
Forecasting the Future Risk of Barmah Forest Virus
Disease under Climate Change Scenarios in Queensland,
Australia
Suchithra Naish1*, Kerrie Mengersen2, Wenbiao Hu1, Shilu Tong1

1 School of Public Health, Queensland University of Technology, Queensland, Australia, 2 Mathematical Sciences, Queensland University of Technology, Queensland,

Australia

Abstract

Background: Mosquito-borne diseases are climate sensitive and there has been increasing concern over the impact of
climate change on future disease risk. This paper projected the potential future risk of Barmah Forest virus (BFV) disease
under climate change scenarios in Queensland, Australia.

Methods/Principal Findings: We obtained data on notified BFV cases, climate (maximum and minimum temperature and
rainfall), socio-economic and tidal conditions for current period 2000–2008 for coastal regions in Queensland. Grid-data on
future climate projections for 2025, 2050 and 2100 were also obtained. Logistic regression models were built to forecast the
otential risk of BFV disease distribution under existing climatic, socio-economic and tidal conditions. The model was applied to
estimate the potential geographic distribution of BFV outbreaks under climate change scenarios. The predictive model had
good model accuracy, sensitivity and specificity. Maps on potential risk of future BFV disease indicated that disease would vary
significantly across coastal regions in Queensland by 2100 due to marked differences in future rainfall and temperature
projections.

Conclusions/Significance: We conclude that the results of this study demonstrate that the future risk of BFV disease would
vary across coastal regions in Queensland. These results may be helpful for public health decision making towards
developing effective risk management strategies for BFV disease control and prevention programs in Queensland.
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Introduction

As global climate change becomes unequivocal, there is

increasing scientific interest in the assessment of its potential

effects on human health, particularly, on the spread of mosquito-

borne diseases [1]. Mosquito-borne disease transmission depends

on mosquito biology and population dynamics, which itself

depends on climate for several purposes: mosquitoes require water

to breed and warm temperature is important for larval develop-

ment and adult feeding behaviour. Although a suitable climate

(i.e., temperature, rainfall and humidity) is necessary for disease

transmission, other factors are also associated with disease

outbreaks, including virus, vector and susceptible host [2].

Barmah Forest virus is the second important mosquito-borne

disease in Australia, with several hundreds of clinically confirmed

cases each year (for example, 1,855 people in 2011) [3]. It is

transmitted predominantly by Aedes and Culex species of mosqui-

toes [2]. No effective vaccine or treatment is yet available, so the

prevention and management of disease has solely relied on vector

control programs, for example, reduction of breeding sites, public

health education and the use of insecticides [4]. These programs

have succeeded in eradicating mosquitoes in some areas, but have

proved difficult to maintain in a long-term [5].

Evidence suggests that mosquito-borne diseases may be

predicted by climate-based statistical models [6]. Some statistical

models were developed to project future transmission of mosquito-

borne diseases under climate change scenarios [7]. However, these

models did not adequately account for interactions between

climate variables and non-climatic factors [8]. An empirical model

of future risk of malaria transmission, which accounted for

interactions between climate variables [9], predicted little changes

in the global distribution of the risk population by the year 2050.

However, a mathematical model of dengue risk transmission,

which considered temperature, rainfall and vapour pressure as

exposure variables, individually, and in combination, with or

without statistical interactions terms, predicted 20–30% increase

in changes in the distribution of the risk populations by the year

2085 [9]. In order to predict the potential future risk of BFV

disease in response to predicted climate change, it is important to

assess the association between climatic and socio-economic factors

and BFV disease [10,11], to facilitate the planning and

implementation of BFV disease control and prevention programs.
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The projected level of global warming for the year 2030 (0?6–

1?5uC) using A1B emission scenario is anticipated to cause changes

in the distribution and pattern of mosquito-borne diseases in

Australia [12]. Whether these changes result in increased or

decreased numbers of disease outbreaks will depend on several

abiotic and biotic factors at local and regional levels. Working

knowledge of where BFV disease outbreaks will potentially occur

in the future under climate change scenarios is essential for BFV

disease risk management. In this study, we assessed the current

geographical distribution of BFV disease transmission across

Queensland coastal regions. Then, we projected the potential

changes in the risk of geographical distribution of BFV disease

transmission for the years 2025, 2050 and 2100 in Queensland,

Australia, using the medium level A1B climate change scenario.

Methods

Study area
The study was conducted in Queensland, Australia, covering an

area of 1,727,200 km2 (22?5% of the country) with 7,400 km of

continental coastline and 9,800 km including islands. The

estimated population was 4,580,725 on 30 June, 2011 [13].

Queensland has frequently recorded the largest outbreaks of BFV

disease compared to any other Australian State. For example, in

2010, the annual average incidence rate (20?1/100,000 popula-

tion) of Queensland is three times higher than the national annual

average incidence rate (6?6/100,000 population) [3]. The climate

in Queensland varies markedly, ranging from hot arid temperate,

through warm wet tropical coastal belt, to mild subtropical zone.

With this diversity, it demonstrates different degrees of spatial

variability, particularly with regard to rainfall [14].

Ethics statement
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(approval number: 0900000388).

Data collection
The data on notified BFV cases covering the period 2000–2008

were obtained from Queensland Health. Gridded (5 km65 km)

climate data with complete records of annual average maximum

and minimum temperature and rainfall were provided by

Australian Bureau of Meteorology [14] for the same period. Data

on socio-economic indicator (i.e., SEIFA index) [13] and tides [15]

were obtained from Australian Bureau of Statistics and Queens-

land Transport, respectively. The geographic regions used for this

analysis are mesh blocks which cover Queensland without gap or

overlap. The mesh block population data including number of

dwellings and overall population were supplied by Australian

Bureau of Statistics [16] and these were used in the computation of

BFV disease incidence rates. Located in the north-eastern corner

of Australia, the state is divided into 60,758 spatial mesh blocks,

with most residential mesh blocks containing 30–60 dwellings.

Data were entered into a geographical information system

database format.

Future climate projection data were downloaded for the years

2025, 2050 and 2100. The data included average annual

maximum temperature, average annual minimum temperature

and total annual rainfall. We adopted Commonwealth Scientific

and Industrial Research Organisation (CSIRO) [17] using

CSIRO: Mk3?5 climate change pattern with Special Report on

Emissions Scenario Marker Scenario A1B (medium CO2 emis-

sions, peaking around 2030) in this study because Intergovern-

mental Panel on Climate Change (IPCC) forecast that Australia

would come under mild climate emissions [18].

Statistical analyses
Model building. Firstly, we examined the associations

between BFV disease incidence and climatic, socio-economic

and tidal variables. Multi-collinearity was checked before entering

these variables into the model. Multivariable logistic regression

models were constructed to predict the probability of BFV disease

outbreak (presence = one or absence = zero) (mean+1SD) [19].

Spatially autocorrelated BFV incidence after accounting for spatial

dependence and heterogeneity was logarithmic transformed prior

to outbreak classification due to skewed distribution. We used

climatic variables (maximum and minimum temperatures and

rainfall), SEIFA index, low tide and high tide as predictors.

Akaike information criterion (AIC) was employed to determine

the best-fit model [20]. The accuracy, sensitivity and specificity

values were also estimated using SPSS [21]. Area under the curve

(AUC) of the receiver operating characteristic (ROC) was used to

determine discriminatory performance of the model predictions

relative to observed outbreaks. An AUC value of 0?8 was used as

good and an acceptable predictive performance [22]. The results

were considered statistically significant at p,0?05.

Projections of future risk. As recommended by IPCC [18],

the best-fit model results were applied to future climate change

scenarios to generate projections of BFV disease risk in the years

2025, 2050 and 2100. The output model was transformed into

probability risk maps yielding the geographic distribution of

current and future BFV disease outbreaks for entire coastal regions

(,100 km distance away from coastline) [23].

The output of the model resulted in a risk probability of BFV

disease for each mesh block. A probability value close to zero

indicates the location with low risk of BFV disease outbreaks

whereas a probability value of one suggests the area with high risk

of BFV disease outbreaks. These estimated risk probabilities of

BFV disease were mapped for 2000–2008, and then, the baseline

risk probabilities were applied to project the future risk for years

2025, 2050 and 2100 under climate change scenarios.

Results

Regression model
Table 1 shows summary of the model results for the current

distribution of BFV disease (Table 1). The best-fit model included

minimum temperature, rainfall, and an interaction term between

these two variables, SEIFA index and low tide. Model had a high

accuracy of 90?2%, sensitivity of 98?0% and specificity of 88?4%.

The model also showed a high predictive performance with 0?98

AUC-ROC value (Table 1).

Future regions at risk
In order to visualise the future regions at risk, the results of the

logistic regression model were mapped for existing climatic, socio-

economic and tidal conditions. The model was then used to

forecast BFV risk for years 2025, 2050 and 2100 under climate

change scenarios. Only predicted rainfall and minimum temper-

ature were used as the changing variables as socio-economic and

tidal data were not available for these future years. The model was

used firstly to forecast BFV risk assuming that minimum

temperature remains constant based on existing conditions

(Figure 1). Secondly, forecasting of BFV risk was conducted

assuming that the rainfall remains constant based on existing

Forecast of Barmah Forest Virus Disease
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conditions (Figure 2). Finally, Figure 3 presents the forecasting of

BFV risk assuming that both rainfall and minimum temperature

will change in future years compared to existing conditions.

Figure 1 (a) presents BFV risk under existing conditions. Figure 1

(b), (c) and (d) shows the forecast results for years 2025, 2050 and

2100 respectively due to varying rainfall but constant minimum

temperature. Similarly, with constant rainfall and varying mini-

mum temperature, Figure 2 (b), (c) and (d) shows the forecast

results for years 2025, 2050 and 2100 respectively. Likewise,

Figure 3 (b), (c) and (d) shows the forecast results for years 2025,

2050 and 2100 with both rainfall and minimum temperature

varying.

In all forecast scenarios, the following can be observed. Under

existing conditions there are areas of very high risk (P>1?0)

around Brisbane area (including Gold Coast and Sunshine Coast)

and Cairns area (including Ingham and Cooktown, approximately

100 km north of Cairns). Compared to the entire coastal region

these two areas demonstrate the relatively highest levels of risk. In

year 2025 the high risk areas are the same as for existing

conditions (Brisbane and Cairns) but also include emerging areas

such as Mackay and Rockhampton and between Gladstone and

Gympie. BFV risk remains very high (P>1?0) around Brisbane,

Cairns and Mackay and Rockhampton areas for years 2050 and

2100. However, in all other areas along coastal Queensland BFV

risk progressively decreases from 2025 to 2100. The scenario

where both rainfall and minimum temperature varies in future

years (Figure 3 (b), (c) and (d)) produces the nearly similar patterns

of BFV risk spread across coastal regions in Queensland compared

to the other two assumptions, however BFV risk decreases more

significantly. Some possible reasons for this are presented in the

discussion, however it is also likely that the sensitivity of the logistic

regression model is very high. Thus minor changes in both varying

rainfall and minimum temperature produces a noticeably different

risk level compared to only one variable varying.

Discussion

This study projected future risk of BFV disease outbreaks under

climate change scenarios in coastal regions, Queensland, Australia.

To be useful for disease surveillance and control programs, a

distribution geographic risk model should: (1) use predictors that

are easily available and interpretable; (2) be accurate against

independent data; and (3) generate outputs that can assist control

decisions [24]. In this study, we developed a robust predictive

model which included climatic, socioeconomic and tidal variables.

Then, we projected the future risk of BFV disease based on the

combination of the baseline model and climate change emission

scenarios [12,17].

We have produced an empirical model for projecting future

BFV risks across Queensland coastal regions, highlighting the

variability of various factors (including climatic, socio-economic

and tidal) influencing BFV outbreaks. This is consistent with

findings that mosquito-borne disease transmission is determined

by multiple factors [1,2]. Other factors such as wetlands may also

influence BFV disease outbreaks, and hence we have included

these variables and the model performances did not vary much.

Consequently, the final model did not include wetland variables as

these did not affect the accuracy of the model. So we used a

parsimonious model. Logistic regression modelling is a useful tool

for interpreting and applying surveillance data. It has a great

potential to be used as a decision-support tool in mosquito-borne

diseases. On the assumption that other factors affecting BFV

outbreaks remain constant over time, we forecast that climate

change would affect future risk of BFV disease across coastal

Queensland. The finding that the baseline distribution of BFV

disease is well predicted by temperature, rainfall and an

interaction between these two variables is biologically plausible

[1,2]. Both temperature and rainfall are important for breeding

and survival of mosquito populations. Previous research indicates

that mosquitoes that transmit mosquito-borne disease are sensitive

to temperature. Evidence also has accumulated to show that heavy

rainfall and flooding can lead to increased mosquito breeding and

outbreaks of mosquito-borne diseases in Australia. Our study

corroborated previous studies [10,11] and indicated that climate is

one of the key predictors of BFV outbreaks.

Evidence suggests that the future mosquito-borne disease

transmission will also depend on socio-economic and tidal factors

[10,11]. Hence, we included socio-economic indicator and tides in

the development of baseline models for predicting BFV outbreaks.

Our results indicate that SEIFA index is another key predictor for

BFV disease. This is consistent with the findings that conditions for

BFV outbreaks are dependent on socio-economic status [10].

Tidal inundation of salt marshes is a major source of water for

breeding of the coastal mosquitoes. Adult mosquitoes lay their eggs

on soil, moist mud, and the bases of plants around the margins of

their breeding sites. Our results support findings from previous

studies on tidal influence and mosquito distribution [4,10,11,19].

The predictions performed with current data (i.e., 2000–2008)

showed that the climatic and socio-economic and tidal variables

had the good ability (90?2% accuracy) to predict the probability of

future BFV disease risk (Table 1). For prioritising the areas of risk

for public health preparedness and policy decision, we examined

the future probabilities of risk of BFV disease to differentiate areas

of lower risks (0–0?25 probability) from those of higher risks (0?5–

1?0 probability) for BFV outbreaks (Figs: 1, 2, 3). Figure 1 indicates

that the disease will vary across Queensland in future years. Thus,

these results suggest that public health managers and decision

makers should increase their surveillance, vigilance, and pre-

paredness in order to control and prevent BFV disease outbreaks

in Queensland. In addition, these findings indicate that methods

designed to project BFV disease risks in Queensland may be

applicable to other regions of Australia.

The projected average increase in temperature in Queensland is

likely to be generally favourable for mosquito development and

survival, resulting in potentially greater numbers of BFV

mosquitoes which in turn may increase BFV disease. However,

mosquito survival under these conditions will depend on whether

the increased temperatures are accompanied by adequate rainfall.

Projected data on rainfall showed variations in annual patterns,

Table 1. Odds ratios of climate, socio-economic and tidal
variables associated with BFV disease outbreaks in the entire
coastal region in Queensland.

Variables Odds ratio 95% CI P-value

Minimum
temperature (uC)

1?61 1.368–1.888 0?00

Rainfall (mm) 1?04 1.036–1.044 0?00

Low tide 0?01 0.000–0.001 0?00

SEIFA 1?01 1.005–1.007 0?00

Minimum
temperature *
Rainfall

0?99 0.997–0.998 0?00

Constant 0?00 - 0?00

Accuracy: 90?2%; Sensitivity: 98?0%; Specificity: 88?4%.
doi:10.1371/journal.pone.0062843.t001
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particularly in coastal Queensland for the years 2025, 2050 and

2100 [17], thus potentially offsetting the survival benefits provided

by increased temperatures in 2025, 2050 and 2100 [17],

respectively.

In general, the projections for Queensland show that annual

average minimum temperatures are predicted to rise, whereas

annual rainfall is predicted to decline [17]. In response to

predicted climate change and based on the results of the

forecasting model presented here (Fig. 1), there are three possible

outcomes of BFV risk for any localised area. Firstly, a reduction in

the annual average rainfall may not be sufficient enough to offset

the survival benefit of increased minimum temperatures thus

resulting in an increase in BFV mosquito and consequently

increase in BFV outbreaks. Secondly, a reduction in annual

average rainfall exactly offsets survival benefits from increased

minimum temperatures resulting in no net gain or loss of BFV

mosquito and consequently no change in the frequency or

intensity of BFV outbreaks. Thirdly, annual average rainfall

reduction is significant enough to reduce the populations of BFV

mosquito populations regardless of increasing minimum temper-

atures thus resulting in a reduction in BFV mosquito populations

and BFV outbreaks. In this study, the projections have been based

on annual average climatic conditions and the logistic regression

model which determined that, on average, projected BFV risk will

vary across Queensland compared to existing conditions. Howev-

er, it is worthwhile noting that the BFV transmission could still be

active even if no outbreaks exist.

There are three key strengths in this study. Firstly, to our

knowledge, this is the first study to forecast future risk of BFV

disease transmission using climate change scenarios. Our analysis

provides an insight into future geographic distribution of BFV risk

in different areas across coastal Queensland. These scenario-based

Figure 1. Forecast of BFV disease setting minimum temperature constant. (a) Geographical distribution of BFV disease under current
climatic conditions for Queensland entire coastal regions, (b) forecast of potential probabilities of risk of BFV disease under climate change scenarios
setting minimum temperature constant for 2025, (c) 2050 and (d) 2100.
doi:10.1371/journal.pone.0062843.g001
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forecasts can help determine when and where public health

interventions are most needed for BFV disease control and

prevention. Secondly, an ability to predict interaction between

climatic factors of BFV in a given location such as coastal

Queensland which is at high-risk is critical for successful future

predictions of the risk of BFV outbreaks. Our approach provides a

clear link between climatic, socio-economic and tidal factors, and

BFV transmission dynamics. Finally, the model we developed had

a high level of accuracy, sensitivity and specificity.

This study also has three key limitations. Firstly, in this study, we

used only A1B scenario to forecast BFV outbreaks and did not use

other scenarios because the goal of this exercise is to identify

regions with either reduction or increase in probability of risk of

future BFV outbreaks. However, use of different scenarios may be

a better approach to understand the range of possibilities

(including the worst and best case scenarios) and our future study

will evaluate different scenarios. Secondly, we projected risk of

BFV only for the coastal regions because of several reasons: 1)

previous studies have identified several hotspots of BFV disease

along coastal geographic regions [25,26]; 2) surveillance data

indicated that BFV notifications were comparatively higher along

coastal geographic regions than inlands [25]; and 3) most of the

coastal geographic regions were densely populated (80% of the

Queensland population lives along coastal regions) [27]. However,

our future study is aimed at examining the outbreak differences

between urban and rural areas. Finally, we did not include relative

humidity and mosquito density in models because these data are

unavailable for this study. Previous studies demonstrated that

temperature, rainfall and tides were the most significant risk

factors for BFV disease (7, 8). Therefore, we have included these

variables in our models. In addition, we did not predict the future

Figure 2. Forecast of BFV disease setting rainfall constant. (a) Geographical distribution of BFV disease under current climatic conditions for
Queensland entire coastal regions, (b) forecast of potential probabilities of risk of BFV disease under climate change scenarios setting rainfall constant
for 2025, (c) 2050 and (d) 2100.
doi:10.1371/journal.pone.0062843.g002
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outbreaks based on SEIFA as data on projections on the SEIFA

index are unavailable at the time of the study.

The potential future risk maps of BFV disease for 2025, 2050

and 2100 revealed the locations of BFV risk with sufficient

operational accuracy. In practical terms, the BFV risk map may

assist in selecting targeted surveillance sites and guiding preventive

control measures. Targeted surveillance and control efforts based

on future BFV risk maps should lead to more effective public

health interventions prior to the occurrence of outbreaks.

Conclusions

This study demonstrated the feasibility of developing forecast

models using epidemiological, climatic, socio-economic and tidal

data for projections of future BFV outbreak risk. These models

may have important implications in policy planning and

development towards minimising the impact of climate change

on BFV disease and other mosquito-borne diseases.
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