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Electroencephalography (EEG) is one of the most widely-used biosignal capturing

technology for investigating brain activities, cognitive diseases, and affective disorders.

To understand the underlying principles of brain activities and affective disorders using

EEG data, one of the fundamental tasks is to accurately identify emotions from EEG

signals, which has attracted huge attention in the field of affective computing. To

improve the accuracy and effectiveness of emotion recognition based on EEG data,

previous studies have successfully developed numerous feature extraction methods

and classifiers. Among them, ensemble empirical mode decomposition (EEMD) is an

efficient signal decomposition technique for extracting EEG features. It can alleviate

the mode-mixing problem by adding white noise to the source signal. However, there

remain some issues when applying this method to recognition tasks. As the added

noise cannot be filtered completely, spurious modes are generated due to the residual

noise. Therefore, it is crucial to perform intrinsic mode function (IMF) selection to find the

most valuable IMF components that represent brain activities. Furthermore, the number

of decomposed IMFs is various to different original signals, thus how to unify feature

dimensions needs better solutions. To solve these issues, we propose a novel forecasting

framework, named DEEMD-SPP, to identify emotions from EEG signals, based on the

combination of denoising ensemble empirical mode decomposition (DEEMD) and Spatial

Pyramid Pooling Network (SPP-Net). First, DEEMD is proposed to decompose the

EEG signals, which effectively eliminates residual noise in the IMFs and selects the

most valuable IMFs. Second, time-domain and frequency-domain features are extracted

from the selected IMFs. Finally, SPP-net is employed as the classifier to recognize

emotions, which can effectively transform various-sized feature maps into fixed-sized

feature vectors through the pyramid pooling layer. The experimental results demonstrate

that our proposed DEEMD-SPP framework can effectively reduce the effect of spike-in

white noise, accurately extract EEG features, and significantly improve the performance

of emotion recognition.
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INTRODUCTION

Emotions are human responses to environmental objects or
events (1), and emotion status is a widely measured phenotypical

trait in psychological and psychiatric researches (2). For

example, precise estimation of emotion status has become a
fundamental task in many studies of cognitive and affective
disorders (3). In the last decades, there has been a growing

appreciation for the important contribution of physiological
signal measurement technologies in emotion detection in the
field of affective computing (4). Among the various types of
physiological measurements, the EEG technology can directly
capture the electrical activity of the human brain, and it
can provide a cheap, portable, and easy-to-use solution for
identifying emotions (5). The development of EEG has powered
the research area of emotion recognition and increased the
potential of investigating the neural underpinnings of emotion.
Although EEG has provided an unparalleled opportunity to
investigate human emotions and brain activities, how to
accurately extract the valuable features hidden in the EEG signals
remains challenging.

With the development of experimental instruments, the EEG
data has been accumulated and aided the psychological and
biological research together with multimodal omics (6). A series
of computational methods and tools have been developed to
deal with such data challenges (7–9). Particularly, a variety
of signal analysis methods have been proposed to capture the
characteristics of the EEG signals (10, 11). Among them, time-
frequency analysis methods are found efficient in discovering
the complex hidden features underlying EEG signals (12). These
methods analyze the characteristics of the signal in both the
time domain and frequency domain, simultaneously. The widely
applied time-frequency analysis techniques rely on short-time
Fourier transform (STFT), wavelet transform (WT), and their
variations (13, 14). The limitation of STFT is the conflictive
resolution of time and frequency. The frequency resolution will
be sacrificed if time resolution is improved, and vice versa.
Wavelet-based methods have advantages in time-frequency
localization. However, the selection of wavelet kernel function
is usually not objective, which largely affects the quality of EEG
signal decomposition.

More recently, a new data-driven time-frequency analysis
technique, called empirical mode decomposition (EMD), has
been proposed for the analysis of non-linear and non-stationary
signals (15). EMD is a robust decomposition algorithm. It
is capable of decomposing complex and non-linear multi-
component signals into a finite number of intrinsic mode
functions (IMFs). IMFs are considered as a set of oscillation
components of original EEG signals. Traditionally, EEG
frequency bands are described as a fixed range of wave
frequencies and amplitudes over a time scale. The commonly
used bands are gamma (30–100Hz), beta (14–29Hz), alpha
(8–13Hz), theta (4–7Hz), and delta (1–3Hz). Different from
the traditional frequency bands, the mode of each IMF
corresponds to a specific frequency band containing the natural
oscillatory contents of the original signal. Many researchers

have investigated the properties of IMFs from EEG signals (16,
17). And they found different IMF scales bearing significant
local information were associated with the EEG activities (18).
Features extracted from IMFs have been used in the detection
of diseases, such as schizophrenia (19, 20) and epileptic seizures
(21, 22).

EMD has been successfully applied to observe and analyze
EEG signals. However, it suffers from a “mode-mixing” problem
(23). Mode mixing refers to the situation when different
oscillating components may present in one IMF or similar
oscillations may appear in different IMFs. The ensemble
empirical mode decomposition (EEMD) has been proposed to
overcome this problem (24). This method adds random white
noise into the original EEG signal in several trials. The final
IMF of EEMD is obtained by averaging the IMF related to N
trials. EEMD can alleviate the mode-mixing problem, but it also
induces biases. If the number of the ensemble is too small, or
the noise amplitude is too large, the IMF components are biased
by the added noises. Therefore, it is crucial to perform IMF
selection to find the most valuable IMF components that can
represent brain activities. Islam et al. (25) presented a model to
select optimal IMF of EMD for diagnosing the sleep disorder
based on EEG signal. They extracted Shannon entropy, spectral
entropy, standard deviation, skewness, and kurtosis of each IMF
as improved features for the task of disease classification. They
evaluated the performance of different IMFs and found the
optimal IMFs. The experiments revealed that the selected IMFs
performed better for sleep disorder diagnosis.

Furthermore, there remains a common issue in most EMD-
based approaches when applying these methods to recognition
tasks: the number of decomposed IMFs is various to different
original signals. How to unify feature dimensions needs better
solutions. Several previous studies chose a fixed number of IMFs.
Zhuang et al. (26) extracted features from the first five IMFs for
emotion recognition from EEG signals. Shahnaz and Hasan (27)
sorted the IMFs in descending order by temporal energy content
and choose the top three of them as the dominant IMFs. Riaz et al.
(17) proposed a method for the detection of seizures and epilepsy
based on the EEG signals. They selected the first three IMFs,
then extracted the temporal and spectral characteristics of these
IMFs. Although these methods were able to achieve their goals,
the arbitrary selection of IMFs could result in information loss
and affect downstream analyzes. Particularly, previous studies
have shown that not all of the IMF components are equally
important in the EEG analysis, and the top IMFs are sometimes
even noise-dominant components (25).

In this article, we propose a novel framework, named
DEEMD-SPP, to address these challenges and use it to improve
the performance of EEG-based emotion recognition. Our
contribution is 2-fold: (1) DEEMD is proposed to decompose
the EEG signals. It effectively eliminates residual noise in the
IMFs and selects the most valuable IMFs. (2) SPP-net can process
arbitrarily sized input and aggregate information at a multi-
level. Experiments on a dataset of speech-evoked EEG responses
demonstrated our proposed framework can effectively improve
the accuracy of EEG-based emotion recognition.
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FIGURE 1 | Overall scheme of the DEEMD-SPP. (A) DEEMD algorithm for signal decomposition. (B) Feature extraction of IMFs. (C) SPP-net for emotion recognition.

MATERIALS AND METHODS

We propose a novel algorithm called DEEMD-SPP to predict
emotion based on EEG signals. The framework of DEEMD-
SPP is shown in Figure 1 and it contains three steps. First, we
propose DEEMD to decompose the EEG signal of each electrode
(Figure 1A). Specifically, we apply EEMD to decompose EEG
signals into a series of IMFs. We propose an evaluation criterion
with three indicators to select IMFs that contain significant
information. These indicators are derived from the white noise
through EMD and are tested against the results produced on
numerically generated white noises. Second, time domain and
frequency domain features are extracted from the selected IMFs
(Figure 1B). These features give a rich clue about the physiology
of the EEG signal. The features of all electrodes are concentrated
to a feature representation. Third, we apply a spatial pyramid
pooling net (SPP-net) to further extract higher-level features
from the feature representation obtained in the last step and
perform emotion recognition (Figure 1C). SPP-net can process
arbitrarily sized input and aggregate information at a multi-
level. By using the proposed framework, we can overcome the
limitations of EEMD in the case of recognition tasks.

Denoising Ensemble Empirical Mode
Decomposition
EEMD Algorithm
Intrinsic mode function (IMF) is introduced by Huang et al. (28)
for analyzing non-linear and non-stationary time series signals.
An IMF has to satisfy two conditions: (1) The number of extrema
equals the number of zero-crossing or differs at most by one. (2)
At any point, the mean value of the envelope defined by the local

maxima and local minima is zero. With this definition, each IMF
represents one mode of oscillation with the same timescale. And
they are both amplitude and frequency modulated.

The empirical mode decomposition (EMD) method was
proposed to derive IMFs. However, the mode mixing problem
is one of the limitations of EMD. The ensemble empirical
mode decomposition (EEMD) is developed to overcome this
problem. EEMD defines the true IMF components as the mean
of an ensemble of EMD trials. Each trial consists of the signal
and generated instances of white noise. More particularly, the
algorithm is described below:

Given a discrete signal x (t) (t = 1, 2,. . . , n), it can be
decomposed in the following steps through a sifting process:

Step 1: Add white noise series w(t) to the original signal x (t),

y (t) = x (t) + w(t) (1)

Step 2: Identify all local maxima andminima of the signal y (t);
Step 3: Connect all maxima and minima points to produce the
upper (emax(t)) and lower (emin(t)) envelops by a cubic spline
line, respectively.
Step 4: Calculate the mean value m (t) between two envelops
and define the difference between y (t) andm(t) as h(t):

m (t) = (emax (t) + emin(t))/2 (2)

h(t) = y (t) −m(t) (3)

If h(t) meets the two conditions of IMF, h(t) is denoted as the
first IMF component c1(t). If h(t) is not an IMF, replace y (t)
with h(t), and iterate steps 2-4 until h(t) meets the conditions.
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Step 5: Take the residue r(t) = y (t) − c1(t) as new data and
subject to the same sifting process steps 2-4 for the next IMF.
The sifting process is stopped when r(t) becomes a monotone
function. The signal y (t) is decomposed into IMF components
ci (t) , i = 1, 2, 3 . . . .,m and a residual signal rm(t). m is the
number of IMFs.
Step 6: Repeat the above 5-steps N times by adding different
white noise series each time and obtain the corresponding
IMF components. Average the above results to get the final
IMF component:

imfi (t) =
1

N

∑

N
j=1cij (t) (4)

The original signal x (t) can be reconstructed using the extracted
intrinsic modes and the residue signal:

x (t) =
∑

m
i imfi (t) + rm(t) (5)

The previous studies (29–31) demonstrate that EEMD is capable
of better separation of the extracted signal modes and drastically
reduces the influence of the mode-mixing problem.

DEEMD Algorithm
EEMD can enhance the stability of the EMD algorithm by adding
appropriate noise. However, the resulting IMFs derived from
EEMD would inevitably be contaminated by the added noise
especially when the number of the ensemble was relatively low.
The residual noises generate spurious modes. In this article, we
proposed DEEMD for reducing the effect of spike-in white noise
by automatically selecting the valuable IMFs. We first introduce
the criteria for IMF selection and then detail the procedure
of DEEMD.

(1) Criterion for IMF selection

Wu and Huang (32) explored the characteristics of white noise
using the EMD method. They studied the relationship between
the energy density and the mean period of the IMFs. Analytic
expressions of the relationship were derived and tested against
the results produced by Monte Carlo method on a numerically
generated random noise. Figure 2A presents an example of the
top ten IMF components decomposed from white noise. They
found the following empirical facts: (a) IMF components have
mean periods approximately twice the value of the previous
component. (b) IMF components are normally distributed
(Figure 2B). (c) The IMF1 corresponds essentially to a half-band
highpass filter, other IMFs can be interpreted as a filter bank
of the overlapping bandpass filters (Figure 2C). (d) The Fourier
spectra of IMFs are identical in shape and cover the same area on
the semi-logarithmic period scale (Figure 2D).

These characteristics can provide the criteria for determining
which IMFs contain statistically significant information and
which IMFs are purely noise (32, 33). Considering the amplitude
and frequency properties of the IMFs derived from white noise,
an evaluation criterion with three indicators is proposed in this
section. These three indicators are skewness, kurtosis, and the
energy-density spread function. The following are the details of
the criterion.

As IMF components of white noise are normally distributed,
two numerical measures– skewness and kurtosis – can be used to
test the shape of IMF.

(a) Skewness is a measure of the symmetry of the data around
the mean. It is the standardized third central moment of
the probability distribution. If skewness is negative, the data
spread out more to the left of the mean than to the right. If
skewness is positive, the data spread out more to the right.
The skewness of the normal distribution (or any perfectly
symmetric distribution) is zero. It is given as follows:

S =
E[X − E (X)]3

{

E [X − E (X)]2
}3/2

(6)

(b) Kurtosis is a measure of whether the data are peaked or flat
relative to a normal distribution and it is the standardized
fourth central moment of the probability distribution. The
kurtosis of the normal distribution is 3. Distributions that
are more outlier-prone than the normal distribution have
kurtosis >3; distributions that are less outlier-prone have
kurtosis <3. It is given as follows:

K =
E[X − E (X)]4

{E[X − E(X)]2}2
(7)

Kurtosis and skewness have been used as the criterion for noise
detection or reduction, such as radio-frequency interference
detection of microwave radiometers (34), voice activity detection
(35), fault detection (36). Figure 3A presents an IMF component
of white noise. The probability density function (PDF) of
amplitude follows the normal distribution, as shown in
Figure 3B. We generate 2500-points white noise for 105 epochs.
The kurtosis and skewness values were calculated for 105 epochs.
The distributions were shown in Figures 3C,D. The 0.05 and
0.95 quantiles are determined to define the lower and upper
thresholds. The 95% confidence interval is [−0.09, 0.09] and [2.8,
3.2] for skewness and kurtosis, respectively.

(c) Energy-density spread function

As suggested by Wu and Huang (32), Two parameters, energy
density and average period, were defined to characterize
the targeted IMF. The energy density is calculated by the
following equation:

En =
1

N

∑

N
j=1

[

Cn

(

j
)]2

(8)

Where Cn

(

j
)

is the nth IMF, N is the length of time-series.
The average period is derived based on the fact that all the

Fourier spectra except the first one have almost identical shapes
in terms of the semi-logarithmic period scale (lnT). The area
coverage for each spectrum is identical. The averaged period
calculated from any given spectrum is defined as:

Tn =
∫

SlnT,ndlnT (

∫

SlnT,n
dlnT

T
)
−1

(9)
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FIGURE 2 | Properties of IMFs derived from white noise using EMD. (A) The waveforms of the first 10 IMFs decomposed from a white noise signal. The length of the

white noise is 2,500 points. (B) The probability distribution function(PDF) of IMF follows a normal distribution. (C) EMD equivalent filters. 1,000 independent white

noises of 2,500 points each have been generated, and average spectra of the nine IMFs are plotted as a function of normalized frequency. (D) The Fourier spectra of

IMFs as a function of the logarithm of the period. The samples are the same with (C).

where SlnT,n is the Fourier spectrum of the nth IMF as a function
of lnT;T is period. This value is almost identical to N/Nmax.Nmax

is the number of local maxima.
For IMFs of white-noise series, the relation between energy

density and the average period is

lnEn + lnTn = const (10)

Figure 4 shows the relation between the energy density and the
averaged period. The groups of dots from upper left to the lower
right are the energy density as a function of the average periods
for IMF 2-9 for all 1000 samples with an identical length of
2500 data points. The asterisk are the mean energy density as a
function of the averaged period for IMF 2-9.

The spread line of energy and period in terms of logarithmic
scale can be defined as:







y = −x+ b± k
√
2/Nex/2

y = lnEn
x = lnTn

(11)

k is a constant determined by the percentiles of a standard normal
distribution. k equal to −2.326, −0.675, 0 and 0.675, 2.326 for

the first, 25th, 50th, 75th, and 99th percentiles, respectively, N is
the number of data points, b is Y-intercept. More details can be
found in Wu and Huang (32).

(2) Procedure of the DEEMD

The specific steps of the DEEMD algorithm are as follows:

Step 1: Construct reference white-noise sections with identical
length of EEG signal. Each white-noise section is decomposed
into IMFs using EMD.
Step 2: Calculate the energy-density spread function of various
percentiles for white noise. A confidence-limit level (e.g., 99%)
is selected to determine the upper and lower spread lines.
Step 3: EEG signal is decomposed into IMFs using EEMD.
The kurtosis and skewness of the first IMF are calculated.
Compare the skewness and kurtosis for IMF1 from EEG
data with the interval [−0.09, 0.09] and [2.8, 3.2]. If
these two statistics fit the intervals, IMF1 is considered to
be noise.
Step 4: Calculate the energy density and average period
of IMF2-9. Compare the energy density with the spread
functions. If the energy is located above the upper bound or
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FIGURE 3 | Properties of IMFs derived from white noise. (A) An IMF component of white noise. (B) The probability distribution function (PDF) of amplitude follows a

normal distribution. (C) Skewness for 105 simulated noise epochs is calculated and distributions were determined. The dashed lines at−0.09 and 0.09 depict the

95% confidence interval. (D) Kurtosis for 105 simulated noise epochs is calculated and distributions were determined. The dashed lines at 2.8 and 3.2 depict the 95%

confidence interval.

below the lower bound, this IMF should be considered to
contain information.

Feature Extraction of IMFs
Researchers have shown that the statistical features of IMFs are
useful in some recognition tasks. The features obtained from each
IMF can give a rich clue about the physiology of the EEG signal.
In this work, we extract time domain and frequency domain
features from IMFs. Table 1 lists the features extracted from each
IMF. The following are details of key features used in ourmethod.

First Difference of IMF Time Series
The first difference of times series Dt depicts the intensity of
signal change in the time domain. Previous research has revealed
that the variation of EEG time series can reflect different emotion
states [2]. For an IMF component with N points, IMF{imf1,
imf2,..., imfN}, the definition of Dt is.

Dt =
1

N − 1

∑

N−1
n

∣

∣imf (n+ 1) − imf (n)
∣

∣ (12)

Coefficient of Variation of the Envelope
It is widely accepted that neural synchrony is associated with
observable EEG fluctuations in both amplitude and morphology.

Díaz et al. (37, 38) found the coefficient of variation of the
envelope (CVE) is highly correlated with relevant aspects of
signal morphology and can be used as a practical feature
extraction method for neural signals and other bio-signals. Each
IMF decomposed from the original EEG signal is both amplitude
and frequency modulated. We use CVE to study the amplitude
characteristics of IMFs. The Hilbert Transform is applied to
obtain the envelope of each IMF. For any signal x(t), its Hilbert
transform y(t) is defined as:

y (t) =
1

π

∫

x(τ )

t − τ
dτ (13)

The corresponding analytical signal is:

q (t) = x (t) + iy (t) (14)

The envelope of x(t) was obtained using

env (t) =
√

x2 (t) + y2 (t) (15)

The mean and standard deviation of env were calculated to
obtain CVE:

CVE = st(env)/mean(env) (16)
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FIGURE 4 | The relation between lnE and lnT. The asterisks are the mean

energy density as a function of the averaged period for IMF 2-9. The upper

bound and lower bound are spread line with the first and 99th percentiles.

TABLE 1 | List of extracted features for each IMF.

Category Feature name Dimensions

Time-domain Mean, Standard deviation, Skewness,

Kurtosis, Max, Min, First Difference,

Second difference, Normalized first

difference, Normalized second difference,

Hjorth (Activity, Mobility, Complexity),

Fractal Dimension

14

Frequency-domain Spectral centroid, Spectrum variance

Spectral skewness, Spectral kurtosis,

Coefficient of variation of envelop (CVE),

Raw moment of first derivative of

instantaneous frequency (RMFDIF),

Spectral moment of power spectral

density (SMPSD).

7

Raw Moment of First Derivative of Instantaneous

Frequency
This feature represents the weighted successive difference of
instantaneous frequency (IF) of an IMF. It asses the frequency
variability characteristics of EEG signals by including extreme
values. The IF from the phase of mth IMF and its difference are
defined as:

fi =
1

2π
diff {8m} , δf =

∣

∣diff
(

fi
)
∣

∣ (17)

The RMFDIF feature is computed as:

RMFDIF =
1

N − 1

∑

N−1
n=1 δf [n] (18)

Where N is the number of the samples in IF.

Spectral Moment of Power Spectral Density
Welch’s method is used in the computation of PSD. The PSD of
an analytic IMF q (t) is represented as:

Sq
(

f
)

= lim
T→∞

{

1

2T

∣

∣

∣

∑

T
n=−Tq (t) e−j2πfn

∣

∣

∣

2
}

(19)

The spectral moment of PSD is used to define the greater order
shape of EEG signal, which can be defined as:

SMPSD =
∑

L
k=1k.PSDk (20)

Where L is the number of points in PSD.

Spatial Pyramid Pooling Network
With throwing noise-dominant IMF components out, the
number of remaining IMFs varies between different samples.
Therefore, the size of feature maps is arbitrary. However, most
of the classifiers (SVM/softmax) or fully-connected layers require
fixed-size/length input by their definition.

In this article, we employ the SPP-net (39) as the classifier
to recognize emotions. SPP-net is inspired by the Bag of Words
approach (40). It is one of the most successful methods in
computer vision and object detection. SPP-net adds a pyramid
pooling layer after the last convolution layer. The pyramid
pooling layer can transform any size feature map into a fixed-size
feature vector. This layer also aggregates local features from finer
to coarser levels. By multi-level spatial pooling, it can enhance
the robustness of the network and improve detection accuracy.
SPP-net has several remarkable advantages for addressing the
issue mentioned in the previous section: (1) SPP-net can generate
a fixed-length representation from arbitrarily sized input, then
match with full connection layer. In SPP-net, the number of
bins for pooling is fixed instead of the fixed sliding window
size. (2) Multi-level spatial pooling can not only maintain spatial
information but also is robust to the variance in spatial layout
(39, 41). In the following, we describe the proposed network
in detail.

Feature Processing
For the i-th electrode, the EEG signal is decomposed by DEEMD.
We extract time domain and frequency domain features from the
selected IMFs. The features are listed in Table 1. We obtain a
feature descriptor fi of dimensionality (Ni, M). Ni is the number
of IMFs from the i-th electrode EEG,M is the number of features.
Features of all electrodes are concentrated and then normalized
as the global feature representation (Figure 5A).

Network Architecture
The SPP-net consists of an array of CNN subnet, a spatial
pyramid pooling layer, and fully connected layers, as shown
in Figures 5B–D. Convolution operations do not require the
fixed input size, but the fully connected layer requires a fixed
dimension. The pyramid pooling layer can transform any size
feature map into a fixed-size feature vector. The CNN subnet
consists of two convolution layers with kernel sizes of 10× 4 and
5× 2, respectively.
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FIGURE 5 | The architecture of the SPP-net model. (A) Feature processing. (B) Convolutional layers. (C) Spatial pyramid pool layer. (D) Fully connected layer.

In the SPP layer, we use parallel max-pooling layers at several
levels. We implement these pooling levels by sliding windows of
different sizes. Considering an l-level pyramid of nl × nl bins, the
sliding window size is win = ⌈a/nl⌉ and stride is str = ⌊a/nl⌋.
The symbols ⌈.⌉ and ⌊.⌋ denote ceiling and floor operations. The
responses of all levels are then concatenated to get a fixed-length
feature vector of size

∑

l nl × nl. The combination of different
levels can not only detect large-scale feature change areas, but
also the small details, which makes the network more flexible
and robust.

The fixed-size feature vector is then fed into three subsequent
fully connected layers.

RESULTS AND DISCUSSION

Dataset
Speech carries emotional information in human communication.
In this article we consider a dataset collected from a speech-
evoked emotion cognitive experiment, with full description in
Chen et al. (10). Nineteen healthy participants (8 females and 11
males) with a mean age of 22.4 years (ranging between 18 and
27 years) participated in the experiment. The stimuli were 5-s
audio clips without background sound. Each clip contains at least
a complete utterance. The discrete affective label and dimensional
emotional annotation (Arousal-Valence-Dominance) with 1-9
scales related to each stimulus were obtained using Amazon’s
Mechanical Turk. Stimuli were presented in random order. Each
trial consisted of three steps: (1) A 3 s baseline recorded; (2) A 5 s
audio clip played; (2) A 30 s Self-assessment for arousal, valence,
and dominance. There are two sessions during the experiment,
each session consisted of 40 trials. This resulted in 80 trials total
per participant. For all participants, there are a total of 1,373 trials
that exclude “bad” trials.

The EEG signals were continuously sampled at 1,000Hz using
a 62-channel EEG system. The electrodes were placed over the

scalp according to the international 10–20 system. The signal
pre-processing was performed. The EEG signals were average
referenced, down-sampled to 500Hz, and filtered with 1–49Hz
to obtain the desired frequency range and remove the electrical
line noise. Independent component analysis (ICA) was used to
remove eye artifacts. And 3 s baseline before the audio clip was
removed to correct stimulus-unrelated variations.

The Influence of Added Noise in EEMD
From the EEMD procedure, it is obvious that the number of
the ensemble and the noise amplitude are the two prescribed
parameters. The residue of added white noises should be reduced
following the statistical rule:

εn =
ε

√
N

(21)

Where εn is the final standard deviation of error; ε is the
amplitude of the added noise; and N is the number of ensemble
members. To make the EEMD effective, the amplitude of the
added noise could not be too small. Because it may not introduce
the change of extrema when the noise amplitude is too small,
especially for the data with a large gradient. However, if the
amplitude of the noise is large enough, the number of ensemble
members should be increased to reduce the effect of noise. At
the same time, it also causes higher computation costs. Figure 6
presents the relation in equation (21). It depicted the results of
EEMD decomposition of an EEG signal during one trial. ε′ is
the ratio of the standard deviation of the added noise and that
of the original EEG signals. From Figure 6A, it can be seen that
the first IMF component is easily influenced by noise, followed
by the second IMF. As the amplitude of the added noise increase,
the amplitude of the first IMF decrease. The first IMF may be
a noise-dominant component. Figure 6B shows that the effect
of noise can be reduced to a negligibly small level by increasing
the ensemble members. This example shows that not all of the
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FIGURE 6 | (A) The EEMD decomposition of EEG signal by adding different Gaussian noise. (B) The effect of noise on the first IMF (IMF1) are reduced by increasing

the number (N) of ensemble members (ε′ is set to 0.15).

obtained IMF components are valuable for EEG analysis. Some
IMFs are noisy or did not carry valuable information.

Validation of Selected IMFs Using DEEMD
As discussed in Section The Influence of Added Noise in EEMD,
the extracted IMFs can be either signal-dominant or noise-
dominant. It is crucial to select informative IMFs that contain
intrinsic information about brain activity. This article presents
an adaptive selection criterion for informative signal-dominant
IMF. To define the evaluation criterion, we have analyzed the
amplitude and frequency properties of IMFs for white noise. In
this study, EEG signals in a speech evoked emotion cognitive
experiment are studied. The preprocessed EEG signals are
decomposed through EEMD. The number of ensemble members
is set as 1,000. The ratio of the standard deviation of the added
noise to that of the raw signal is 0.3. Then we calculated the
skewness and kurtosis of the IMF1. Figure 7 demonstrates the
distributions of skewness and kurtosis for the first order IMF
component. These IMF1 are derived from the FP1 electrode for

all 1,373 trials. 12.7% IMF1 has skewness between−0.09 and 0.09,
and kurtosis between 2.8 and 3.2.

We generate 1000 white-noise series as the reference samples.
Each sample contains 2500 data points with the identical length
as the targeted EEG signal. These samples are decomposed using
EMD. The averaged period and energy density of IMF 2-9 are
plotted in Figure 8. The groups of dots from the upper left
to the lower right are the energy density as a function of the
average periods for IMF 2-9. The black solid line is the theoretical
expectation of the pair of averaged period and energy. The upper
(the 99th percentiles) and lower bound (the first percentiles)
are determined from the probability distribution of the energy
density of the IMFs from Gaussian white noise.

For each EEG signal, we calculated the energy densities
and average periods of IMF 2-9. They are compared with the
reference white-noise samples to determine whether a specific
IMF contains significant information. The red asterisks in
Figure 8 are the energy density vs. corresponding average periods
for the IMF2-9 from an EEG signal. The IMF2 presents a
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FIGURE 7 | The distribution of skewness and kurtosis for the first order IMF extracted from EEG signal (at PF1 electrode for all 1,373 trials).

FIGURE 8 | Logarithmic energy density-averaged period plot. The red

asterisks are the distribution for the IMF2-9 decomposed from an EEG signal.

The groups of dots present the distribution for the white-noise series.

distribution similar to the result from white noise. Therefore,
IMF2 was identified as the noisy component. IMF 3-9 shows a
higher energy level than that of white noise. They are above the
significant limit for white noise, therefore, they are identified as
the signal-dominant components. The Supplementary Figure 1

plots the distribution of energy density vs. corresponding average
periods of EEG signals for 80 trials.

The original signal can be reconstructed using the extracted
intrinsic modes and the residue signal (Equation 5). Figure 9
depicts the comparison of the original signals with the

reconstructed ones. The red curve is the reconstructed signal with
all IMFs. The green one is the reconstructed signal with selected
sensitive IMFs. As the added noise cannot be filtered completely,
spurious modes are generated due to the residual noise. The
impact of spurious mode mainly appears in the local extremum.
It is seen that our proposed selection method delivers a more
reconstructed signal and improves the reconstruction accuracy.

Furthermore, to quantitively evaluate the quality of signals
reconstructed after the IMF selection, the signal-to-noise ratio
(SNR) and mean square error (MSE) metrics are employed in
this study.

MSE =
1

N

∑

N
n=1

(

x (n) − xrec(n)
)2

(22)

SNR = 10 log10

(

∑

N
n=1(x(n))

2

∑

N
n=1(x (n) − xrec(n))

2

)

(23)

Where x (n) is the original signal and xrec(n) is the reconstructed
signal. N is the length of data points. The smaller MSE and bigger
SNR exhibit higher reconstruction accuracy and better quality of
the reconstructed signal. Figures 10A,B present the comparison
between the reconstructed signals with the original signals. The
original signals are EEG signals at “FP1” electrode from 1373
trials. The reconstructed signals are obtained by all IMFs or
selected IMFs, respectively. Figure 10A shows that constructed
signals using the selected IMFs have relatively smaller MSE. It
demonstrates that IMF selection allows the reduction of the noise
for reconstructed signals. From Figure 10B, one can observe
that constructed signals using the selected IMFs demonstrate
significantly better results in terms of the SNR. Figure 10C

presents the percentage of noise-dominant IMFs.
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FIGURE 9 | Comparison of time-domain signals with reconstructed signals.

FIGURE 10 | (A) MSE between the reconstructed signals and the original signal. The reconstructed signals are obtained by all IMFs or selected IMFs, respectively. (B)

SNR between the reconstructed signals and the original signal. (C) The percentage of noise-dominant IMFs at the “PF1” electrode for 1,373 trials.

Emotion Recognition
The performance of the proposed framework DEEMD-SPP for
EEG-based emotion recognition is studied in this subsection.
We evaluate the prediction accuracy in the level of valence and
arousal separately. Among the total 1,373 trials of all subjects,
790 trials are labeled as high valence and 583 as low valence.
For arousal, there are 815 trials as high arousal and 558 trials as
low arousal.

For each trial, the EEG signal of each electrode is firstly
decomposed by DEEMD. The IMF selection process of DEEMD

provides meaningful IMFs that carry important information
in the original signal. Then we extract time domain and
frequency domain features from each selected IMF. The
dimension of features is 21. The features of 62 electrodes
are concentrated to a feature representation. The size of the
feature representation matrix is approximately between 610 ×
21 and 623 × 21. In the last step, we apply SPP-net to
process arbitrarily sized input and aggregate information at a
multi-level. The parameters used in our model are demonstrated
in Table 2.
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TABLE 2 | Architecture and parameter settings of SPP-net.

Layer type Input size Output size Patch size Kernel Stride

1st Convolution layer (610∼623) × 21 (121∼128) × 18 × 10 (10.4) 10 (5.1)

2nd Convolution layer (121∼128) × 18 × 10 (117∼124) × 18 × 200 (5.2) 20 (1.1)

SPP layer (117∼124) × 18 × 200 4,200 [4, 2, 1] - -

1st Fully-connected layer 4,200 500 500 - -

2nd Fully-connected layer 500 200 200 - -

Output layer 200 2 2 - -

TABLE 3 | The classification accuracies of valence and arousal.

Method IMF Features Classifier Accuracy

Valence (%) Arousal (%)

EEMD All IMFs Statistics SVM 70.8 68.4

First five IMFs Statistics SVM 68.6 69.3

All IMFs Features in Table 1 SPP-net 72.1 70.6

DEEMD Selected IMFs Statistics SVM 69.7 68.1

(proposed) Statistics ANN 70.2 68.8

Features in Table 1 SPP-net (proposed) 74.5 72.2

The bold value means the best performance.

A 5-fold cross-validation method has been adopted
for performance evaluation. We split the entire dataset,
which has 1373 trials, into 5 folds. In each iteration, 1-
fold (275 trials) is used to test the model and the rests
(1,098 trials) serve as the training set. The process is
repeated until each fold of the 5-folds has been used as the
training set.

For a two-class classification problem, the accuracies are
measured using

Accuracy =
TP + TN

TP + TN + FN + FP
(24)

where TP, TN, FP, FN denote true positive, true negative, false
positive, false negative, respectively.

To assess the proposed method, five experiments are
conducted on the dataset. In the first experiment, we decompose
the EEG signals using EEMD without an IMF selection
procedure. Features are extracted from each IMFs (Table 1).
Then the statistics (mean, standard deviation, 25 and 75%
quantiles) of these features for all IMFs are calculated as input
to SVM. In the second experiment, we decompose the EEG
signals using EEMD. Features are extracted from the first five
IMFs. The statistics of these features are input to SVM. In the
third experiment, we decompose the EEG signals using EEMD
without an IMF selection procedure. Features are extracted from
all IMFs. These features are input to SPP-net. In the fourth
experiment, we decompose the EEG signals using DEEMD. The
IMFs are selected self-adaptively. Features are extracted from the
selected IMFs. The statistics of these features are calculated as
input to SVM and ANN, respectively. In the fifth experiment, our
proposed DEEMD-SPP framework is used. The results of these

experiments are given inTable 3. Comparing the results obtained
from the first three experiments show that features extracted
from each IMF perform better than statistics. Statistics will lose
important information due to a high degree of abstraction. The
statistics from the first five IMFs do not necessarily have higher
accuracy. This is possibly because the relationship between each
IMF with EEG rhythm can differ depending on the frequency
and the possible noise effects. Further experiments show that
our proposed DEEMD-SPP framework has the best performance
with 74.5 and 72.2% accuracy for valence and arousal,
respectively. The accuracy by IMF selection using DEEMD
exceeds the one of the third experiment by ∼2% for valence
and arousal.

CONCLUSION

EEG-based emotion recognition is a growing research field
of affective computing. It requires accurate and efficient
signal processing and feature extraction methods. In this
article, we propose a novel framework named DEEMD-
SPP to improve the accuracy and effectiveness of emotion
recognition based on EEG. DEEMD-SPP uses a novel feature
extraction method named denoising ensemble empirical
mode decomposition (DEEMD) and Spatial Pyramid Pooling
Network (SPP-Net) for classification. The framework contains
three steps. First, DEEMD is proposed to decompose the
EEG signals and select the most valuable IMFs. Second,
time domain and frequency domain features are extracted
from the selected IMFs. Finally, SPP-Net is employed as
the classifier to recognize emotions. To demonstrate the
advantages of DEEMD-SPP, we first investigate the IMF
selection capabilities of the proposed DEEMD, using an EEG
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dataset collected from a speech-evoked emotion cognitive
experiment. The experimental results demonstrate that the
IMF selection procedure of DEEMD allows for the better
exclusion of the noise-dominant components. Additionally,
we compare our proposed framework with four state-
of-the-art methods on EEG-based emotion recognition.
The experiments show that our method achieves higher
accuracy than the other methods, indicating that the proposed
learning-based framework is appropriately designed. The
proposed DEEMD-SPP framework will benefit the studies in
psychology, psychiatry, and public health that involve EEG-based
affective analysis.
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