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Transplanting Mesenchymal Stem Cells
for Treatment of Ischemic Stroke
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Abstract
Stroke is a major disease that leads to high mortality and morbidity. Given the ageing population and the potential risk factors,
the prevalence of stroke and socioeconomic burden associated with stroke are expected to increase. During the past decade,
both prophylactic and therapeutic strategies for stroke have made significant progress. However, current therapies still cannot
adequately improve the outcomes of stroke and may not apply to all patients. One of the significant advances in modern
medicine is cell-derived neurovascular regeneration and neuronal repair. Progress in stem cell biology has greatly contributed
to ameliorating stroke-related brain injuries in preclinical studies and demonstrated clinical potential in stroke treatment.
Mesenchymal stem cells (MSCs) have the differentiating potential of chondrocytes, adipocytes, and osteoblasts, and they have
the ability to transdifferentiate into endothelial cells, glial cells, and neurons. Due to their great plasticity, MSCs have drawn
much attention from the scientific community. This review will focus on MSCs, stem cells widely utilized in current medical
research, and evaluate their effect and potential of improving outcomes in ischemic stroke.
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Introduction

Stroke is a major disease with high mortality and mor-

bidity. Given the currently ageing population and the

potential risk factors, the prevalence of and socioeco-

nomic burden associated with stroke are expected to

increase1. During the past decade, both prophylactic and

therapeutic strategies of stroke have made significant

progress. However, the current therapies still cannot ade-

quately improve the outcomes of the disease and may not

apply to all patients2. For instance, ischemic stroke

accounts for about 80% of all stroke events. Intravenous

thrombolysis with recombinant tissue plasminogen activa-

tor (rtPA) added within 4.5 hours is the only FDA-

approved remedy for treating acute ischemic stroke3.

However, with the narrow time window, this treatment

can only be applied to 5% or less of patients with

ischemic stroke. Even with an efficient thrombolytic ther-

apy, only 55 cases out of 1000 can survive with good

prognosis4. Furthermore, 6% of tPA-treated ischemic

patients will go under symptomatic intracerebral hemor-

rhage. Therefore, new therapeutic strategies with a wider

time window and less hemorrhagic risk are highly

needed. Cell-based remedies are emerging as ideal

candidates for functional recovery in stroke patients5.

Mesenchymal stem cells (MSCs) are the most commonly

utilized stem cell in biological medical research and

therefore will be the focus of this review.
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MSC Characteristics and Sources

In the late 1960s, Friedenstein et al. first discovered MSCs in

the bone marrow stromal cells (BMSCs)6. Later MSCs were

found to be capable of differentiating into mesenchymal

cells, including adipocytes, cartilage producing chondro-

cytes as well as osteogenic osteoblasts7. Besides bone mar-

row, scientists have separated MSCs from many different

types of tissues, such as Wharton’s jelly (WJ) in the umbi-

lical cord stromal cells (UMSCs), umbilical-cord blood,

adipose-derived stromal cells (ADSCs) as well as dental

tissues8–11. Further studies on MSCs differentiation have

shown that these cells can differentiate into hepatocytes12,

cardiomyocytes13, and neuron-like cells14. MSCs have

become a promising type of cell for stem cell-based thera-

pies as they exist in all kinds of readily available donor

tissues, such as the tissue of pulp and adipose. However, a

major issue in the broad study of MSCs is that comparison

between different study groups is difficult. The research

team usually has its own method of separating, extending

and describing cells, resulting in different standards in defin-

ing the MSCs8–10. To begin addressing this issue, the

Mesenchymal and Tissue Stem Cell Committee of the Inter-

national Society for Cellular Therapy proposes set the min-

imum standards for defining human MSCs. First, MSCs

must be plastic-adhered under standard culture conditions.

Second, MSCs must express CD105, CD73, and CD90,

lacking the expression of CD45, CD34, CD14 or CD11b,

CD79a or CD19 and HLA-DR surface molecules. Third,

MSCs must differentiate into osteoblasts, adipocytes, and

chondroblasts in vitro15. With the update of knowledge, the

majority of MSCs do not express CD14 or CD11b, CD19 or

CD79a, CD34, CD45, HLA-DR, while they express mar-

kers CD10, CD13, CD29, CD44, CD73, CD90, CD105,

CD117, CD146, CD271, Stro-1 as well as stage-specific

embryonic antigen-4 (SSEA-4)16–19.

MSCs demonstrate a few properties that attract much

research interest20. For example, they have the capability

of differentiating into neurons, are easy to isolate and

amplify from bone marrow, and have relatively low risk of

immune rejection in allogeneic transplantation. There is

much evidence from animal studies to show that MSC trans-

plantation can reduce infarct volume, improve neurological

function, and promote endogenous neurogenesis21–23. In this

review, we will mainly focus on the underlying mechanisms

by which MSCs exert neuroprotective effects after ischemic

stroke in preclinical animal models and summarize the cur-

rent clinical trials using MSCs in ischemic stroke.

Mechanisms of Action of MSCs in
Ischemic Stroke

Mechanisms of action of MSCs are divided into two levels: a

peripheral level that involves reducing the inflammation and

immunomodulation, as well as a central level, which is

affected by angiogenesis, astrocytes, neurogenesis, axons

and oligodendrocytes.

Immunomodulation and Post-Stroke Inflammation

Although it is well accepted that immune response is impor-

tant in the pathogenesis of ischemic stroke, the current

knowledge on immune response in focal cerebral ischemia

is far from sufficient24. The immune system becomes active

in response to neuronal damage in the event of focal cerebral

ischemia or transient ischemia. After stroke, immediate acti-

vation of innate immunity triggers inflammation25. Inflam-

matory mediators recruit more immune cells both in the

central nervous system and from the periphery. The produc-

tion of more inflammatory mediators will further activate the

adaptive immunity26. Inflammation, regression of inflamma-

tion, and repair of nerve damage are key successions after

stroke. Although the inflammatory response is initially ben-

eficial for limiting and resolving ischemic stress, an unrest-

ricted inflammatory response by the continuous infiltration

of immune cells such as neutrophils, macrophages, natural

killer (NK) cells and T cells, can cause significant damage to

the penumbra after cerebral ischemic injury27,28.

In vivo and in vitro examination showed that after study-

ing hypoxic stroke neuronal cells and animal models of

ischemic stroke, researchers found that MSCs reduced the

expression of tumor necrosis factor-a and NF-kB through the

vascular endothelial growth factor (VEGF) signaling as well

as the interleukin-6 (IL-6) signaling29. The inhibition of NF-

kB is associated with the anti-inflammatory and anti-

apoptotic effects of MSCs30. Human umbilical cord blood

MSCs remarkably attenuated the expression of IL-23 and IL-

17 in infarcts and serum31, reduced the infarct size, and

alleviated neurological deficits in the middle cerebral artery

occlusion (MCAO) model. MSCs secrete transforming

growth factor-b (TGF-b) by attenuating the upregulation

of monocyte chemoattractant protein-1 (MCP-1) as well as

the penetration of CD68þ immune cells via the compro-

mised blood–brain barrier (BBB) to prevent the peripheral

immune cells from exacerbating the inflammatory response

in the ischemic rat brain32. In the ischemic stroke rat model,

human MSCs reduced microglia activation, as indicated by

lower expression of ED1 and Iba-1. They also attenuated

astrogliosis, as indicated by lower GFAP level. These bene-

ficial effects involved the noncanonical JAK-STAT signal-

ing with unphosphorylated STAT3 in the immune cells33.

Impact on Astrocyte, Microglia, Oligodendrocyte,
and Axon

In the event of cerebral ischemia, astrocytes release neuro-

trophic factors and growth factors upon the simulation of

MSCs administration. These factors include insulin-like

growth factor 1 (IGF-1), VEGF, epidermal growth factor

(EGF), and basic fibroblast growth factor (bFGF)34. Astro-

cytic apoptosis is attenuated and ischemic-induced
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aquaporin-4 upregulation is normalized by MSCs, which

contributes to maintaining BBB integrity after cerebral

infarction35. MSCs reduce the TGFb1 expressing in micro-

glia/macrophages at the border of the ischemic area and

promote down-regulation of the levels of plasminogen acti-

vator inhibitor 1 (PAI-1) in astroglia cells. After stroke,

ingrown tPA and depressor PAI-1 are connected to neurite

reconstruction36.

Oligodendrocytes play an important role in the restora-

tion after ischemia37. The oligodendrocyte precursor cells

(OPCs) appear in the corpus callosum, corpus striatum

and subventricular zone (SVZ) of adult mouse brain, dif-

ferentiating into mature oligodendroglia cells (OLs). OLs

are very sensitive to the ischemic stress since the white

matter blood flow is lower than that in gray matter; the

blood supply for deep white matter is even less38. Myelin

sheaths in the form of mature oligodendrocytes are used

to sprout axons in ischemic tissues. The transplantation of

bone marrow (BM)-MSCs increased the number of oligo-

dendrocyte progenitor cells in the ischemic hemisphere as

well as the number of mature oligodendrocytes surround-

ing the lesion39.

During the experimental stroke, BM-MSCs increased

the axonal density in the surrounding area, which persisted

for at least 1 year after stroke40. MSCs decrease the protein

expression of reticulin (Rtn4 or Nogo) and induced neuro-

can (Ncan), an inhibitor of axonal growth40. According to

Alder et al.41, umbilical cord tissue-derived cells (hUTC)

and MSCs of human secret the brain-derived neurotrophic

factor (BDNF), leading to increased amount and size of

main dendrites.

Increased Neurogenesis

Ischemic stroke injury causes a dramatic increase in the

proliferation of NSCs, triggering gliogenesis and neurogen-

esis in SVZ and circumventricular organs (CVOs). Down the

third and fourth ventricles, some niches of new stem cell are

detected in the context of stroke. It is important that all

niches share a common feature – rich in vasculature with

high permeability42. The incremental post-stroke neurogen-

esis was observed in elderly patients43. Hypoxic precondi-

tioning of transplanted BMSCs could promote their

regenerative capability for the treatment of ischemic

stroke44. BDNF-modified hBM-MSCs (MSCs-BDNF) pro-

moted endogenous neurogenesis and functional recovery in

MCAO rat models45. Systemic administration of exosomes

released from mesenchymal stromal cells promoted endo-

genous neurogenesis after stroke in rats46. It was found that

the ultrasound promoted neurogenesis when the mouse

stroke models were exposed to 0.04 MHz ultrasound after

hBM-MSCs injection47.

Although post-stroke neurogenesis has been largely

described, its role on restoration is still unknown48. The

cellular therapy triggers the phosphatidylinositol-3-kinase

(PI3 K)/Akt pathway in neural precursor cells, promoting

cell survival, proliferation, and differentiation, as well as

migration49. Upon the stimulation by BM-MSCs, brain par-

enchymal cells release neurotrophic factors, such as fibro-

blast growth factor and BDNF, to activate Akt/PI3 k

pathway50. A study showed that transplanting hBMSCs into

the ipsilateral brain parenchyma of MCAO rats could

increase the expression of BDNF, neurotrophin-3 (NT-3)

and VEGF in ischemic brain tissue, reduce infarct volume,

and improve neurological function. Possibly, mechanisms

for these beneficial effects were increased proliferation of

neuronal progenitor cells in SVZ and in the subgranular zone

(SGZ), accelerated migration of newborn neuroblasts to the

ischemic border region (IBZ), diminished apoptosis, and

increased differentiation of these cells into mature neu-

rons51. Wharton’s jelly (WJ-MSC) induced better neurogen-

esis via a paracrine mechanism, WJ-MSC expressed more

genes involved in angiogenesis and neurogenesis, especially

secretory factors52.

Angiogenesis

Intravenous administration of BM-MSCs leads to releasing

angiogenic growth factors as well as neurotrophic factors in

time order, which includes angiogenin, hepatocyte growth

factor (HGF), BDNF, fibroblast growth factor-2 (FGF-2),

IGF-1, neutrophil activating protein 2 (NAP-2), and VEGF,

to stimulate post-stroke neuronal growth and vascular for-

mation53. These growth factors and neurotrophins all func-

tion in a paracrine or autocrine manner54, which can regulate

the cell differentiation, proliferation, and survival. In the

peri-infarct area, some researchers found that the expression

of these factors has been elevated by BM-MSCs, including

stromal cell-derived factor-1 (SDF-1), BDNF, platelet-

derived growth factor-AA (PDGF-AA), basic fibroblast

growth factor, angiopoietin-2, CXCL-16, neutrophil-

activating protein-2, and vascular endothelial growth factor

receptor-355. Furthermore, the expression of the axonal

growth linked protein-43 (GAP-43) was also increased sig-

nificantly in the brain tissues treated with BM-MSCs, while

the axonal growth inhibitory protein ROCK II and NG2 were

inhibited.

In the cerebral infarction region, the transplantation of

BM-MSCs enhances the directed immigration and survival

of neuroblasts as well56. The level of VEGF, phosphorylated

ERK1/2 and RAF1 increases notably due to BM-MNC treat-

ment, which also decreases the damage by white matter,

stimulates angiogenesis, and facilitates a cognitive recovery

in rats having bilateral common carotid arteries occlusion56.

Other studies have compared various sources of MSCs

based on biologically active molecular secretion, the effects

of angiogenesis and functional recovery after experimental

stroke, as well as different routes of administration. In the rat

stroke model, BM-MSCs through intravenous and intra-

arterial delivery improved brain perfusion and metastasis

by the assessment of SPECT and PET, particularly in rats

treated with arterial perfusion delivery. No micro-strokes
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have been found after intra-arterial injection57. In another

research, it was found that MSCs from adipose tissue (AD-

MSCs) had the same effect as BM-MSCs in facilitating

functional recovery, reducing necrosis and increasing neu-

rogenesis, cell proliferation, and the markers of angiogen-

esis (e.g. VEGF) expression at 14 days after infarction in

the model of rat stroke58. As to cellular MSCs-created exo-

somes post-stroke and traumatic brain injury, intravenous

administration can improve functional recovery and

enhance neurite reconstruction, angiogenesis as well as

neurogenesis46,59,60.

To improve growth factors delivery, some groups used

transgenic stem cells of mesenchyme to overexpress growth

factors that are known to trigger the survival as well as the

differentiation of neurons. According to Van Velthoven

et al.61, the over-expressed BDNF on MSCs have an advan-

tage over regular MSCs in the rat MCAO model in improv-

ing dyskinesia. Via intravenous or intracranial

administration, Kurozumi et al62 used MSCs transgene with

fiber-mutant adenovirus vector having BDNF or GDNF

(glial cell derived neurotrophic factor). Both decreased the

infarct volume by 6% to 40% with equal efficacy. With

herpes simplex virus type 1 (HSV-1) vector transgenic

MSCs carrying VEGF, Miki et al.63 found that it reduced

infarct volume by 10% and improved functional deficits.

Onda et al.64 used an adenoviral vector-modified MSCs hav-

ing angiopoietin 1, which reduced the infarct size by 30%
and alleviated motor deficits.

Novel Mechanisms of MSCs

Several novel mechanisms of MSCs have been studied, for

example, mitochondrial or exosomal transfer from trans-

planted MSCs or the use of gene therapy of MSCs. Cur-

rently, there are few research studies on mitochondrial or

exosomal transfer from transplanted MSCs in ischemic

stroke.

It has been shown that mitochondrial transfer can rescue

stressed cells65 and restore the loss of mitochondrial function

in recipient cells66. Han et al.67 found BM-MSCs rescued

injured H9c2 cells via transferring mitochondria through

tunneling nanotubes in an in vitro simulated ischemia/reper-

fusion model. A similar study showed that MSCs rescued

injured endothelial cells in an in vitro ischemia-reperfusion

model via tunneling nanotube like structure-mediated mito-

chondrial transfer68. Exosomes are microvesicles released

by cells ranging from 40 to 100 nanometers69. They are

produced by the endocytosis of cell membranes and the

subsequent formation of intracellular vesicles, which are

released into the extracellular space by exocytosis69. They

exist in any biological fluid such as urine, cerebrospinal

fluid, or blood. They are surrounded by a lipid bilayer.

They contain nucleic acids such as messenger RNA

(mRNA) and microRNA (miRNA) and other different

molecules70. Thus, they represent a new kind of intercellu-

lar communication mechanism. There is growing evidence

that exosomes play an important role in cell-cell commu-

nication71. MSCs also release exosomes, and data shows

that exosomes released by MSCs mediate communication

between the MSCs and other cells72. Xin et al.60 suggested

that exosomes from MSCs mediated the transfer of miR-

133b to neurons and astrocytes that regulated gene expres-

sion, subsequently contributing to neurite remodeling and

functional recovery following ischemic stroke. A review

outlines the role of exosomes from MSCs in the recovery

of ischemic stroke73.

MSC-based gene therapy represents a novel potential

therapeutic strategy for ischemic stroke in future. The cur-

rent strategy based on cell therapy emphasizes the intro-

duction of beneficial genes, which will improve the

therapeutic ability of MSCs and have better homing effi-

ciency. It has a wide range of implications in stem cell

biology. The methods of MSC gene delivery include phys-

ical methods, chemical methods, and the use of viral

vectors. Several physical methods such as nuclear transfec-

tion74, electroporation75, nanoparticle76, and ultrasound

transfection77 were used to deliver the beneficial genes into

MSCs. In addition to physical methods of gene delivery,

several chemotherapeutics mediated by cationic lipids78,

calcium phosphates79, cationic polymers80, cationic poly-

saccharides81, and cationic peptides82 have been used for

gene delivery. The main advantage of these non-virus-

mediated (physical and chemical) gene delivery techniques

is that they could be easily performed. However, the use of

physical and chemical methods is limited due to low effi-

ciency, not being suitable for transfection of large numbers

of cells, and the use of chemical drugs possibly leading to

higher concentrations of toxicity83. In addition, safety con-

cerns have been considered, due to the non-degradable

nature of certain polymers: for example, polyethylenimine

(PEI) is a cationic non-degradable synthetic polymer,

which is the most commonly used polymer for the devel-

opment of nanocarriers for siRNA delivery, but at the

expense of cytotoxicity, due to limited degradability84. Due

to the limitations and disadvantages of the non-viral meth-

ods of gene delivery described above, some studies have

used viral vectors to improve gene delivery. The viruses

currently used as vectors are lentiviruses, adenoviruses,

adeno-associated viruses, retroviruses, and baculo-

viruses85. Huang et al.86 found that lentiviral vector-

mediated BDNF gene-modified MSCs could enhance its

therapeutic effect in ischemic stroke. Zhao et al.87 intro-

duced a novel strategy for combining transfer of MSCs and

ex vivo HGF gene with multiple mutant herpes simplex

virus type 1 vectors in a rat model of transient MCAO; the

study showed that combination therapy was more effective

than treatment with MSCs alone and might extend the treat-

ment window from hyperacute to acute. At present, viral

vector-based cytogenetic modification is widely used.

However, low transduction efficiency and transgene poten-

tial limit its application in clinical trials.
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Safety in Preclinical Studies

Although using MSCs in animal stroke models was generally

safe and had a significant effect on behavioral outcomes88,

some studies still showed side effects such as embolism89,

infection, and tumor formation90. Amyloid-b accumulation

and calcium in the thalamus also appear91. Research on rat

stroke models suggested that intra-arterial (IA) MSCs deliv-

ery is capable of reducing the flow of middle cerebral artery

(MCA); however, this side effect appears to be dose-

dependent. A dosage of 1 x 105 MSCs was shown to be the

maximal tolerable dose of IA infusion, making no conces-

sions to the blood flow of MCA. One study also showed that

delivering MSCs at 24 hours after stroke significantly

improved neurological function and reduced the infarct size

at 1 month compared with control but delivering 1 hour after

stroke did not confer such protective effects92. Wang et al.

found that there was no standard dose for stem cell therapy

currently associated with the route of administration and

disease types. For intracerebral parenchymal transplantation,

an excessively large transplant dose affected the nutrition of

transplanted cells and could cause microemboli and vascular

occlusion when administered intravascularly93. Although

there is no uniform dose standard, dose control is very

important in preventing embolism. Intravenous infusion is

thought to be associated with embolization, and emboliza-

tion can be reduced by intraperitoneal or other routes of

transplantation94.

Many safety problems have emerged with the intracereb-

ral transplantation and interventional neuroradiography in

acute stroke settings, such as maintain biological stability

of the therapeutic product, larger MSCs doses can potentially

affect organ perfusion, and the safety of allogeneic MSCs88.

Another study showed that amyloid-b and calcium accumu-

lation in the thalamus following intravenous injection of

human bone marrow MSCs in MCAO model in rats, quanti-

fication of the area of the deposits showed a highly signifi-

cant increase in amyloid-b and calcium deposition in the

thalamus after infusion of MSCs at 48 hours after MCAO,

there was a clear correlation between impaired forelimb per-

formance on postoperative day 42 and amyloid-b and cal-

cium accumulation in the thalamus91. MSC transplantation

animal experiments found no obvious immune rejection.

However, studies had shown that in vitro licensed WJ-

MSCs did not improve experimental autoimmune encepha-

lomyelitis in rats, due to increased immunogenicity resulting

in rapid rejection95.

Clinical Trials of MSC Transplantation

Cells derived from bone marrow displayed great prospects

for safety and initial efficacy96,97. Some clinical tests in

Phase I and Phase II have already begun, using cell popula-

tions originated from mesenchymal stem cells (Table 1).

Early results revealed that intravenous injection of MSCs

does not give raise to significant adverse effects but can

improve functional measurements such as the Barthel Index

(BI)98, the National Institutes of Health Stroke Score

(NIHSS) and the modified Rankin Scale (MRS)96. A long-

term follow-up study of intravenous autologous mesenchy-

mal stem cells transplantation in patients with ischemic

stroke showed that no significant side effects were observed,

Table 1. Mesenchymal Stem Cells Transplantation in Ischemic Stroke Clinical Trials.

NCT Country Phase
Cell Source/
Autologous or allogenicr

Doses/Single(S)
or multiple(M) Route

Time from
stroke onset

Sample
cases Current status

00875654 France II MSCs/Autologous ND/ND IV <6 weeks 30 Completed
01091701 Malaysia I/II MSCs/Allogenicr 2 � 106/S IV <10 days ND Withdrawn
01297413 USA I/II BMSCs/Allogenicr 0.5–1.5 � 106/S IV >24 weeks 38 Not yet recruiting
01389453 China II UMSCs/Allogenicr ND/M IV/LP 1–2 weeks 100 Withdrawn
01461720 Malaysia II BMSCs/Autologous ND/ND IV 2–8 weeks 50 Unknown
01468064 China I/II BMSCs/Autologous 2.5 � 106/M IV <1 week 20 Recruiting
01678534 Spain II ADSCs/Allogenicr 1 � 106/S IV <2 weeks 20 Recruiting
01714167 China I BMSCs/Autologous 2–4 � 106/ND IC 3–60 months 30 Unknown
01716481 Korea III MSCs/Autologous ND/ND IV <90 days 60 Recruiting
01849887 USA I BMSCs/Allogenicr ND/ND IV ND ND Withdrawn
01922908 USA I/II BMSCs/Allogenicr ND/S IV 3–10 days 48 Not yet recruiting
02378974 Korea I/II UMSCs/Allogenicr 2 � 108/M IV <1 week 18 Not yet recruiting
02425670 India II BMSCs/Autologous 3–50 � 107/ND IV 7–30 days 120 completed
02564328 China I BMSCs/Autologous ND/ND IV 6–60 months 40 Recruiting
02580019 China II UMSCs/Allogenicr 2 � 107/S IV <12 weeks 2 Not yet recruiting
02849613 Europe II/III ADSCs/Allogenicr ND/ND IV 1–4 days 400 Recruiting
03176498 China I/II UMSCs/Allogenicr ND/M IV ND 40 Not yet recruiting
03186456 China I UMSCs/Allogenicr 0.5–1 � 106/M IV <2 weeks 40 Not yet recruiting
03356821 Netherlands I/II BMSCs/Allogenicr 5 � 107/S Nasal <7 days 10 Not yet recruiting

From information available at ClinicalTrials.gov, searched by ‘MSCs’ and ‘ischemic stroke’. Table updated June 11, 2018.
IC: Intracerebral injection; IV: intravenous; LP: lumbar puncture; NCT: ClinicalTrials.gov identifier; ND: no data.
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and the follow-up MRS score was decreased compared with

the control group99. A meta-analysis from Lalu et al.100 sug-

gested that MSC therapy appeared safe, but there was a

significant association between MSC and transient fever

based on the current clinical trials, so further larger scale

controlled clinical trials with rigorous reporting of adverse

events were required to further define the safety profile of

MSCs. Contradictory data shows that MSC injection may

not improve the results of the function101. There was no

significant difference in the BI score, MRS shift analysis,

NIHSS score, or change in infarct volume at day 180 com-

pared with the control group101. These studies used autolo-

gous MSCs which were expanded in culture before MSC

transplantation96–101. Although no side effects of the prod-

ucts were reported, the cells were amplified in autologous

serum, leading to faster cell expansion and reducing concern

of heterogeneous contamination.

Conclusions and Future Prospects

There are many advantages of MSCs: they are easy to har-

vest, amplify and store for a long time; they can be quickly

isolated with relative immune privileges; they can be man-

aged in various manners; and their usage does not result in

many ethical issues. However, so far, only the clinical trials

of phase I and II have been reported, covering a small num-

ber of participants and a comparatively short duration of

follow-up, while it stills lacks the larger-scale phase III clin-

ical trials. Therefore, further research is needed to address

the long-range safety and effect of therapy with MSCs102.
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