic, non-
CYP associated ones. On cross validation, it obtains high specificity and sensitivity levels (AUC (area
under the receiver-operating characteristic curve)X0.93). In application to the FDA adverse event
reporting system, 53% of the drug events could potentially be connected to known (41%) or
predicted (12%) DDIs. Additionally, INDI predicts the severity level of each DDI upon co-
administration of the involved drugs, suggesting that severe interactions are abundant in the
clinical practice. Examining regularly taken medications by hospitalized patients, 18% of the
patients receive known or predicted severely interacting drugs and are hospitalized more
frequently. Access to INDI and its predictions is provided via a web tool at http://www.cs.tau.
ac.il/Bbnet/software/INDI, facilitating the inference and exploration of drug interactions and
providing important leads for physicians and pharmaceutical companies alike.
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Introduction

Simultaneous administration of two or more medications is by
now a common practice, but may result in significant drug–
drug interactions (DDIs), altering medication effectiveness or
even harming the patient (Manzi and Shannon, 2005). A DDI is
defined as any drug effect that is greater/less than expected in
the presence of another drug (Crowther et al, 1997). As the
number of approved drugs increases, the number of potential
interactions between prescribed medications rapidly rises
(Khouri et al, 2006). Moreover, certain patient groups (e.g.,
elderly patients (Bergendal et al, 1995; Juurlink et al, 2003;
Doubova Dubova et al, 2007) or cancer patients (Riechelmann
et al, 2007)) are typically administered numerous medications,
exposing them to a high risk of multiple interactions. The
increase in potential drug interactions renders the experi-
mental discovery of those intractable, calling for large-scale
computational prediction methods.

DDIs are conventionally categorized into pharmacokinetic
interactions, whereby a drug is affecting the processes by
which another drug is absorbed, distributed, metabolized
or excreted (Zhang et al, 2009), and pharmacodynamic

interactions, where the effects of one drug are modified by
the effect of another on its site of action or by affecting the
same or cross-talking signaling pathways (Jonker et al, 2005;
Imming et al, 2006). Most previous work concerns the
prediction of pharmacokinetic DDIs. Due to the complex
nature of the problem, those algorithms typically handle
separately the absorption, distribution, metabolism and
excretion of each compound, relying on different properties
of the compound such as its chemical structure, permeability,
solubility and polarity (Boobis et al, 2002). Subsequently,
physiologically based pharmacokinetic modeling algorithms
attempt to integrate these individual predictions into coherent
and predictive models (Brown et al, 1997; Boobis et al, 2002).

Within the pharmacokinetic processes, the metabolism part
covers the largest, yet poorly understood aspect and conse-
quently the most difficult to evaluate and predict (Boobis et al,
2002). Most of the metabolism-related DDIs involve the
Cytochrome P450 (CYP) enzyme superfamily (Wrighton and
Stevens, 1992; Goshman et al, 1999; Ekins and Wrighton,
2001). Several methods focus on predicting in-vivo affinities of
drug–CYP interactions from in-vitro experiments (Hutzler
et al, 2005; Fowler and Zhang, 2008; Jamei et al, 2009;
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Obach, 2009; Zhou and Zhou, 2009), while others attempt at
in-silico modeling of drug–CYP interactions (Hudelson et al,
2008) (e.g., using the rate of metabolism of a drug in the
presence of a CYP inhibitor (Kato et al, 2003)). The main
shortcoming of these models is the need for tuning several
pharmacokinetic parameters such as steric hindrance, lipo-
philicity, distribution volume, renal clearance and enzyme
degradation rates (Boobis et al, 2002; Kato et al, 2003; Obach
et al, 2007). A different approach is employed for predicting
pharmacodynamic interactions, depending primarily on com-
bining single drug in-vitro or in-vivo measurements of
pharmacodynamic constants (Tallarida, 2001; Jonker et al,
2005; Li et al, 2007).

Additional prediction methods (that are not type specific)
follow two distinct approaches. The first approach obtains
in-vitro chemogenomic profile measurements of drug-per-
turbed cellular systems. These approaches infer interactions
based on coupled perturbations (Nelander et al, 2008) or
similarity between these profiles (Jansen et al, 2009). These
methods were so far tested on limited cell types and validated
only at small scale. The second approach mines potential DDIs
from adverse drug reaction (ADR) reports (Tatonetti et al,
2012a,b). However, the latter methods suffer from several
limitations, including various biases in the ADRs such as
under-reporting, duplicate reports or change in reporting
methodologies over time (Rawlins, 1988; van der Heijden et al,
2002; Bate and Evans, 2009), the necessity to pre-define drug
classes, and the inability to handle novel and rarely used drugs
for which no or limited reports exist (Tatonetti et al, 2012a).

Here, we present a large-scale in-silico DDI prediction
method: INferring Drug Interactions (INDI), handling both
pharmacokinetic and pharmacodynamic DDIs and overcom-
ing the caveats of previous methods. The algorithmic frame-
work follows the pairwise inference scheme previously
employed to drug-indication prediction (Gottlieb et al, 2011):
Given a query drug pair, INDI computes its similarity to drug
pairs that are known to interact, exploiting seven different
drug–drug similarity measures. The similarity scores of each
drug pair according to each similarity measure pairs allows
INDI to determine the likelihood that the query drug pair
interacts. We further extended this framework to predict
interaction-specific traits. Specifically, INDI allows (i) recom-
mending the type of action to take upon administration of the
two drugs (contraindicate, generally avoid, adjust dosage or
monitor) and (ii) inferring the CYP isoforms involved when
the interaction is CYP-related. The latter may enable physi-
cians to seek alternative medications involving different
drug–CYP interactions, as well as considering patient-specific
genetic polymorphisms related to certain CYP enzymes
(Bertilsson, 1995; Goshman et al, 1999) (e.g., patients who
are CYP2D6-deficient (Ingelman-Sundberg, 2004)).

Drug interactions are a major cause of concern in the clinical
practice. To investigate the prevalence of interactions in
regularly taken medications, we applied INDI to three sources
associated with clinical usage of drugs. We find that known
and predicted DDIs cover the majority of drug events reported
in the FDA adverse event reporting system. We further
demonstrate the prevalence of known DDIs as well as the
frequency of our predictions in regularly taken (chronic)
medications reported by hospitalized patients in Israel and in

commonly administered drug combinations, demonstrating
their association with frequency of admissions.

To conclude, the novelty in this paper is threefold: (i) the
application of our algorithmic framework allows, to the best of
our knowledge, the first unbiased in-silico DDI prediction
algorithm; (ii) the extension of the algorithm to predict
interaction-associated traits; and (iii) the exploration of known
and predicted DDIs in clinical usage.

Results and discussion

Assembly of a DDI gold standard

We downloaded 74104 DDIs involving 1227 drugs from
DrugBank (Wishart et al, 2008) (10702 interactions) and from
www.drugs.com (Drugsite Trust, Drugs.com) (70 099 interac-
tions tagged as major or moderate DDIs). We distinguished
between three types of drug interactions (Materials and
methods): (i) CYP-related DDIs (CRDs), in which both drugs
are known to be metabolized by the same cytochrome P450
(CYP) enzyme and there is supporting evidence that the
interaction is CYP-related (10106 interactions); (ii) potential
CYP-related DDIs (PCRDs), in which both drugs are metabo-
lized by the same CYP but there is no evidence that the
interaction is CYP-related (18 261 interactions); and (iii) non-
CYP-related DDIs, where no CYP is shared between the drugs
(NCRDs, 45 737 interactions). We disregarded other metabo-
lizing proteins that may be involved in drug interactions due to
the low number of such interactions (Materials and methods).
An outline of the gold-standard assembly process is depicted in
Figure 1A.

We report in the Supplementary Material (Section 1) the
correlations between the numbers of drug interactions,
indications and side effects as well as the observed fluctua-
tions in these numbers over a period of 50 years (1961–2010).
Importantly, we found that the number of NCRDs is positively
correlated with the number of indications of a drug. The fact
that promiscuous drugs, indicated for multiple diseases, tend
to have higher number of pharmacodynamic interactions,
underscores the need for predicting such interactions.
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Figure 1 Illustration of the gold-standard assembly (A) and a schematic layout
of the validation strategies, predictions and clinical implications (B).

INDI: a computational framework for inferring drug interactions
A Gottlieb et al

2 Molecular Systems Biology 2012 & 2012 EMBO and Macmillan Publishers Limited

www.drugs.com


INDI—an algorithm for DDI prediction

We designed a novel algorithm for INDI with two objectives in
mind: (i) predicting both new CRDs and new NCRDs and (ii)
developing a general strategy that allows predicting interac-
tions for novel drugs for which no interaction information is
currently available.

Given a gold-standard set of known DDIs, INDI ranks
additional drug pairs based on their similarity to the known
DDIs. This similarity-based approach was shown to be
successful in predicting drug targets (Perlman et al, 2011)

and indications (Gottlieb et al, 2011). The algorithm works in
three steps (Figure 2): (i) construction of drug–drug similarity
measures; (ii) constructing classification features based on
these similarity measures; and (iii) application of the classifier
to these features to predict new DDIs. To address the first
objective, we used two distinct parts of our DDI gold
standard—one consisting of CRDs only and the other consist-
ing of NCRDs only. Overall, we collected 5039 CRDs, spanning
352 drugs and 20 452 NCRDs, spanning 671 drugs for which all
drug–drug similarity measures could be computed (Materials
and methods).
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Figure 2 Illustration of INDI algorithm: computation of drug–drug similarity measures (e.g., (A); scoring query drug pairs according to their similarity to known DDIs (B);
and integration of the similarities to classification features and subsequent interaction prediction (C).
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For the first algorithmic step, we assembled seven drug–
drug similarity measures including chemical similarity, ligand-
based chemical similarity based on Keiser et al (2009),
similarities based on registered and predicted side effects
(Atias and Sharan, 2010; Kuhn et al, 2010), the Anatomical,
Therapeutic and Chemical (ATC) classification system and
three similarity measures constructed between drug targets,
including sequence similarity, distance on a protein–protein
interaction (PPI) network and Gene Ontology (GO)
(Ashburner et al, 2000) semantic similarity (Materials and
methods).

The second algorithmic step integrates the drug–drug
similarities to construct classification features and subse-
quently learns a classification rule, distinguishing between
true and false DDIs (Materials and methods). For each query
drug pair, we constructed features expressing its similarity to
the closest gold-standard DDI, by adapting the scoring scheme
of Gottlieb et al (2011) (Materials and methods). Each feature is
based on a combination of two drug–drug similarity measures,
resulting in 49 features overall. We then learned a logistic
regression classifier that automatically weights the different
features to yield a classification score.

We further extended the basic prediction algorithm to
exploit the 49 features for inferring additional information
related to the predicted DDIs: (i) recommendations of the type
of action to take upon simultaneous administration of the
interacting drugs (i.e., contraindicate, generally avoid, type of
dosage adjustment or monitor); and (ii) for CRDs, the CYP
isoforms affecting them.

We provide a web interface for querying predicted DDIs,
their recommendations and their related CYPs, available at
http://www.cs.tau.ac.il/Bbnet/software/INDI. In order to
extend our method to drugs for which not all seven similarity
measures could be computed, we provide predictions also for
drugs for which only the chemical structure and some drug
targets are known (Materials and methods). Notably, the
prediction performance remains similar also for this extended
drug set (Table I).

Performance evaluation

We evaluated the performance of INDI in predicting DDIs
using a total of 37 212 true DDIs (omitting the type of
interaction, that is, pharmacodynamic or pharmacokinetic
and including PCRDs). A schematic layout of the performed
validations, summary of the predictions and the clinical
practice implications is displayed in Figure 1B.

The application of INDI in a 10-fold cross validation setting
(Materials and methods) yielded an area under the receiver-
operating characteristic curve (AUC) of 0.97±4e� 4. Encour-
aged by these results, we then retained the information
regarding the interaction type, applying INDI to predict CRDs
and NCRDs using known DDIs from each type separately.
Evaluating these predictions using a 10-fold cross validation
setting, we obtained similarly high AUC scores of 0.93±0.003
for CRDs and 0.96±6e� 4 for NCRDs (Table I). Using the best
F1-measure (harmonic mean of precision and recall) over the
different classifier ranks, these AUCs correspond to a recall and
precision values of 0.89±0.01 and 0.84±0.01, respectively,
for the CRD predictions and 0.93±0.004 and 0.88±0.004,
respectively, for the NCRD predictions. We note that no single
similarity measure obtains these high AUCs: the highest AUC
was obtained using the ligand chemical similarity (0.86 for
CRDs and 0.88 for NCRDs; Supplementary Table S1), and
removing each single similarity measure had a marginal effect
on the overall AUC (o0.02).

To confirm that INDI’s performance is not biased by
redundancy stemming from chemically similar drugs, we
created a non-redundant drug set by filtering for similar drugs
(Tanimoto coefficientX0.5; Materials and methods). The
application of INDI to this set resulted in only a minor
performance reduction (Table I; Supplementary Figure S1). In
order to verify that this result is not biased by the type of
chemical similarity computation, we further excluded the
ligand similarity measure to obtain similar, minor, perfor-
mance degradation for both CRDs and NCRDs (AUC differ-
enceo0.01; Supplementary Figure S1). For NCRDs, we further
verified that removing drugs sharing the same targets had a
minor effect on performance (Table I).

As a second validation strategy, we predicted DDIs based on
the smaller set of DrugBank DDIs and tested their intersection
with the larger set of Drugsite Trust, Drugs.com interactions
(excluding interactions appearing in DrugBank). Reassuringly,
10% of the predicted CRDs and 25% of the predicted NCRDs
significantly overlapped the corresponding Drugsite Trust,
Drugs.com DDIs (P¼ 0 for both). For completeness, we carried
out the same validation when training on the Drugsite Trust,
Drugs.com set, constraining ourselves to the same set of drugs
used when training on the DrugBank set. We obtained
significant overlap of 32% of the predicted CRDs (P¼ 2e� 7)
and 18% of the predicted NCRDs (P¼ 4e� 4) with the
corresponding DrugBank DDIs (Supplementary Table S4).
Additionally, we observed a significant overlap with PCRDs
(12% of predicted CRDs, P¼ 5e� 313 and 28% of predicted
NCRDs, P¼ 0, see Supplementary Material, Section 2).

Table I Performance of predicted interactions in cross validation

Training set CRDs NCRDs

# Drugs AUC # Drugs AUC

All 352 0.93±0.003 671 0.96±6e� 4

Chemically dissimilar drugsa 186±2 0.9±0.005 301±3 0.95±0.004
Drugs sharing no targetsa – – 164±3 0.93±0.01
Drugs with no ATC available 394 0.92±0.002 815 0.94±6e� 4

aThe number of drugs slightly varies due to the removal process.

INDI: a computational framework for inferring drug interactions
A Gottlieb et al

4 Molecular Systems Biology 2012 & 2012 EMBO and Macmillan Publishers Limited

http://www.cs.tau.ac.il/~bnet/software/INDI


Finally, we wished to compare INDI to a layman approach.
To this end, we devised a naive method that predicts an
interaction between a pair of drugs based solely on the
similarity between them (rather than using known DDIs as in
INDI). This naive approach proved to be a poor predictor for all
similarity measures, resulting in AUCs o0.6 for both the CRD
and NCRD sets (Supplementary Figure S5; Supplementary
Material, Section 3).

Prediction of novel DDIs

Next, we applied INDI to predict new interactions between 807
drugs (Materials and methods). Our full set of predictions
includes 14 698 predicted CRDs and 28108 predicted NCRDs.
This set includes known PCRDs, which were further exploited
for validation purposes. Excluding those from the prediction
set, we acquired 11 445 and 18 601 novel CRDs and NCRDs,
respectively (Supplementary Table S2). In all, 1781 of the
predicted CRDs and 3208 of the predicted NCRDs involve
drugs with no DDI information (novel drugs in our context).
Notably, we observed a high correlation between the numbers
of predicted and known CRDs of a drug, and similarly for the
NCRD predictions. The detailed analysis, as well as analyses of
the trends in the number of predicted interactors per drug over
a period of 50 years appears in the Supplementary Material
(Section 1).

To evaluate our predictions, we compared them to a
recent collection of DDIs mined from FDA Adverse
Event Reporting System (Tatonetti et al, 2012b). Even upon
exclusion of known DDIs from our prediction set, we
observed a significant overlap between the two lists, where
39 and 33% of the CRD and NCRD predictions, respectively,
overlapped the list of mined DDIs (P¼ 4e� 95 and P¼ 4e� 23,
respectively).

We further assessed the predictions in two ways. The first is
based on the assumption that NCRDs tend to occur among
drugs affecting the same tissues. We associated drugs with
tissues via their indicated diseases or via tissue-specific
expression of their targets (see Materials and methods for
details of the tissue association scheme and the validation of
the above assumption). Reassuringly, our predicted interac-
tions involved drugs that were also significantly associated
with the same tissues (P¼ 2e� 34 for disease-based and
P¼ 7e� 41 for gene-expression based drug–tissue associa-
tions). A similar trend, albeit with a lower magnitude, was
observed for the CRD predictions (Supplementary Material,
Section 2). The second validation, assumes that NCRD drug
pairs affect similar or cross-talking mechanisms of actions and,
thus, may also treat disease pairs with shared molecular
mechanisms, contributing to co-morbidity of those pairs.
Indeed, predicted NCRDs were found to be enriched with
the corresponding co-morbidity pairs (see Supplementary
Material, Section 2 for details).

Analysis of interactions between drug classes

We used our predictions to study which drug classes should
not be administered concomitantly in general. We utilized the
third level of the ATC drug classification system to compute

interactions between ATC classes, using only interactions
involving severe recommendations (i.e., generally avoid or
contraindicate, encompassing 8% of the DDIs). Figure 3A and
B display the interaction networks formed by CRDs and
NCRDs, respectively (for clarity, we display only interactions
between classes involving a significant fraction of each class’
drugs, see Materials and methods). Most of the inter-class
interactions in these figures are supported by both known and
predicted interactions (solid lines). We identified two pre-
dicted novel CRD-based and four NCRD-based inter-class
interactions. We found that these novel inter-class interactions
extend known interactions from other classes (see
Supplementary Material, Section 4).

Predicting DDI recommendations and related
CYPs

In addition to predicting DDIs, we aimed to provide additional
information characterizing them: (i) recommendations,
describing the type of action to take upon administration of
the drugs predicted to interact and (ii) CYPs influencing the
predicted CRDs. In order to predict recommendations, we used
the four major recommendations available for all Drugsite
Trust, Drugs.com and some of the DrugBank interactions:
(i) contraindicated (3% of the CRD and NCRD training set);
(ii) generally avoid (9%); (iii) adjust dosage (2%); and (vi)
monitor (84%). The remaining 2% could not be mapped to
any of these recommendations (Materials and methods). For
the ‘adjust dosage’ recommendation, we provided finer-
grained categorization by further partitioning the recommen-
dation into four subcategories: (i) decrease dosage (53%
of the CRD and NCRD training set with adjust dosage
recommendation); (ii) increase dosage (9%); (iii) limit
dosage (15%); or (iv) adjust dosage interval (17%). Additional
5% DDIs had an unspecific adjust dosage recommendation.
Recall that each predicted interaction (CRD or NCRD) exploits
a set of 49 most similar known DDIs, computed by the DDI
prediction algorithm. We formed four novel features describ-
ing each DDI prediction by computing the frequency of each of
the four recommendations in these 49 known DDIs, and
trained a logistic regression classifier for each recommenda-
tion separately using these four features (Materials and
methods).

On a 10-fold cross validation test, we obtained high AUC
scores for each of the recommendation types (Table II).
Predicting each recommendation type independently, we kept
the most severe recommendation whenever more than one
type was predicted for a drug pair. Overall, we predicted
recommendations for over 97% of the predicted DDIs
(Table II). In order to validate the predicted recommendations,
we exploited the fact that 21% of the predicted CRDs are
known NCRDs or PCRDs (with associated recommendations)
and 33% of the predicted NCRDs are known CRDs or PCRDs
(with associated recommendations). We obtained significant
agreements between the predicted and known recommenda-
tions (see Supplementary Table S5 and Supplementary
Material, Section 5). Restricting ourselves to those predicted
DDIs with predicted adjust dosage recommendation, we used
the same methodology to further predict one of the four
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subtypes, providing such a subcategorization for 85 and 96%
of the adjust dosage predicted CRDs and NCRDs, respectively
(see Supplementary Material Section 5 and Supplementary
Table S5 for further details and validation).

Using a similar methodology, we predicted which CYP
enzymes may be the cause of the predicted CRDs—essential
information in drug design (de Groot, 2006). Extracting the

CYP enzymes known to cause the interaction from each CRD
description, resulted in seven CYP enzymes which appear
prevalently in known CRDs (3A4, 2D6, 2C9, 1A2, 2C8, 2C1 and
2B6; Materials and methods). Overall, we predicted related
CYPs for 99% of the CRD predictions, 18% of which have
more than one CYP (versus 14% of the known CRDs). The
predictions were validated in a cross validation setting
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Figure 3 Networks of CRDs (A) and NCRDs (B) with severe recommendations between third level ATC classes. Black solid lines denote interactions supported by
both known and predicted interactions, while red dashed lines denote interactions supported by predicted interactions only. Edge width corresponds to the average
percentage of interacting drugs from each class and node size corresponds to the number of interactors (degree) of the class. The first letter of each ATC category
denotes the top level, anatomical, class, including Alimentary tract and metabolism (A), Blood and blood forming organs (B), Cardiovascular system (C), Dermatologicals
(D), Genito-urinary system and sex hormones (G), Systemic hormonal preparations, excluding sex hormones and insulins (H), Antiinfectives for systemic use (J),
Antineoplastic and immunomodulating agents (L), Musculo-skeletal system (M), Nervous system (N), Antiparasitic products, insecticides and repellents (P), Respiratory
system (R) and Sensory organs (S).

Table II Performance of predicted recommendations in cross validation

Recommendation CRDs NCRDs

% of predictions AUC % of predictions AUC

Contraindicate 1% 0.9±0.01 1% 0.96±0.008
Generally avoid 5% 0.91±0.007 7% 0.97±0.002
Adjust dosage 2% 0.88±0.01 1% 0.97±0.005

Decrease dosage 27%a 0.94±0.01 43%a 0.98±0.01
Increase dosage 24%a 0.84±0.08 2%a 0.91±0.04
Limit dosage 49%a 0.96±0.005 –b –
Adjust dosage interval –b – 51%a 0.99±0.009

Monitor 89% 0.93±0.003 88% 0.98±7e� 4

aPercentage out of the adjust dosage recommendation.
bNo predictions due to insufficient training data.
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obtaining high AUCs (see Supplementary Material, Section 5
for details and an additional validation).

Analysis of the prevalence of known and predicted
DDIs in clinical data

We sought to analyze the prevalence of DDIs in three
independent clinically related sources: (i) ADRs; (ii) chronic
medications taken by hospitalized patients in Israel; and (iii)
common drug combinations.

To analyze ADRs, we used a comprehensive set of over
270 000 of them from the FDA Adverse Event Reporting System
(Materials and methods). We considered drug pairs for which
the number of ADRs is significantly higher than would be
expected by chance, resulting in 1988 drug pairs involving
drugs included in our CRD and NCRD sets (Materials and
methods). We found that 6% (P¼ 4e� 27) of these drug pairs
are known CRDs, 15% (P¼e� 25) are known NCRDs and 20%
(P¼e� 131) are known PCRDs. Additionally, 4% (P¼ 0.004) of
the drug pairs are novel predicted CRDs and 8% (P¼ 3e� 19)
are novel predicted NCRDs. Moreover, a significant portion of
those drug pairs (4%, P¼ 6e� 20) exhibits severe recommen-
dations (see Supplementary Material, Section 6 for further
details).

Next, we investigated the frequency of DDIs in drug pairs
taken on a regular basis (chronic drugs). We retrieved
electronic medical records of patients hospitalized in internal
medicine departments at the Rabin Medical Center, Israel
over a period of 1 year (Materials and methods). We
investigated the frequency of severe DDIs in chronic drugs
reported to the medical staff by 9413 of these patients, each
taking at least two medications at admission time. We found
that 3, 8 and 7% of the patients were taking at least two chronic
medications with known severe CRDs, NCRDs or PCRDs,
respectively. Additional 1% of the patients took chronic
medications involving predicted severe CRDs and 3% of the
patients took chronic medications with predicted severe
NCRDs. Expectedly, these percentages follow the random
expectation. Overall, 19% of the patients took at least two
chronic medications with known or predicted severe DDIs,
with 12% taking more than one such combination. Next, we
compared the admission frequency of three patient groups
over the course of 1 year (removing patients who passed away
during that period for an unbiased comparison): (i) patients
taking medications with at least one known severe interaction
among them (group A); (ii) patients taking medications with
predicted severe interactions, but with no known severe
interactions (group B); and (iii) patients without any severe
interactions (known or predicted) (group C). Expectedly,
patients from groups A and B take more drugs than those in
group C (11.6±10 and 10.3±7.3 for groups A and B,
respectively, versus only 6.3±5.9 for group C, P¼e� 165 and
P¼ 3e� 24, respectively). Interestingly, we found that the
patients from groups A and B were hospitalized 2±1.6 and
2±1.4 times on average during the year, while patients from
group C were hospitalized only 1.8±1.3 times on average
(Wilcoxon ranked sum test P¼ 2e� 27 and P¼ e� 10, respec-
tively). We note that no significant age or gender differences
were observed between both groups A or B and group C.

Additionally, no enrichment of the primary reason for
hospitalization was observed (using the primary discharge
ICD-9-CM code, two-sided Fisher exact test with false
discovery rate of 0.01). We found that patients from group A
tended to have richer medical history than group C patients, as
expressed by the number of associated diagnosis and
procedural ICD-9-CM codes prior to their hospitalization
(number of past ICD codes¼ 3.5±28 versus 2.7±2.4,
P¼ 6e� 16). However, no significant difference in medical
history was observed between groups B (number of past
ICD codes¼ 3±2.4) and C. In order to compensate for the
effect of medical history richness on the number of hospita-
lizations for group A patients, we further stratified these
patients into those with: (i) scarce history (0–4 associated
codes); (ii) moderate history (5–10 codes); and rich history
(410 codes). We found the same significant difference in
number of hospitalizations between patients in group A and
those in group C. Precisely, patients with both scarce history
(P¼e� 12) and moderate history (P¼ 0.003) displayed
significant differences, while rich history patients showed no
significant difference.

One of the drug combination reported by these patients is a
predicted CRDs (a predicted CYP3A4-related CRD), predicted
to be contraindicated. This interaction involves Roxithromy-
cin, a semi-synthetic macrolide antibiotic, very similar in
composition, chemical structure and mechanism of action to
Erythromycin (according to DrugBank) and Alfuzosin, an a-
adrenergic blocker used to treat benign prostatic hyperplasia.
This prediction is not surprising, since the similar antibiotic,
Erythromycin—a potent inhibitor of CYP3A4, is known to
contraindicate Alfuzosin by significantly increasing the
plasma concentrations and pharmacologic effects of Alfuzo-
sin, primarily metabolized by this isoenzyme (according to
Drugsite Trust, Drugs.com). Several relatively frequent inter-
actions (38 patients) were predicted to induce a severe NCRD.
One example of such a predicted interaction involves Atenolol,
a cardioselective b-adrenergic blocker and Methyldopa, an a-2
adrenergic agonist primarily used as antihypertensive agent.
According to a third, independent, DDI database, ePocrates
(www.epocrates.com), this combination has indeed an
increased risk of severe rebound hypertension on a-2-agonist
withdrawal (antagonistic effects, unopposed a-adrenergic
stimulation).

Last, we explored combinations of drugs that are frequently
administered concomitantly, listed in the Drug Combinations
Database (DCDB) (Liu et al, 2010). DCDB holds approved or
investigational drug combinations, specifying potential inter-
actions between their components. We found that 12% of
these drug combinations are known CRDs (including one
contraindicated interaction) and 19% are known NCRDs
(including three severe interactions). The use of such
combinations implies that their benefit may, in some cases,
outweigh the adverse effects caused by the induced interac-
tions. Similarly, we found that 6% (9 pairs) of the drug
combinations intersecting our drug sets are predicted CRDs
and 13% (20 pairs) are predicted NCRDs. Three and 12 drug
combinations, respectively, are novel predictions (i.e., not
known PCRDs; Supplementary Table S3).

Importantly, we predicted a recommendation of ‘generally
avoid’ for two predicted NCRDs, requiring special attention.
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The first prediction involves Fluorouracil and Methotrexate,
both antineoplastic antimetabolites, a combination used in
adjuvant treatment for early breast cancer (Bonadonna et al,
1995). This combination was indeed found to be mutually
antagonistic under some circumstances (Tattersall et al, 1973;
Maugh, 1976) and maintaining a 24-h period between
administrations of the two drugs was found to be preferable
(Marsh et al, 1991). The second, related potential severe NCRD
drug combination, involves Methotrexate and Leucovorin, the
last being an active metabolite of folic acid. According to the
Drugsite Trust, Drugs.com website, co-administration of
Methotrexate with other agents known to induce hepatotoxi-
city may potentiate the risk of liver injury. Indeed, it is reported
that the addition of Leucovorin to Fluorodeoxyuridine
metabolite produces greater hepatotoxicity than when Fluor-
odeoxyuridine used alone (King and Perry, 2001). We highlight
an additional example of a predicted CRD between Tolter-
odine, an antimuscarinic drug used to treat urinary incon-
tinence, and Ergonovine, an ergot alkaloid with uterine and
vascular smooth muscle contractile properties in the
Supplementary Material (Section 7).

Conclusions

Our interaction prediction framework, INDI, leverages on the
comprehensive set of known DDIs, as well as a set of basic
drug properties such as chemical structure, drug targets and
side effects. Unlike many DDI prediction methods, INDI does
not require the collection of kinetic and dynamic parementers
(Boobis et al, 2002; Obach et al, 2007). INDI attaines very
high rates of specificity and sensitivity in cross validation
(AUC¼ 0.93 and 0.96 for CRDs and NCRDs, respectively).
Furthermore, our predictions attain significant coverage of
independent drug interaction sources for both interaction
types (P¼ 0), as well as significant fraction of an independent
drug interaction types such as PCRDs (12% of predicted CRDs,
P¼ 5e� 313 and 28% of predicted NCRDs, P¼ 0). As more
experimental evidence accumulates and PCRDs are easily
classified to pharmacodynamic and pharmacokinetic types,
INDI may further improve its prediction power.

A limitation of our method is that it does not take into
consideration the method of administration of the drug (e.g.,
taken orally, injected or applied externally such as ointment or
ophthalmic drops). As a specific example, a corticosteroid may
produce an interaction when taken orally while having no
effect when applied to the skin or taken as an ophthalmic
solution. As this information is crucial for determining
whether an interaction will take place in clinical reality, we
addressed this limitation by manually removing predicted
interactions involving topically applied drugs, as the prob-
ability of such interactions remains low. Nevertheless, this
limitation should be taken into account by the physician in
each case individually.

We extended our prediction scheme to two additional traits:
(i) predicting the relevant recommendation for a predicted
DDI; and (ii) predicting the CYP enzymes associated with a
CRD. While the former is essential for selecting the correct type
of action to take upon co-administration of the drugs, the latter
highlights suspected CYPs, allowing the consideration of

patient-specific genetic polymorphisms related to certain
CYP enzymes (Bertilsson, 1995; Goshman et al, 1999) (e.g.,
patients who are CYP2D6-deficient (Ingelman-Sundberg,
2004)). These extensions demonstrate the potential applic-
ability of our approach for improving patient treatment and,
ultimately, tailoring it to the patient’s needs. We note that
while we were able to predict the recommendation of the
required type of dosage adjustment, we are limited in
predicting the magnitude of the adjustment.

Using known and predicted DDIs, we explored their
implications in clinical data. Using adverse drug reports, we
were able to show that known and predicted DDIs significantly
cover the majority of the adverse pairs of drugs reported.
Additionally, we found an abundance of known and predicted
severe DDIs in chronically administered medications, avail-
able in medical record data from hospitalized patients in Israel.
These patients were hospitalized significantly more frequently
than others. Finally, we detected two potentially severe DDIs in
frequently used drug combinations. Our web tool, available
in http://www.cs.tau.ac.il/Bbnet/software/INDI, may aid
physicians and researchers to exploit INDI’s predictions in
the clinical practice.

We suggest that our predictions may be beneficial in three
areas: (i) drug development, especially in post-marketing
surveillance, aiding in verification of hazardous interactions;
(ii) large-scale clinical trial design, addressing and assessing
potentially hazardous drug combinations; and (iii) driving and
directing in-vitro validation of potentially hazardous interac-
tions for efficiency and cost reduction of large-scale biological
experiments. As a final word of caution, we note that while our
predictions were validated in-silico, they should be further
tested experimentally in order to establish their clinical
implications. A special consideration should be given for drug
combination whose benefit may outweigh the predicted
adverse effects between them.

Materials and methods

Data sets

DDIs were extracted from DrugBank version 3 (Wishart et al, 2008)
(freely available at www.drugbank.ca/downloads) and the http://
drugs.com website (excluding DDIs tagged as minor), updated by
Cerner Multumt 21 June 2011. The DDIs from Drugsite Trust,
Drugs.com were downloaded by using the generic drug names
appearing in DrugBank to reach their corresponding Drugsite Trust,
Drugs.com DDI index pages. From each such index page, we selected
only the interacting drugs tagged as a major or moderate interaction.
We provide a blinded drug-ID set and the set of similarity measures in
order to allow readers to repeat the cross validation analysis
(Supplementary File S1). Associations between drugs and Cytochrome
P450 (CYP) were downloaded from DrugBank (Wishart et al, 2008),
the Flockharts Interaction Table (Flockhart, 2007) and SuperCYP
database (Preissner et al, 2010). DDIs between drugs associated with
the same CYPand the interaction description specifically reports a CYP
cause for the interaction were considered CRDs, while those lacking
specific evidence in the interaction description were considered
PCRDs.

Drug targets were obtained from DrugBank (Wishart et al, 2008), the
DCDB (Liu et al, 2010), Matador (Gunther et al, 2008) and KEGG DRUG
(Kanehisa et al, 2010) databases. Canonical simplified molecular input
line entry specification (SMILES) (Weininger, 1988) of the drugs were
extracted from DrugBank (Wishart et al, 2008). Drug side effects were
obtained from SIDER (Kuhn et al, 2010). Drug–disease associations
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were assembled from multiple sources including DrugBank (Wishart
et al, 2008), FDA drug labels in the DailyMed website (http://
dailymed.nlm.nih.gov) and from http://drugs.com exploiting the
MetaMap tool (Aronson, 2001) to parse textual indications in the
same manner described in Gottlieb et al (2011). Human PPIs were
compiled from experimental and literature curated data (Xenarios et al,
2002; Rual et al, 2005; Stelzl et al, 2005; Ewing et al, 2007; Stark et al,
2011). Protein sequences and GO annotations (Ashburner et al, 2000)
were downloaded from UniProt (Jain et al, 2009). Drug combinations
were downloaded from the DCDB database (Liu et al, 2010). FDA
Adverse Event Drugs were downloaded from the FDA Adverse Event
Reporting System (AERS), reports available for the years 2004 through
2011 (first quarter). Drug approval years were retrieved from
Drugs@FDA database (http://www.accessdata.fda.gov/scripts/cder/
drugsatfda/) as of 19 October 2011.

Drug–protein considerations

There are three known types of interactions between drugs and CYPs
(some drugs interact with a CYP in more than one way): the drug is (i)
metabolized by the CYP enzyme (substrates); (ii) inhibits the CYP
activity (inhibitor); or (iii) increases the CYP activity (inducer) (Zhou,
2008). Using information regarding each drug–CYP interaction type,
we observed that CRDs spanned all possible drug–CYP combinations
(e.g., a drug that is a substrate of a certain CYP interacts with a drug
that is an inhibitor of the same CYP, two drugs that are substrates of the
same CYP, etc.). We observed that ‘simple’ interactions, where each
drug involves just one type of drug–CYP interaction comprised only
11% of the CRDs. We thus ignored this type of information.

While CYPs are the major family related to drug metabolism, other
proteins (e.g., uridine diphosphate glucuronyl transferase and
P-glycoprotein) may be involved in drug metabolism. These proteins
had a small number of exclusively related DDIs (23 DDIs overall,
unrelated to CYPs) and thus were excluded from the analysis.

Similarity measures

We defined and computed seven drug–drug similarity measures. Three
of the drug–drug similarities (5–7) are gene-related, based on drug
targets downloaded from the DrugBank (Wishart et al, 2008), DCDB
(Liu et al, 2010), Matador (Gunther et al, 2008) and KEGG DRUG
(Kanehisa et al, 2010) databases. For drugs associated with more than
one gene, maximal similarities between the associated genes were
averaged (averaging over the contribution of each member in a drug
pair for symmetry). In order to extend our method to drugs for which
not all seven similarity measures could be computed, the web tool
provides predictions for drugs lacking the ligand and annotation-based
similarity measures (#2 and #4). All similarity measures were
normalized to be in the range [0, 1].

We used the following drug–drug similarity measures:

(1) Chemical-based: Canonical SMILES (Weininger, 1988) of the drug
molecules were downloaded from DrugBank (Wishart et al, 2008).
Hashed fingerprints were computed using the Chemical Develop-
ment Kit (CDK) with default parameters (Steinbeck et al, 2006).
The similarity score between two drugs is computed based on their
fingerprints according to the two-dimensional Tanimoto score
(Tanimoto, 1957), which is equivalent to the Jaccard score
(Jaccard, 1908) of their fingerprints, that is, the size of the
intersection over the union when viewing each fingerprint as
specifying a set of elements.

(2) Ligand-based: The Similarity Ensemble Approach (SEA) (Keiser
et al, 2007) relates protein receptors based on the chemical 2D
similarity of the ligand sets modulating their function. Given a
drug’s canonical SMILES, the SEA search tool compares it against
a compendium of ligand sets and computes E-values for those
ligand sets. To compute a drug–drug similarity we queried drugs
using their canonical SMILES on the SEA tool. To obtain robust
results, we queried the drug against the two ligand databases
provided in the tool (MDL Drug data report and WOMBAT (Olah
et al, 2005)) and used two different methods to compute the drug
fingerprint (Scitegic ECFP4 and Daylight), resulting in four lists of

similar ligand sets. Unifying the four lists and filtering drug–ligand
set pairs with E-values410�5, we obtained a list of relevant
protein–receptor families for each drug. Finally, the similarity
between a pair of drugs was computed as the Jaccard score
between the corresponding sets of receptor families.

(3) Side-effect based: Drug side effects were obtained from SIDER
(Kuhn et al, 2010), an online database containing drug side effects
associations extracted from package inserts using text mining
methods. We augmented this list by side effect predictions for
drugs that are not included in SIDER based on their chemical
properties (Atias and Sharan, 2010). Following this latter work, we
defined the similarity between drugs according to the Jaccard
score between either their known side effects or top 13 predicted
side effects in case they are unknown (following the number
suggested by Atias and Sharan (2010)). In order to avoid bias from
side effects related to kidney failure, which is directly related to
drug interactions (Rowland Yeo et al, 2011), we removed such side
effects from consideration including renal failure or insufficiency,
tubular acidosis and papillary necrosis.

(4) Annotation-based: We used the World Health Organization
(WHO) ATC classification system (Skrbo et al, 2004). This
hierarchical classification system categorizes drugs according to
the organ or system on which they act, their therapeutic effect, and
their chemical characteristics. ATC codes were obtained from
DrugBank. To define a similarity between ATC terms we used the
semantic similarity algorithm of (Resnik, 1999). This algorithm
associates probabilities p(x) with all the nodes (i.e., ATC levels) x
in the ATC hierarchy by computing the number of levels below x; it
then calculates the similarity of two drugs as the maximum over all
their common ancestors ATC level c of –log (p(c)).

(5) Sequence-based: Based on a Smith–Waterman sequence alignment
score (Smith et al, 1985) between the corresponding drug targets
(proteins). Following the normalization suggested in Bleakley and
Yamanishi (2009), we divided the Smith–Waterman score by the
geometric mean of the scores obtained from aligning each
sequence against itself.

(6) Closeness in a PPI network: The distances between each pair of
drug targets were calculated using an all-pairs shortest paths
algorithm on the human PPI network. Distances were transformed
to similarity values using the formula described in Perlman et al
(2011):

Sðp; p0Þ ¼Ae�Dðp;p0 Þ ð1Þ

where S(p,p0) is the computed similarity value between two
proteins, D(p,p0) is the shortest path between these proteins in the
PPI network and Awas chosen according to Perlman et al (2011) to
be 0.9 � e. Self-similarity was assigned a value of 1.

(7) GO based: Semantic similarity scores between drug targets
were calculated according to Resnik (1999), using the csbl.go R
package (Ovaska et al, 2008) selecting the option to use all three
ontologies.

Combining measures to classification features

The classification features that we used were constructed from
association scores calculated on all possible pairs of drug–drug
similarity measures, resulting in 49 features. For a given similarity
measure pair (i.e., feature), the score of a given drug pair (d1, d2) is
calculated by considering the similarity of all known drug interactions
to this pair. The computation is done as follows: First, for each known
interaction (d1

0, d2
0) we compute the drug–drug similarities S(d1, d1

0)
and S(d2, d2

0) (and symmetrically S(d1, d2
0) and S(d2, d1

0)). Next, we
follow the method of Gottlieb et al (2011) to combine the two
similarities to a single score by computing their geometric mean.
Finally, the overall score is

Scoreðd1; d2Þ¼maxd0
1
;d0

2
6¼d1 ;d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðd1;d01Þ � Sðd2; d02Þ

q
ð2Þ

For purposes of validation, self-similarities (in case (d1, d2) itself is a
known interaction) are excluded.
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Performance evaluation

We used a 10-fold cross validation scheme to evaluate the accuracy of
our prediction algorithm. The entire training set used for the cross
validation included the 37 212 true interactions and a randomly
generated set of drug pairs (not part of the positive set), the same size
as the positive set in each training set. When training on each
interaction type separetely, the training set included 5039 (training on
CRDs) or 20 452 (training on NCRDs) true drug interactions and a
randomly generated set of drug pairs (not part of the positive set), the
same size as the positive set in each training set. To obtain robust AUC
score estimates, we performed 10 independent cross validation runs,
selecting a different negative set and different random partition of the
training set to 10 parts in each; we then averaged the resulting AUC
scores. Expectedly, taking a negative set of twice the size as the
positive set had a negilible effect on the resulting AUC score (less than
e� 4). We used the MATLAB implementation of the logistic regression
classifier (glmfit function with binomial distribution and logit linkage)
for the prediction task.

In order to test the effect of redundant drugs on prediction accuracy,
we created non-redundant sets of drugs filtered by two different
criteria: (i) chemical similarity above a Tanimoto coefficient ranging
from 0.8 to 0.5 and (ii) target sharing. To this end, we iteratively
selected the most similar pair and randomly removed one of the pair’s
drugs. We repeated this procedure 10 times for each similarity
threshold to construct different non-redundant sets and averaged over
the resulting AUC score (reporting also the AUC standard deviation).

Novel predictions and prediction assessment

To predict novel interactions for drugs, we used a training set that
included all the known DDIs and an equally sized, randomly generated
set of drug pairs that are not known to interact. We applied the trained
classifier to a set of all the remaining possible drug pairs, including
drugs with no known DDIs. We repeated the analysis with another
randomly picked negative set, distinct from the first one, to assign
prediction scores also to the random negative set that we initially used
for training. The negative set was comprised solely of drugs with
known DDIs in order to ensure a more robust definition of negative
interactions. Overall, we obtained classification scores for all 320182
and 304 769 drug pairs in the CRD and NCRD training sets,
respectively. Following Gottlieb et al (2011), we selected a cutoff for
the ranked list of predictions according to the best F1-measure
obtained from the cross validation.

In addition to the cross validation, we validated our predictions by
training only on the DrugBank DDIs and comparing the resulting
predictions to known interactions from Drugsite Trust, Drugs.com.
Additional validations for NCRDs include testing their agreement with
tissue-specific information on the drugs and with co-morbidity of their
indicated diseases. For the tissue validation, we constructed a tissue-
based drug–drug similarity measure. We initially verified that drugs
interacting via known NCRDs are significantly more similar to each
other based on shared tissues than non-interacting pairs of drugs,
supporting our assumption (Wilcoxon ranked sum test, P¼ 3e� 81 for
disease-based and P¼ 7e� 45 for expression based drug–tissue
associations; see Supplementary Material (Section 2) for details).

All enrichment P-values were computed using a hypergeometric
test and tissue specificity validation computed a Wilcoxon ranked
sum test.

Prediction of DDI recommendations and
DDI-causing CYPs

We extracted the set of four recommendations available in the
descriptions of each DDI defined in the Drugsite Trust, Drugs.com
source: Contraindicate, generally avoid, adjust dosage and monitor.
We further searched for the following keywords, defined in decreasing
rank of severity: contraindicate, avoid, adjust dose/dosage and
monitor in the DrugBank descriptions, followed by manual curation.
A DrugBank description containing more than one keyword was
classified according to the most severe term. DDIs having no

recommendation were classified as ‘unknown’. We further divided
the predicted DDIs with an adjust dosage recommendation prediction
into four subgroups: (i) decrease dosage; (ii) increase dosage; (iii) limit
dosage; or (iv) adjust dosage interval.

Each predicted interaction (CRD or NCRD) exploits a set of 49 most
similar known DDIs. We formed four novel features describing each
drug pair by computing the frequency of each of the four recommen-
dations in these 49 known DDIs. We further trained a logistic
regression classifier for each recommendation separately using these
four features (in fact, since the four features sum to one, we removed
one of the redundant features—the ‘monitor’ frequency feature).
Performing the cross validation for each recommendation type, we
selected all the DDIs sharing the same recommendation as the positive
set and another, equally sized, random set of negative examples,
comprised of the DDIs from the remaining three recommendations (for
the ‘monitor’ recommendation type, spanning 84% of the total DDIs,
we used the 14% remaining DDIs with known recommendation as a
negative set). Finally, we applied the same framework as in the DDI
prediction task to predict the recommendation type for each of the CRD
and NCRD predictions (including novel drugs), training separately on
each recommendation, using the entire positive set and a negative set
of equal size. We selected the best F1-measure from each recommen-
dation cross validation for choosing each recommendation prediction
cutoff. If a DDI prediction was classified to more than one
recommendation, we kept only the most severe one. Predicting adjust
dosage subcategories, we applied the same procedure, constraining
ourselves only to these predicted DDIs receiving an adjust dosage
recommendation. If a DDI was classified to more than one
subcategory, we retained the more general top level adjust dosage
recommendation without a finer specification (including 15 and 4% of
the adjust dosage predicted CRDs and NCRDs, respectively).

For the prediction of the CYP enzymes which are a possible cause of
a CRD prediction, we extracted the name of the CYP enzymes involved
in the gold-standard CRDs from the interaction description. We used
the top seven CYP enzymes appearing in our training set, appearing in
410 DDIs each (we excluded CYP 3A3, 2E1 and 2A6, appearing in
&lt;4 DDIs each in our set). Following the same methodology as in the
recommendation task, we calculated the frequency of each of the
seven CYP enzymes across the 49 features describing a CRD
prediction. Unlike the recommendation algorithm, known CRDs may
have more than one CYP causing them, thus we normalized the
frequency by the maximal CYP occurring and retained all seven
features (not necessarily summing to one).

Analysis of interactions between drug classes

In order to focus on prevalent interactions between drug classes, we
required that each class contains at least five drugs in our set.
Furthermore, for visualization purpose, we filtered inter-class inter-
actions that involved &lt;25% or 40% of the drugs in each class for
CRDs or NCRDs, respectively. Last, self-interactions were removed due
to trivial additive interactions.

Analysis of ADRs

We downloaded the FDA AERS data files and extracted all events that
include one or two drugs. We kept only drug pairs we could map both
to DrugBank drugs, using the generic name, synonyms and brand
names available in DrugBank, followed by a manual curation to
identify additional inexact drug name matches, resulting in 31 841
unique drug pairs, reported 272150 times overall. We next used a
hypergeometric test to extract drug pairs that were reported more than
would be expected based on the overall occurrences of each individual
drug in these reports, and corrected for multiple hypothesis testing
using a false discovery rate of 0.01. This resulted in 1988 drug pairs,
147 of which contained drugs with no known DDIs.

Analysis of electronic medical records

We retrieved electronic medical records describing the medications
taken on a regular basis reported by patients administered in either
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internal or acute geriatric units at the Rabin Medical center, Israel
between August 2010 and August 2011. The patients were identified by
a randomly generated patient id. The study was approved by the
Helsinki Committee of the Rabin Medical Center.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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