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Abstract: Circular RNAs are a special type of RNA that has recently attracted a lot of research
interest in studying its formation and function. RNA binding proteins (RBPs) that bind circRNAs are
important in these processes, but have been relatively less studied. CLIP-Seq technology has been
invented and applied to profile RBP-RNA interactions on the genome-wide scale. While mRNAs are
usually the focus of CLIP-Seq experiments, RBP-circRNA interactions could also be identified through
specialized analysis of CLIP-Seq datasets. However, many technical difficulties are involved in this
process, such as the usually short read length of CLIP-Seq reads. In this study, we created a pipeline
called Clirc specialized for profiling circRNAs in CLIP-Seq data and analyzing the characteristics
of RBP-circRNA interactions. In conclusion, to our knowledge, this is one of the first studies to
investigate circRNAs and their binding partners through repurposing CLIP-Seq datasets, and we
hope our work will become a valuable resource for future studies into the biogenesis and function
of circRNAs.
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1. Introduction

Circular RNAs (circRNAs) are a mysterious type of RNA that was discovered more than 30 years
ago. Thought to be junk and mistakes in splicing before, now they have been demonstrated to be a class
of abundant, stable and ubiquitous RNAs through mining of large-scale high-throughput RNA-Seq
data and experimental validation [1,2]. Still little is known about the formation of circRNAs, while
several characteristics are relatively clear: (1) they are formed when the 3’ and 5’ ends of part of the
linear transcript are joined, usually with the joining points flanked by GU/AG splicing signal. (2) reverse
complementary sequences in flanking introns are necessary for the formation of some circRNAs, since
they can bring two discontinuous regions of RNAs close together for splicing and joining, but may not
for some circRNAs [3]. (3) splicing factors regulate the formation of circRNAs [3,4]. In addition to
their formation, the understanding of the functions of circRNAs is also lacking. Most circRNAs are
found in cytoplasmic fractions [5] and do not have a poly A tail, though one circRNA was recently
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found to be translatable (4). Ashwal-Fluss et al. found that circRNAs can compete with pre-mRNA
splicing [6]. Conn et al. and You et al. reported that the expression of circRNAs is regulated during
Epithelial–mesenchymal transition (EMT) [7] and neuronal development [8]. Li et al. found a special
class of circRNAs that can regulate transcription in the nucleus [9]. Bachmayr-Heyda et al. discovered
a negative correlation of global circRNA abundance with proliferation in human samples [10]. cDR1as
and Sry are the most well-known examples of circRNAs that act as miRNA sponges [11]. Nonetheless,
the functions of the majority of circRNAs are still not well elucidated.

To understand the formation and functions of circRNAs, studying the RBPs that they are associated
with is essential. CLIP-Seq is a technology that combines Cross-linking immunoprecipitation (CLIP) [12]
and next-generation sequencing (NGS), and it has already greatly improved our understanding of
RBP-RNA interactions at the genome scale [13]. HITS-CLIP [14], PAR-CLIP [15] and iCLIP [16] are the
three main variants of CLIP-Seq that have been extensively used to identify RBP binding targets, and
this has led to deep insights into cellular mechanisms and disease etiology. eCLIP [17], irCLIP [18], and
sCLIP [19] are recent advancements in CLIP-Seq technology, and were intended to overcome the low
complexity and specificity problem of early generation protocols. Although they differ with respect to
their cross-linking strategies and library preparation procedures, all these techniques purify and gather
RNA sequencing reads, overlapping the binding position of RBPs, which should theoretically also
include those from circRNAs. In this regard, if sequencing reads are observed to be mapped across the
splicing joining sites of circRNAs, it would provide direct evidence of RBPs’ binding to circRNAs. A few
studies have explored the possibility of using CLIP-Seq datasets to identify circRNA-RBP interactions.
For example, Li et al. conducted Pol II CLIP-Seq and revealed a subclass of nucleus-located circRNAs
that are associated with Pol II [9]. Conn et al. used PAR-CLIP to show that Quaking regulates the
formation of circRNAs via binding sites in introns [7]. However, to our knowledge, a systematic
analysis of public CLIP-Seq datasets for this purpose has not yet been presented.

To achieve this task, CLIP-Seq reads need to be filtered to select those that support the existence
of circRNAs. Guo et al. developed a pipeline and applied it to ENCODE data [5]. CIRI is another
software to detect circRNAs from transcriptome data [20,21]. circBase is a database that merges
datasets of circRNAs from different organisms [22]. The rationales behind these works are similar:
an RNA-Seq read whose 3′ end and 5′ end are mapped to the upstream and downstream of a transcript,
respectively, in a reverse configuration is evidence of circRNAs, and non-poly A selected paired-end
RNA-Seq data is the most suitable for this task. This strategy should also guide the discovery of
circRNAs in CLIP-Seq data. However, directly applying the previous pipelines developed on RNA-Seq
data to CLIP-Seq data would be difficult due to three major challenges: (1) CLIP-Seq technology
involves enzymatic digestion, leading to generally very short read length; (2) CLIP-Seq data are almost
exclusively single-end; (3) CLIP-Seq data usually have limited library complexity, yielding a high PCR
duplicate rate. CIRI, for example, is known to have a high false discovery rate for single-ended data,
which refuses to process data whose alignment length is smaller than 40 nt and cannot distinguish
between PCR duplicates.

In this study, we created a pipeline called Clirc, specialized in profiling circRNAs in CLIP-Seq
data, and we applied Clirc to collecting public CLIP-Seq datasets to detect circRNAs bound by RBPs,
and analyzing the characteristics of RBP-circRNAs interactions. We focused on HITS-CLIP, PAR-CLIP
and iCLIP data, as they have the most abundant public sources and share similar data characteristics
compared to newer versions of CLIP-Seq data.
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2. Materials and Methods

2.1. Downloading CLIP-Seq Datasets

We downloaded 167 CLIP-Seq datasets from GEO and other data repositories whose RBPs are
wild-type and whose experimental conditions are controlled. These RBPs are from Human, Mouse
and Drosophila Melanogaster (metadata of all the datasets information is provided in Supplementary
File S1). Low-quality CLIP-Seq datasets were discarded after FastQC quality examination. The adaptor
sequences were found by reading experimental protocols, FastQC detection or manual comparison.
After trimming adaptors, CLIP-Seq reads that were too short were discarded from the analysis. To tackle
the high PCR duplicate rate problem caused by limited library complexity, the remaining reads with
exactly the same nucleotide sequence were collapsed to unique tags.

2.2. Linearization of circRNA Library

We collected a series of published literature that identified circRNAs by mining RNA-Seq data
in Human, Mouse, and Drosophila (Supplementary Table S1) [23–25]. We also ran CIRI2 on Encode
non-poly A selected paired-end RNA-Seq data to discover more circRNAs. We did this for 15
Drosophila RNA-Seq examples and 16 Mouse samples (Supplementary Table S1). We pooled the
circRNAs for each species together. The low complexity and repetitive regions were identified and
counted in each circRNA, if the length of such regions exceeded a certain proportion of the whole
circRNA length, it would be discarded. Then in each circRNA, the RNA sequence that started from 50
bp upstream of the junction site and ended at 50 bp downstream of the junction site was extracted
and added as an artificial chromosome to the reference genome (we recommend the version in which
repetitive/low-complexity regions are masked). Then the index building functionality of the gsnap
software [26,27] was used to build a combined index file for the following alignment.

2.3. Competitive Alignment of CLIP-Seq Reads

For each study, CLIP-Seq reads were mapped simultaneously to the linearized circRNA library
and the normal reference genome by alignment to the combined index file. One read can be aligned to
0, 1, or more places in either the normal reference genome or circRNAs. A read was said to be truly
aligned to a circRNA only if its alignment coordinates extended more than 5 bp away from the junction
site in both directions, and the overall mismatch rate of overhang region in either direction was smaller
than 0.15. Of all CLIP-Seq reads, the only ones that can be uniquely aligned to circRNAs would be
assigned to circRNAs. Reads aligned to both circRNAs and linear transcripts or aligned to multiple
circRNAs are discarded.

2.4. Filtering for CLIP-Seq Reads Supporting RBP-circRNA Interactions

After screening for potential circRNA-supporting reads from one or more CLIP-Seq samples in
the same condition for the same protein, all such reads were pooled and grouped by the circRNAs they
are mapped to. Then, a series of filters was applied to keep high-confidence circRNAs that were bound
by each RBP: (1) only circRNAs that had at least 2 CLIP-Seq reads mapped across their junctions were
kept; (2) only when at least 20 nucleotides on a circRNA were covered by at least one junction-spanning
CLIP-Seq read would this circRNA be kept; (3) for all the CLIP-Seq reads mapped across a circRNA
junction region, the number of unique mapping start and end positions must both be no less than 1/3 of
the reads number. Only when a circRNA met all three criteria would it be retained and declared to be
a candidate circRNA bound by the corresponding RBP. Clirc does not internally consider background
signals, as usual CLIP-Seq data do not generate control samples, and general RNA-Seq samples are not
too valuable for background control since most of them are poly A selected. However, if a non-poly A
selected matched RNA-Seq data is available, users can always apply Clirc to CLIP-Seq and control
samples respectively and remove the recurrent circRNAs in both conditions. This should be easy as
Clirc keeps all the intermediate outputs.
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2.5. Software Implementation

Clirc is a user-friendly software that implements the above-mentioned pipeline in Perl language.
The alignment and filtering rules are based on the default parameters for the Clirc software (Quantitative
Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA),
but all of them are tunable to serve users’ needs. The Clirc software depends on the gsnap aligner for
circRNA analysis. The software and user manual can be accessed at https://github.com/Minzhe/Clirc.

2.6. Motif Search

A HOMER motif search [28] was carried out on the circRNA sequences that were covered by at
least one supporting CLIP-Seq reads. To create a stringent control, we found pairs of neighboring
exons in each species and concatenated the last 15 bp of the upstream exon with the first 15 bp of the
downstream exon to create a library of background RNA sequences representing junction reads across
splice sites.

2.7. “Strand Bias” of RBP Binding to circRNAs

CircRNAs are usually embodied within regular linear genes that are called the parental genes of
the respective circRNAs. These genes can be transcribed in either the sense or antisense directions,
which may later produce circRNAs. RBPs can interact with circRNAs derived from different strands,
and the relative abundance (proportion of reads from sense strands in all reads), which we term as
“strand bias” may vary among different RBPs, though bias towards sense strand is expected. In this
study, we calculated the “strand bias” of detected circRNAs and 3000 sampled linear transcripts bound
by an RBP, and investigated whether they were of difference.

2.8. Hierarchical Clustering of RBPs

Hierarchical clustering of RBPs was conducted based on their circRNA binding profiles. Distance
matrix was calculated by looping every possible pair of RBPs and get a hypergeometric test p-value
of the commonality of the circRNAs species they bound to. The top 50 most frequently occurring
circRNAs (related to Supplementary Figure S1) were discarded in the analysis.

2.9. Gene Ontology Enrichment Analysis

Gene ontology (GO) terms were downloaded from GSEA [29] website using all curated gene sets
category. Go terms with less than 10 genes were discarded. The top 50 most frequently occurring
circRNAs (related to Supplementary Figure S1) were also discarded in the analysis. We calculated the
hypergeometric test p-value (log transformed) for whether the set of parental genes for circRNAs bound
by each RBP was enriched in any GO ontology term. As a background control, we randomly sampled
a set of genes with the same size as the set of parental genes for each RBP and calculated a background
p-value for each GO term. We subtracted the averaged background p-values from 10 randomizations
from the true test p-value for each RBP and each GO term. We controlled the significance level at 0.05
and adjusted for multiple comparison correction with the Bonferroni method.

3. Results

3.1. The Implementation of the Clirc Software

As mentioned above, CLIP-Seq reads are already very short and single-end. Common analysis
methods for identifying circRNAs will truncate these short CLIP-Seq reads into even shorter segments
for alignment, which could lead to ambiguous alignment to multiple places in the genome or no
confident alignment at all. To avoid this problem, we tried to create a pseudo reference alignment
library in which all circRNAs are represented as continuous sequences so that CLIP-Seq reads can be
aligned as a whole. To achieve this, we collected the locations of previously published circRNAs on the

https://github.com/Minzhe/Clirc
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genome-wide scale in the human, mouse and Drosophila species [6,22,30,31]. We also ran CIRI2 on the
representative mouse and Drosophila Encode non-poly A selected RNA-Seq datasets. Each of these sets
contains around 2000 to 90,000 circRNAs. The circRNA sets for each species are pooled and redundant
circRNAs are removed. Then we compiled a pseudo reference genome by linearizing the circRNA
sequence across the junction sites and combined this reference library with the normal genome. Since
CLIP-Seq reads are highly redundant due to the limited library complexity, we collapsed CLIP-Seq
reads with the same nucleotide sequences into unique tags before alignment, which is a common
practice in CLIP-Seq data analysis [13]. We chose the gsnap aligner to align CLIP-Seq reads because of
its high alignment quality with RNA-Seq data. Then, CLIP-Seq reads were aligned competitively to
this combined library, and filtered to identify RBP-bound circRNAs. More details can be found in the
materials and method section. Figure 1 shows the workflow of the Clirc software. Since CLIP-Seq is
just a variation of RNA-Seq data, this software can be generalized to RNA-Seq data.
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3.2. Profiling circRNAs Bound by RBPs Using Clirc

We downloaded 167 CLIP-Seq datasets, and all datasets we downloaded were wild-type RBPs in
control conditions. These datasets included 91 human RBPs, 26 mouse RBPs, and 10 drosophilas RBPs.
The human RBP CLIP-Seq datasets also included four IgG controls. We preprocessed the fastq files
and applied the Clirc software to identify RBP bound circRNAs on these datasets. Figure 2a shows an
exemplary circRNA found in an SRSF1 CLIP-Seq dataset in mouse embryonic fibroblasts, which spans
two exons of the Fgd6 gene. To test the validity of the proposed pipeline, we applied the Clirc software
to a mouse and a human cancer cell line DNA-Seq data as negative controls, and two RNA-Seq samples
matched with two CLIP-Seq data in our dataset as background controls (Supplementary Table S2).
The circRNA supporting reads discovery rate in DNA-Seq samples are extremely low (in 50 bp long
DNA reads) or undetectable (in 100 bp long DNA reads), which suggested a good stringency of our
pipeline. The mapped circRNAs reads ratios in matched RNA-Seq samples were also considerably
lower than CLIP-Seq. This was probably due to the poly A selection of those samples. As a positive
control, we investigated whether Clirc was able to re-identify the top 15 experimentally validated
circRNAs bound by PolII in a previous report [8]. In Supplementary Table S3, we showed the number
of CLIP-Seq reads identified by our algorithm that supported each circRNA. 14 of these 15 circRNAs
were supported by at least two CLIP-Seq reads, showing Clirc is accurate and sensitive in identifying
RBP-bound circRNAs. Figure 2b shows the summary statistics of the circRNAs found in all CLIP-Seq
datasets. The Clirc pipeline found circRNA reads in most CLIP-Seq datasets, with a few studies having
up to 3000 circRNA-supporting reads. Even the CLIP-Seq study with the most abundant circRNAs has
less than 0.1% of all CLIP-Seq reads mapped across circRNA. However, this percentage is similar to the
percentage of sequencing reads supporting circRNAs found in the Encode RNA-Seq data we used
to search for circRNAs. In addition, the number of unique circRNA species found in each CLIP-Seq
dataset is mostly between 0 and 200, with a few RBPs binding up to 1000 unique circRNAs. Overall,
many CLIP-Seq studies yield significant amounts of circRNA-supportive reads that we could use for
more detailed downstream analysis. We provided a complete list of all the circRNAs found in human,
mouse and drosophila in Supplementary File S2–S4.
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3.3. Binding Properties of RBPs on circRNAs

We investigated whether RBPs bind to circRNAs through recognition of sequence motifs. Of all
CLIP-Seq studies investigated, we found a motif that seems to be enriched over the background. It is
a GA-rich motif that occurred in circRNAs bound by Eif4a3, Tra2b, and Pol II (Figure 3), but which
was not found in the entire circRNA library. The recurrent significant motif increased our confidence
that there could be important biological functions of some motifs that mediate the interaction between
RBPs and circRNAs. The GA-rich motif is very similar to the GAAGAA-like exonic splicing enhancer
that is known to direct and enhance accurate splicing [32,33]. Consistent with the known function
of this motif, Eif4a3 and Tra2b are previously known to be involved in alternative splicing [34,35].
Splicing is also known to be coupled to transcription by RNA polymerase II through the C-terminal
domain of the RNAPII largest subunit. This may also suggest that the function of Pol II-associated
circRNAs to regulate transcription could be related to alternative splicing of the linear RNA precursor.
This result suggests that at least some RBPs recognize target circRNAs through sequence motifs, and
that motif analysis could hint at potential functions of RBP-circRNA interactions.
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Figure 3. HOMER motif search results for EIF4A3, Tra2b, and Pol II. The left panel shows the protein
and cell line/tissue information, the middle panel shows top circRNA motif and the right panel shows
the p-values and percentages of sequences containing each motif. RBP, RNA binding proteins.

We also investigate d whether the “strand bias” of RBP-bound circRNAs deviates from it of linear
transcripts (Figure 4). We plotted the proportions of CLIP-Seq reads mapped to linear transcripts
and circRNAs in the same or opposite direction of the linear genes for different RBPs. Overall, the
“strand bias” of bound circRNAs was consistent with it of linear transcripts for most studies, and bias
towards sense strand was dominant. Interestingly, we observed that several RBPs showed different
strand preference between linear transcripts and circRNAs. PTBP1 and PTBP2 from two different
studies showed a much larger proportion of circRNA reads in the anti-sense direction of parental genes
than it of linear transcripts. HUR protein from two different studies also consistently showed that
it tended to bind circRNA in the anti-sense direction of parental genes. This suggested that “strand
bias” of RBP-bound circRNA was a reproducible phenomenon. However, it must be pointed out that
this was an observation at the global level, not at the individual gene level. At the individual gene
level, transcription was still in either the sense or antisense strand, not mixed. For example, the source
gene that produced the most abundant circRNAs HUR bound to was XIST. It generated 33 circRNAs,
all from the sense strand. Another gene TRAM1 generated 25 circRNAs, all from the antisense strand.
However, at the global level, the circRNAs of certain RBPs display bias toward the occupation of
sense or anti-sense strands. Further investigation is needed to validate whether the “strand bias” is of
functional importance.
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Figure 4. Proportion of circRNA reads in the same strand of the parental genes (x) vs. proportion of
CLIP-Seq reads mapped to linear transcripts in sense strand (y). Dot size represents number of circRNA
sequences in a study. The CLIP-Seq reads whose circRNA sequences are more than 500 and whose
absolute (x-y) difference is more than 20% are labeled at the bottom right corner.

3.4. Functional Implications of circRNA-RBP Interactions

To investigate the coordination of RBPs on circRNAs, we pooled circRNAs that appeared in all
RBPs’ binding relationships, and calculated for each circRNA the percentage of all RBPs that are
found to bind to this circRNA. Data for the same RBP in different cell lines or tissue types were
combined in this analysis. We showed the most common 100 circRNAs in Supplementary Figure S1,
together with whether these circRNAs appeared in the 4 IgG control experiments. It appears that
the top subset of circRNAs (e.g., top 20) found to bind RBPs are also more likely to be found in the
IgG experiments, suggesting that these circRNAs may be non-specific binding targets. Echoing this
observation, it has been reported before that some very abundantly expressed RNAs are commonly
represented in CLIP-Seq datasets [30], but they could just be artifacts that are not truly bound by
the RBPs. However, there are numerous circRNAs that are not in the top set but are also bound by
multiple RBPs, and these circRNAs could truly serve as platforms for binding and coordination of
multiple RBPs.
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To further explore the possibility of circRNAs serving to coordinate RBPs, we tried to find whether
RBPs that bind similar circRNAs share similar properties. We conducted a hierarchical clustering of
RBPs based on the similarity of their circRNA binding profile (Figure 5a). This analysis was done only
in human protein. In the plot, RBPs that were clustered more closely together tend to bind a similar
set of circRNAs and vice versa. Then we labeled the RBPs on this plot by their cellular localization
annotation according to UniProt [36]. We categorized RBPs into 3 types, RBPs that are mainly in the
cytoplasm, RBPs that exist abundantly in both cytoplasm and nucleus, and RBPs that are mainly in the
nucleus. Interestingly, we observed a trend that RBPs that belong to the same category clustered more
closely together than RBPs in different categories. This trend will be even more obvious if we combine
the first and second category to compare the difference between nucleus-only RBPs and other RBPs.
This result seems to partially support previous conjectures that circRNAs may act as a scaffold to bind
and sequester multiple RBPs [37].

Genes 2019, 10, x FOR PEER REVIEW 9 of 13 

was done only in human protein. In the plot, RBPs that were clustered more closely together tend to 
bind a similar set of circRNAs and vice versa. Then we labeled the RBPs on this plot by their cellular 
localization annotation according to UniProt [36]. We categorized RBPs into 3 types, RBPs that are 
mainly in the cytoplasm, RBPs that exist abundantly in both cytoplasm and nucleus, and RBPs that 
are mainly in the nucleus. Interestingly, we observed a trend that RBPs that belong to the same 
category clustered more closely together than RBPs in different categories. This trend will be even 
more obvious if we combine the first and second category to compare the difference between nucleus-
only RBPs and other RBPs. This result seems to partially support previous conjectures that circRNAs 
may act as a scaffold to bind and sequester multiple RBPs [37]. 

 
Figure 5. Functional implications of RBP-circRNA interactions. (a) Hierarchical clustering plot of 
RPBs based on the similarity of their circRNA binding profile. This analysis is only conducted for the 
human RBPs. Red marks RBPs that are mainly cytoplasmic, yellow marks RBPs that abundantly exist 
in both cytoplasm and nucleus, and blue marks RBPs that are mainly nuclear. (b) Enriched gene 
ontology (GO) terms for each RBP. Log-transformed p-value is calculated as p-value from a 
hypergeometric test of each set of parental genes of circRNAs bound by an RBP vs. genes in each gene 
ontology term, subtracted by averaged random p-value from hypergeometric tests of 10 
randomizations. The significance level is controlled at 0.05, adjusted by the Bonferroni method. 
Significantly enriched GO terms are labeled according to the colors of the RBPs. (c) Log-transformed 
GO terms enrichment p-values of binding sites in circRNA parental genes vs. in linear transcripts for 
the YBX1 protein. The adjustment method is the same. 

Finally, we investigated whether the parental genes for circRNAs bound by each RBP show 
enrichment in certain biological functional categories. We only did this for human RBP binding 
circRNAs deriving from more than 100 distinct parental genes. Among all 1329 GO terms, only for 
some terms did a few RBPs result in appreciably significant p-values (Figure 5b, Supplementary Table 
S4). We also compared the logarithm GO enrichment p-value of the parental genes of circRNAs with 
linear transcripts, and no apparent correlation was found. Interestingly, the most significant ontology 

Figure 5. Functional implications of RBP-circRNA interactions. (a) Hierarchical clustering plot of RPBs
based on the similarity of their circRNA binding profile. This analysis is only conducted for the human
RBPs. Red marks RBPs that are mainly cytoplasmic, yellow marks RBPs that abundantly exist in both
cytoplasm and nucleus, and blue marks RBPs that are mainly nuclear. (b) Enriched gene ontology (GO)
terms for each RBP. Log-transformed p-value is calculated as p-value from a hypergeometric test of each
set of parental genes of circRNAs bound by an RBP vs. genes in each gene ontology term, subtracted
by averaged random p-value from hypergeometric tests of 10 randomizations. The significance level is
controlled at 0.05, adjusted by the Bonferroni method. Significantly enriched GO terms are labeled
according to the colors of the RBPs. (c) Log-transformed GO terms enrichment p-values of binding sites
in circRNA parental genes vs. in linear transcripts for the YBX1 protein. The adjustment method is
the same.
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Finally, we investigated whether the parental genes for circRNAs bound by each RBP show
enrichment in certain biological functional categories. We only did this for human RBP binding
circRNAs deriving from more than 100 distinct parental genes. Among all 1329 GO terms, only
for some terms did a few RBPs result in appreciably significant p-values (Figure 5b, Supplementary
Table S4). We also compared the logarithm GO enrichment p-value of the parental genes of circRNAs
with linear transcripts, and no apparent correlation was found. Interestingly, the most significant
ontology term observed was “KEGG_FOCAL_ADHESION”, found in the YBX1 protein in the MDA
cell line. However, it was not enriched at all in the linear transcript. On the contrary, the most enriched
GO term for the linear transcript was “KEGG_RIBOSOME”, but not enriched in circRNAs (Figure 5c).
YBX1 is known to participate in pre-mRNA alternative splicing. Recently, several studies also reported
that YBX1 was involved in cell adhesion and mediated resistance to focal adhesion kinase (FAK)
inhibitor in cancer [38,39]. For another protein, DDX21, the most significant gene ontology term was
“REACTOME_INFLUENZA_LIFE_CYCLE” (Supplementary Figure S2). According to the literature,
one recently known function for DDX21 is inhibition of influenza A virus replication [40]. These results
seem to suggest that for at least some RBPs, their bound circRNAs might mediate their cellular
functions, but more research needs to be carried out to validate this hypothesis and the implications of
the significant ontology terms of other RBPs’ bound circRNAs.

4. Discussion

This study is the first to our knowledge to identify RBP binding sites on mature circRNAs
systematically using all public CLIP-Seq datasets. The bioinformatics approach employed here will
give an unambiguous answer to whether there is a direct interaction between an RBP and a circRNA
in contrast to the linear form. This will shed light on both the formation and function of circRNAs,
both of which are understudied for the moment. We carried out a series of analysis in this study
to characterize the basic properties of circRNA-RBP interactions, including motif patterns and gene
ontology enrichment. Our pipeline was wrapped into the Clirc software so that other researchers could
use it to conveniently investigate RBP-bound circRNAs in their future CLIP-Seq studies.

Due to the certain level of error rate inherent in high-throughput sequencing, some chimera
reads that do not represent real circRNAs could be identified as false positives by the Clirc software.
Recognizing this risk, our analysis and the Clirc software was intentionally designed to be conservative.
First of all, the set of circRNAs that were linearized to be combined with the reference genome were
published in previous studies or found by CIRI2 on Encode RNA-Seq data. The size of the circRNA set
from each source ranges from 2000 to 90,000 (Supplementary Table S1), some of which are probably
false positives. Clirc essentially scans through each CLIP-Seq study to find CLIP-Seq reads that can be
aligned to these previously defined circRNAs. Therefore, the resulting RBP-bound circRNAs come
from the intersection of the RNA-Seq data and the CLIP-Seq data, which is supposed to significantly
decrease false positive rate. On the other hand, Clirc involves a series of stringent filters to narrow
down the list of CLIP-Seq reads supportive of circRNAs. In Supplementary Table S3, although these
15 circRNAs are all known to be real and bound by Pol II, Clirc only identifies 14 of them, with the
remaining one missed due to abundant low complexity/repetitive sequence regions. On balance,
Clirc was designed to be rigorous in calling RBP-bound circRNAs, even at a slight sacrifice of a higher
false negative rate.

Integrative analysis of CLIP-Seq data with other types of high-throughput data types can be a very
interesting research direction but has so far not been intensively explored yet. One recent study [41]
identified 22,735 RBP-lncRNA regulatory relationships from more than 100 public genome-wide CLIP
datasets. This study serves as an example of how integrative analysis could lead to meaningful
discoveries. In this study, we investigated the possibility of integrative analysis of CLIP-Seq datasets
with circRNA data to characterize the function of RBP-circRNAs interactions. In the future, it could also
be interesting to integrate CLIP-Seq data-derived circRNA-RBP interactions with The Cancer Genome
Atlas (TCGA) data. The Non-Coding RNA Explorer [42] has been trying to document circRNAs
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identified in different types of tumors using TCGA RNA-Seq data. The importance of circRNAs and
their interacting RBPs for prognostic survival prediction and influence on treatment efficacy may be
investigated by leveraging this resource.

There are a few limitations and pitfalls of this study: (1) Clirc detects RBP-circRNA binding events
only in the junction site, and is not capable to detect binding events in non-junction regions as they
are not distinguishable from those occur in the linear transcript, though also important. For example,
during the formation of circRNAs, the upstream and downstream introns surrounding the circRNAs
will form a “stem”, in which RBPs, especially splicing factors, may play a role. Such events cannot be
investigated in this study. (2) Clirc identifies RBP bound circRNAs by competitively aligning reads
to both normal reference genome and a pseudo reference genome generated with known circRNAs.
It is designed to detect only circRNAs that are presented in the library but not novel ones. Therefore,
the sensitivity of Clirc demands the comprehensiveness of circRNA library. To achieve this, we collected
thousands of existing circRNAs from previously published studies and databases, and supplemented
it by running CIRI2 exhaustively on all suitable paired-end non-poly A selected Encode RNA-Seq data.
(3) Usually CLIP-Seq data does not generate control samples, and occurrence of junction spanning
reads is also low, so the peak finding procedure is not applicable. Clirc may still have a small chance to
falsely align non-supportive reads to the junction region or identify transient RBP-circRNA interaction
by low abundance of supportive reads, although stringent rules have been applied to filter out those
false positives.

5. Conclusions

Overall, we created the Clirc pipeline to identify RBP-bound circRNAs from CLIP-Seq datasets.
Through competitive alignment and additional filtering, Clirc searches for back-splice junction
spanning reads an evidence for circRNAs. We used this pipeline to identify RBP-bound circRNAs in
CLIP-Seq datasets in the public domain and we also characterized the RBP-circRNA interactions from
a genome-wide perspective. We hope this novel approach will contribute to the circRNA research
community and broaden our knowledge of transcription and its regulation in the long run.
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identified by Clirc in CLIP-Seq, matched RNA-Seq, and DNA-Seq samples, Table S3: Number of CLIP-Seq reads
identified by Clirc to support each of the 15 most enriched PolII-associated circRNA that have been experimentally
validated before, Table S4: The significant GO term for the parental genes of each RBP’s bound circRNAs, File S1:
metadata of all the datasets information, File S2, S3, and S4: a complete list of all the circRNAs found in human,
mouse and drosophilas, respectively.
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