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Parathyroid hormone (PTH) function as immunologic mediator has become interesting with the recent usage of PTH analogue
(teriparatide) in the management of osteoporosis. Since the early 1980s, PTH receptors were found on most immunologic cells
(neutrophils, B and T cells). The in vitro evaluations for a possible role of PTH as immunomodulator have shown inconsistent
results mainly due to methodological heterogeneity of these studies: it used different PTH formulations (rat, bovine, and human),
at different dosages and different incubating periods. In some of these studies, the lymphocytes were collected from uremic patients
or animals, which renders the interpretation of the results problematic due to the effect of uremic toxins. Parathyroidectomy has
been found to reverse the immunologic defect in patients with high PTH levels. Nonetheless, the clinical significance of these
findings is unclear. Further studies are needed to define if PTH does have immunomodulatory effects.

1. Introduction

Infection remains a major cause of morbidity and mortality
in patients with end-stage renal disease (ESRD). Hospitaliza-
tion rates for infections have risen since 1993, 19% for pneu-
monia, 24% for cellulitis, and 29% for sepsis/bacteremia.
Death from sepsis is 50 times higher in hemodialysis patients
than in the general population even after accounting for
other comorbidities [1, 2]. Several factors make patients with
ESRD susceptible to infections; one of the most difficult
causes to treat is the development of an acquired immune
dysfunction associated with chronic kidney disease (CKD)
and dialysis therapy [3–5]. The first evidence for this
dysfunction came from early observations which showed that
patients attending dialysis units had endemic outbreaks of
hepatitis B [6]. In addition, the clinical course for dialysis
patients that acquired hepatitis B was worse; 60% of these
patients became chronic carriers as compared to only 5% in
the general population. Studies of vaccine efficacy corrobo-
rated these findings and helped to elucidate the pathogenic
mechanism behind the immune defect. When patients with
ESRD were vaccinated with protein-based vaccines, such as

hepatitis B [7], influenza virus [8], and clostridium tetani
[9], which require a T-lymphocyte-dependent response,
there were high failure rates. In contrast, effective immunity
was achieved using polysaccharide pneumococcal vaccine
since this vaccine activates directly B cells without interaction
with T-lymphocyte [10]. These observations and subsequent
studies support the concept of an acquired T-lymphocyte
dysfunction in ESRD patients. Though patients with ESRD
are lymphopenic compared to healthy subjects, this effect is
slight and would not explain the significant immune defect
seen in this population [11].

In vitro studies examining T-lymphocyte function dur-
ing exposure to various mitogens demonstrate a signifi-
cant impairment in T-lymphocyte proliferation [12] and
a reduction in activation-dependent cytokine production
(interleukin-2,6,10, α-interferon, and tumor necrosis fac-
tor alpha) [13]. This decrease in T-lymphocyte function
was further identified to be an impairment in the inter-
action between antigen-presenting cells (APCs) and T-
lymphocytes [3]. Therefore, although patients with ESRD
have functionally normal T and B lymphocyte, the T and
B lymphocytes do not respond appropriately, as they are
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not receiving normal signals from APCs. This impairment
occurs via two mechanisms [3, 14]. Firstly, uremia causes
a reduction of the essential costimulatory molecule B7-
2 (CD86) on antigen-presenting cells which decreases the
activation of helper T-lymphocyte cells [15]. This effect
can be improved with dialysis therapy. Secondly, however,
hemodialysis itself causes activation of antigen-presenting
cells [14], which in addition to causing an immunity
impairment, is now also believed to be responsible for the
malnutrition-inflammation-atherosclerosis syndrome seen
in patients with ESRD [16]. Similarly, a polymorphonuclear
leukocyte (PMNL) dysfunction has been observed in dialysis
patients with impairment in migration, chemotaxis, and
reduced ability to kill intracellular micro-organisms [17].

Over the last 3 decades, secondary hyperparathyroidism
in ESRD patients has been studied as a possible factor
in the development of an acquired immune dysfunction
[18]. PTH is an 84-amino acid polypeptide secreted by the
parathyroid gland. Its homeostasis is mainly controlled by
calcium/phosphorus regulation. High levels of PTH have
been implicated in several complications associated with
uremia. PTH adversely affects the metabolism of various
cells and organs; it causes osteitis fibrosa cystica, cardiac
arrhythmias [19, 20], peripheral neuropathy [21], anemia
(by inhibiting precursors of erythropoiesis) [22, 23], and
glucose intolerance [24, 25].

Kaplan et al. in the early 1970s [26] reported an increase
in malignant neoplasms discovered at autopsy in patients
with primary hyperparathyroidism. Similarly, there have
been reports of an increase in the incidence of leukemia
[27] and monoclonal gammopathy [28] in patients with
primary hyperparathyroidism. Though these observations
could not be definitively linked to excess PTH, the concept
that PTH may modulate the immune response was further
supported by Perry et al. [29] in describing a receptor for
PTH in circulating human lymphocytes. While the immune
defect in CKD appears to be multifactorial, the contribution
of PTH, if any, remains unclear. This potential immune
impairment of PTH is clinically relevant, since in theory a
parathyroidectomy or medical treatment may reverse this
effect. We present a narrative review of the literature relevant
to PTH as an immune modulator and examine the effects of
hyperparathyroidism on immune function in patients with
CKD.

2. Parathyroid Hormone
Receptors and Leukocytes

The observation that several immunodeficiency syndromes
had associated bone abnormalities has led to the search
for a link between leukocytes and bone cells (osteoblasts
and osteoclasts). Various cytokines have osteoclasts as target
sites [30–34]. These cytokines affected bone remodeling
by activating a PTH receptor on the monocyte-like pre-
cursor of osteoclasts [30]. Yamamoto et al. [35] were the
first to identify the presence of PTH receptors on bovine
lymphocytes. Perry et al. [29] demonstrated PTH receptors
on human mononuclear cells and subsequently identified

receptors on additional leukocytes [36]. The mechanism by
which PTH influences leukocytes is not well understood, yet
there appears to be an increase in intracellular calcium level.
Potentially, this might lead to an increase in cellular adenylate
cyclase activity [29, 35]

3. Parathyroid Hormone and
T Lymphocytes (Table 1)

Studies examining the effect of PTH on T lymphocytes are
neither consistent nor conclusive (see Table 1). Most studies
showed that PTH produces an inhibitory effect on various
parameters of the immune system [37–39], while other
studies demonstrated that PTH had a stimulatory function
under certain laboratory conditions [40, 41].

Shasha et al. [37] were one of the first to show that when
peripheral blood lymphocytes from healthy donors were
incubated with increasing concentrations of PTH, a marked
inhibition of E rosette formation was produced. Massry et
al. [46] found a direct correlation between PTH levels in
uremic patients and the degree of inhibition of lymphocyte
proliferation. More recently, Kaneko et al. [39] found an
decrease in T-lymphocyte proliferation from patients with
ESRD when recombinant PTH (rPTH) was added in vitro
and that the decrease in proliferation was dose-dependent.
In the control group, which consisted of T lymphocytes
isolated from healthy adults, proliferation was increased by
addition of rPTH. This stimulatory effect on proliferation
was reversed and inhibited by adding urea or an acid (pH =
7.0). The authors concluded that the T-lymphocyte response
to PTH is modulated by the uremic state.

In examining the other human studies that found a
stimulatory effect of PTH on leukocytes obtained from
healthy donor volunteers [37], the PTH used was bovine
(not human), and the lymphocytes were incubated for longer
periods (5 days). These differences may account for the
inconsistent study results, making it difficult to determine if
PTH affects the immune system in the clinical setting.

In addition, the results of in vitro assays are difficult
to correlate to patients with CKD. Doses of hormones
in laboratory studies use concentration ranges only as
low as 2 to 1.6 μM, while clinically, PTH is measured in
pg/ml. Even in ESRD patients that develop severe tertiary
hyperparathyroidism with PTH levels that may rise above
1000 pg/ml to levels in the upper range of 3000 pg/ml (about
315 picomoles) [46], serum PTH levels are still several fold
lower than the concentration used in the in vitro studies.

Overall, results from laboratory assays alone are difficult
to interpret, especially since they only provide some insight
into the effects of acute exposure to PTH. Chronic exposure
to PTH may affect immune cells differently; thus in vitro data
needs to be evaluated with caution. Our laboratory recently
completed a study evaluating the effects of PTH on the
production of IL-6 and IL-8 from activated leukocytes from
healthy donor volunteers (work still in press). Our results
demonstrated no effect of PTH on the production of IL-6
and IL-8 and that leukocyte proliferation was inhibited only
at the highest dose of PTH (0.8 μM) tested.
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Few studies exist that attempt to categorize changes of
peripheral blood leukocytes in CKD patients. One described
a slight lymphopenia compared to the leukocyte count in
normal subjects [47–49]. Another studied the effect of PTH
on the distribution of T-lymphocytes subpopulations (CD4
lymphocytes, CD8 lymphocytes, and CD4/CD8 ratio) (see
Table 2) [42–45]. Ozdemir et al. [45] found that in ESRD
patients the CD4/CD8 lymphocyte ratio was increased in the
presence of high serum PTH levels. In contrast, Angelini et
al. [42] studied patients with ESRD and found that patients
with elevated PTH had a decrease in CD4, an increase in
CD8 lymphocytes, and thus a decrease in the CD4/CD8
lymphocyte ratio. There was a linear correlation between the
levels of PTH and CD8 lymphocytes and a reverse correla-
tion between level of PTH and total T-lymphocytes, CD4
lymphocytes, and CD4/CD8 ratio. Klinger et al [40] found
that (1–84) PTH stimulated proliferation of T lymphocytes
in a dose-dependent manner, and that the hormone did not
alter the CD4/CD8 ratio. Inactivation of PTH cancelled this
stimulatory effect.

4. Restoration of T-Lymphocytes Function:
Parathyroidectomy and Calcium Channel
Blockers (Table 2)

Giacchino et al. [54] reported that the inhibitory capacity of
serum taken from uremic patients on E rosette formation was
decreased following parathyroidectomy. Shasha et al. [50]
examined T-cell function in primary hyperparathyroidism
both before and 1 month after parathyroidectomy. The
hyperparathyroid patients, prior to surgery, demonstrated
low total T-lymphocytes count, increased CD8 lymphocytes,
decreased CD4/CD8 ratios, and a decreased ability of T-
lymphocytes to become activated in comparison to healthy
controls. All of these abnormalities were restored following
parathyroidectomy. Similarly, Kotzmann et al. [53] reported
a restoration of lymphocyte responsiveness to stimulation
6 months after parathyroidectomy in patients with primary
hyperparathyroidism. Tzanno-Martins et al. [44] studied the
consequence of parathyroidectomy in hemodialysis patients
and showed that patients with extremely high levels of
PTH had a complete restoration of impaired T-lymphocyte
proliferation after parathyroidectomy.

5. Parathyroid Hormone and B Lymphocytes

Although the initial evidence found during the studies of
vaccination in CKD was more suggestive of an indirect effect
of PTH on B lymphocytes via T-lymphocytes dysfunction,
the discovery of PTH receptors on B lymphocytes has
favored a more direct effect of PTH. This has been found
in several clinical experiments, where PTH was found to
affect several aspects of the B-cell function (proliferation,
antibodies production, and metabolism) (Table 3).

Alexiewicz et al. [38] found that both the intact molecule
of (1–84) PTH and its amino-terminal fragment (1–34)
PTH caused dose-dependent inhibition of B-lymphocyte
proliferation in normal subjects. After the activity of the

amino-terminal region was inhibited through oxidation of
the SH residues, the inhibitory effect was preserved, suggest-
ing that the mechanism of PTH is mostly mediated through
the carboxyl-terminal region. This inhibitory influence is
most likely mediated by the stimulation of cyclic AMP
production. Furthermore, Gaciong et al. [51, 56] reported
that the defect in antibody production in uremic patients was
due to the direct action of PTH on B lymphocytes, and that B
lymphocytes from ESRD patients produce very low amounts
of IgG following T-cell stimulation in vitro.

Clinically, the plasma levels of IgG, IgM, and IgA are
usually in the normal range in uremic patients, while specific
antibody responses are significantly depressed [57, 58]. The
response to vaccination against hepatitis B was used as a
sensitive clinical marker for B-cell dysfunction [7]. Deficient
reaction to vaccination was also documented for influenza
[8], tetanus [9], and diphtheria. Pneumococcal vaccination
is an exception, as uremic patients responded with normal
antibody titers to each antigen type [10]. Since B lym-
phocytes recognition of polysaccharide antigens is a T-cell
independent interaction, vaccination using polysaccharide
antigens in the pneumococcal vaccine was sufficient. This
implies that the defect in antibody production was more due
to T-cell-B-cell interaction.

Since PTH function on B-lymphocyte cells was mediated
through alteration of intracellular calcium metabolism, by
using the calcium channel blocker nifedipine, Alexiewicz et
al. [59, 60] were able to reverse the abnormalities of intracel-
lular Ca concentration and restore adequate proliferation of
B cells following stimulation.

6. PTH and Polymorphonuclear Leukocytes

PMNLs of patients with elevated PTH serum levels presented
impaired migration [61], reduced phagocytic [62] and
bactericidal activity [63], and an inhibited chemotaxis [64].

The first observations were found in patients with
primary hyperparathyroidism and normal renal function.
The migration and chemotaxis of PMNLs were impaired,
however these abnormalities disappear after parathyroidec-
tomy [64]. Tuma et al. [65] demonstrated that secondary
hyperparathyroidism is either directly or indirectly responsi-
ble for the altered leukocyte function in patients with uremia,
particularly those with marked elevation of PTH. Massry et
al. [66] verified that (1–84) PTH stimulated elastase release
from PMNL in a dose-dependent and time-dependent
manner. This effect was mostly mediated by the carboxyl-
terminal region of the hormone (1–34), and PTH had no
stimulatory effect on elastase release. In addition, Doherty
et al. [61] demonstrated that migration of PMNL from
patients with advanced renal failure was reduced and that
there is an inverse relationship between random migration of
PMNLs and serum levels of PTH. Esposito et al. [67] studied
the role of PTH in depressing PMNLs phagocytic function
in uremia. The data produced shows that phagocytosis is
lowered in uremic patients with both low and high plasma
PTH but more noticeably in the group with high plasma
PTH. Similarly, the contact angle of cells during phagocytosis
was affected more in patients with high PTH levels.

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed\&Cmd=Search\&Term=%22Alexiewicz%20JM%22%5BAuthor%5D\&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
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Table 2: Study of the effects of parathyroidectomy.

Study design Assays Results

Shasha et al. [50]

3 patients with primary
hyperparathyroidism pre- and 1 m
postparathyroidectomy.
Controls: 3 healthy subjects and a male
with lipoma.

Stimulation with:
Phytohemagglutinin,
ConA.

(i) Total T-lymphocytes number were
40% lower that was partially normalized
postop.
(ii) CD4/CD8 elevated preop normalized
postop.
(iii) Lymphocytes transformation was
inhibited preop it was restored postop.

Proliferation assessed with
thymidine uptake.

Gaciong et al. [51]

Rats with nephrectomy with or without
parathyroidectomy:
(1) Intraperitoneal injection of sheep red
blood cells.
(2) Intramuscular bovine serum albumin.
(3) Intramuscular influenza virus vaccine

Dosage of Ig production
(IgG and IgM).

(i) The production of IgG was markedly
impaired in CKD rats without
parathyroidectomy.
(ii) The production of IgG was normal in
CKD rats with parathyroidectomy.
(iii) The production of IgM was lower
than normal in rats with CKD with and
without parathyroidectomy.
(iv) The rats with CKD and without
parathyroidectomy had lower IgM levels
compared to patients with CKD and
parathyroidectomy.

Chervu et al. [52]

5 groups of rats:
(1) Normal.
(2) With CKD (nephrectomy).
(3) CKD + parathyroidectomy
(4) CKD + verpamil
(5) Normal + verapamil

N/A

(i) Lower ATP content in PMN in CKD
versus normal.
(ii) Parathyroidectomy and verapamil
therapy prevented phagocytosis
impairment in CKD.
(iii) Verapamil prevented increase
intracellular calcium in PMNs.

Kotzmann et al. [53]

12 patients with primary
hyperparathyroidism before and 6 m after
parathyroidectomy.
Cells were cultured for 48 hours

PTH measured by
radioimmunoassay.

(i) No change in serum Ig levels after
surgery.
(ii) Normal distribution pre- and postop
for T,Band NK cells.
(iii) CD4 elevated and CD8 decreased,
CD4/CD8 increased pre- and postop.

Blood analyzed by flow
cytometry.

Proliferation determined by
thymidine incorporation

Tzanno-Martins
et al. [44]

6 hemodialysis patients with secondary
hyperparathyroidism before and 4 m after
parathyroidectomy.
Cultured for 5 days.

Stimulation with:
Phytohemagglutinin.

(i) Lymphoproliferative response
increased after parathyroidectomy.
(ii) The ability to produce IgG and IgM
was increased after parathyroidectomy.
(iii) Decrease ability to produce IL-2 was
not restored postop.

Proliferation determined by
thymidine incorporation.

The mechanism through which PTH impaired PMNL
function is multifactorial. Alexiewicz et al. [62] found that
chronic exposure to excess PTH may cause accumulation
of calcium in PMNLs that leads to derangement of the
intracellular cascade, which occurs during the process of
phagocytosis (especially after the Fc gamma RIII receptors
of PMNLs interact with antibody fixing the antigen). Horl et
al. [68] found that in ESRD patients, PTH not only elevated
basal levels of cytosolic calcium, it also altered carbohydrate
metabolism. Glucose uptake, glycogen synthetase activity,
and glycogen content were all reduced. Kiersztejn et al. [69]
also found that both basal and stimulated O2 consumption
of PMNLs in CKD subjects and rats was lower than normal.

Since increased intracellular calcium is the principal
mechanism in PMNL dysfunction, calcium channel blocker
therapy has been tested with some success. Studies in

CKD rats demonstrate that these derangements in PMNLs
could be prevented by a previous parathyroidectomy or
treatment with verapamil. In ESRD patients, eight to nine
weeks of verapamil therapy (120 mg/day) normalized the ele-
vated intracellular calcium concentration and carbohydrate
metabolism in PMNLs. However, these beneficial effects were
lost after eight to ten weeks of discontinuation of verapamil
treatment [68].

Alexiewicz et al. [60] found that treatment with nifedip-
ine was associated with the return of intracellular calcium
concentration toward normal values; it also restored the
ATP content of PMNLs. The normalization of intracellular
calcium concentration and restoration of PMNL dysfunc-
tion by long-term therapy with calcium channels blockers
were also demonstrated in diabetic patients treated with
amlodipine [70]. Five months after stopping nifedipine

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed\&Cmd=Search\&Term=%22Alexiewicz%20JM%22%5BAuthor%5D\&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
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Table 3: Study discussing the effect of PTH on B-lymphocytes.

Study design PTH Assays Results

Alexiewicz et al.
[38]

B cells: 21
hemodialysis patients,
37 healthy subjects
Cultured for 5 days.

Bovine (1–84) PTH,
Purified (1–34) PTH,
(1–84) PTH,
Inactivated (1–84)
PTH.

Stimulation with S.
aureus cowan strain I

(i) Lower proliferation potential for
B-lymphocytes of hemodialysis patients.
(ii) (1–34) and (1–84) PTH produced
dose-dependant inhibition of
proliferation.
(iii) (1–84) inhibitory effect was more
than (1–34).1×10−7, 2× 10−7

and 4× 10−7 M

Proliferation assessed
with thymidine
uptake.

Gaciong et al.
[51]

Mononuclears cells:
34 hemodialysis
patients,
44 healthy subjects
Cultured 8 days.

Bovine (1–84) PTH,
bovine (1–34) PTH.
PTH was added at the
beginning and at day
2.

Stimulation with S.
aureus cowan strain I

(i) (1–84) and (1–34) PTH inhibited
immunoglobulin production.
(ii) At the lower dose of (1–84) PTH had
no inhibition of B lymphocytes of ESRD
patients.
(iii) Inactivated (1–84) had no inhibitory
effect.
(iv) The inhibition was only observed
when PTH was added at the beginning of
the culture.

5×10−7and 10−6 M

Function was assessed
by Ig production.

Jiang et al. [55]

Human B-cell lines
(CBL3, SKW6.4,
CESS).
Incubated for 5 days

Human (1–84) PTH
Stimulation with S.
aureus cowan strain I

(i) PTH directly inhibits Ig production by
B lymphocytes.
(ii) PTH did not affect B-cell growth
(iii) IL-4 reduced the inhibitory effect of
PTH on Ig production.

0.01, 0.1, 1, 10,
100 ng/ml.

Proliferation assessed
with thymidine
uptake.

treatment, the positive activity of calcium channel blockers
on phagocytosis was lost [61]. Haag-Weber et al. [71]
found that continuous infusion of nifedipine in a dose of
18 micrograms/kg/h during HD completely inhibited the rise
of cytosolic free calcium during dialysis. PMNL dysfunction
could be reversed by parathyroidectomy [65, 69].

7. Explanation of the Discrepancy between
In Vitro and In Vivo Studies

Although the current published studies demonstrate that
PTH can influence various parameters of the immune
system in both normal and ESRD subjects, the results of
the laboratory studies are inconsistent, and their clinical
significance still needs further investigation. What prevents
a more definitive conclusion to be made when examining
and comparing these in vitro studies is that the dosages
of PTH used in these laboratory studies are much higher
than the physiological ranges of PTH. Even compared to
the abnormally high ranges seen in ESRD patients with
tertiary hyperparathyroidism, the doses used in laboratory
experiments were several logs higher. However, the effect
of this higher concentration is decreased by the fact that
leukocytes counts in wells during in vitro studies are also
several log higher than blood leukocytes in patients. There-
fore, the ratio of PTH to leukocytes may be more important
to reflect in vivo conditions. Furthermore, chronic exposure
that occurs in CKD is difficult to study in vitro, since human
leukocytes cultures are short term (<5 days). A possible
model for studying chronic exposure of PTH in laboratory
experiments would be to use cell lines from immortalized

human leukocytes. However, no good laboratory model has
been developed for examining chronic exposure to PTH in
leukocytes to date. Another difficulty in experimental studies
was that various sources of PTH were used (rat, bovine, and
human) and varying conditions of culture. Although there
are limitations and difficulties in interpreting these studies,
it remains that PTH receptors are located on leukocytes,
and their exact role and function need to be defined. One
possible way to determine if hyperparathyroidism associated
with ESRD affects immune function is to examine if
PTH receptors have a physiologic function in health. This
approach seems more reasonable than starting with ESRD
patients who already have various metabolic alterations.

8. Conclusion

Many of the infectious complications experienced by patients
undergoing hemodialysis can be attributed to altered host
defenses. Both humoral and cellular-mediated immunities
are affected in ESRD patients. Alterations of the immune
system in ESRD patients are multifactorial. The evidence
presented shows that PTH may be an important factor
in influencing this dysfunction. Massry and Fadda. [72]
stated in his review that chronic renal failure is a “state of
cellular calcium toxicity.” PTH is an essential hormone that
initiates the cascade of events leading to increased calcium
influx intracellularly, a pivotal step in modulating leukocyte
enzymes and biochemical processes.

In conclusion, we present a review of the literature
evaluating PTH and immune function. After observing that
PTH receptors are located on various immune cells and
evaluating the studies that attempt to understand the role

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=PubMed\&Cmd=Search\&Term=%22Haag-Weber%20M%22%5BAuthor%5D\&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstractPlus
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of PTH in disease, it is clear that a basic understanding of
the normal physiology of the PTH receptor on leukocytes is
imperative. Finally, evidence of PTH affecting immunity may
not be solely achieved by laboratory studies. Epidemiologic
and observational studies should be done from large,
maintained databases of ESRD patients, such as the US Renal
Data System. Examination of infectious disease death rates
and cancer rates can be correlated to PTH level. While the
data from the reviewed studies supports the possibility that
PTH affects the immune system, further research is needed,
particularly since this abnormality could be reversed with the
treatment of hyperparathyroidism.
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