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ABSTRACT

By transporting one DNA double helix (T-segment)
through a double-strand break in another
(G-segment), topoisomerase II reduces fractions of
DNA catenanes, knots and supercoils to below equi-
librium values. How DNA segments are selected to
simplify the equilibrium DNA topology is enigmatic,
and the biological relevance of this activity is
unclear. Here we examined the transit of the
T-segment across the three gates of topoisomerase
II (entry N-gate, DNA-gate and exit C-gate). Our ex-
perimental results uncovered that DNA transport
probability is determined not only during the
capture of a T-segment at the N-gate. When a
captured T-segment has crossed the DNA-gate, it
can backtrack to the N-gate instead of exiting by
the C-gate. When such backtracking is precluded
by locking the N-gate or by removing the C-gate,
topoisomerase II no longer simplifies equilibrium
DNA topology. Therefore, we conclude that the
C-gate enables a post-DNA passage proofreading
mechanism, which challenges the release of
passed T-segments to either complete or cancel
DNA transport. This proofreading activity not only
clarifies how type-IIA topoisomerases simplify the
equilibrium topology of DNA in free solution, but it
may explain also why these enzymes are able to
solve the topological constraints of intracellular
DNA without randomly entangling adjacent chromo-
somal regions.

INTRODUCTION

Type-IIA topoisomerases (type-IIA) invert DNA cross-
overs by transporting one double helix (T-segment)
through the transient double-strand break that they

produce in another (G-segment) (1). Studies over the
past two decades have provided a general picture of
type-IIA structure and mechanism (Figure 1A). Type-
IIA are homodimers of four functional domains: the
ATP-ase domains or N-gate, the DNA cleavage-rejoining
core or DNA-gate, the hinge domain or C-gate and the
less-conserved C-terminal domains (CTDs) (1,2). To
catalyze DNA transport, a G-segment binds first to the
cleavage-rejoining core to configure the DNA-gate (3).
Binding of ATP causes the ATPase domains to dimerize,
and when this closure of the N-gate leads to the capture
of a T-segment, a cascade of conformational changes
ensues (3). The T-segment is moved toward the DNA-
gate, where the G-segment is transiently cleaved by
means of transesterification reactions with a pair of sym-
metrically related tyrosine residues (4). On aperture of the
DNA-gate, the passing T-segment reaches the central
chamber of the enzyme and it is then released outside
the complex by crossing the C-gate (5,6). ATP hydrolysis
starts during T-segment transport and concludes to allow
N-gate reopening and enzyme turnover (7,8).
Despite using the same general mechanism, distinct

type-IIA topoisomerases (bacterial DNA gyrase, bacterial
topo IV, eukaryotic topo II) differ in their DNA transport
preferences. DNA gyrase selectively introduces (�) super-
coils into DNA (9). To do this, the CTDs of gyrase wrap
DNA to juxtapose contiguous G- and T-segments and
enforce the inversion of (+) supercoil crossings (10).
Topo II and topo IV do not have DNA supercoiling
activity. They reduce instead the DNA crossovers found
in catenaned, knotted and supercoiled DNA molecules
(11,12). The CTDs of topo II and topo IV are not
required for DNA transport activity but enable different
kinetics to unlink right- and left-handed interwinding of
DNA duplexes (13,14).
In 1997, Rybenkov et al. (15) discovered that topo II

and topo IV are able to produce steady-state fractions of
catenane, knot and supercoil crossings that are many
times lower than the corresponding equilibrium fractions.
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This directionality of DNA transport has puzzled scien-
tists ever since because it was enigmatic how T-segments
could be selected locally to simplify the equilibrium
topology of much larger DNA molecules (15,16). Several
theories have been proposed. The active sliding model
postulated that the topoisomerase forms and actively
shortens a DNA loop to corral potential T-segments
(15). The kinetic proofreading model proposed that
DNA capture and transport requires two successive colli-
sions with potential T-segments. As a result, DNA trans-
port probability has a quadratic relationship with the
DNA collision rate (17). The G-segment hairpin model
postulated that the topoisomerase produces a sharp
bend in the G-segment, which funnels T-segments to be
transported preferentially from the inside to the outside of
the bend (18). The three-segment interaction model

proposed the enzyme reduces the effective DNA contour
length because it can interact simultaneously with two po-
tential T-segments before capturing one of them (19). The
inter-hooked DNA juxtaposition model postulated that
the topoisomerase recognizes the geometry of interhooked
DNA crossovers as potential G- and T-segments (20).
Thus far, experimental results have discarded the sliding
mechanism (16) and ruled out the kinetic proofreading
(21). Only the hairpin model is backed by the experimental
evidence of a strong bend induced by type-IIA topoisom-
erases in the G-segment (18,22). However, this bend is not
sufficiently sharp to explain the degree of DNA topology
simplification experimentally observed (18,23). Recent
studies have also shown that bending angles produced
by different type-IIA do not correlate with the simplifica-
tion efficiency of the corresponding enzymes (24,25).
Thus, the mechanism by which type-IIA simplifies
equilibrium DNA topology remains controversial and its
biological relevance poorly understood.

Here we examined the transit of the T-segment across
the three gates of yeast topoisomerase II during the sim-
plification of equilibrium fractions of DNA supercoils.
Our results uncovered that simplification of equilibrium
DNA topology occurs because, after T-segment capture
and passage, the topoisomerase challenges the release of
the T-segment with the C-gate, and that this constriction
permits either the completion or backtracking of DNA
transport. This post-DNA passage proofreading activity
not only clarifies how type-IIA simplifies equilibrium
DNA topology, but also suggests a crucial biological
role by preventing the random entangling of intracellular
DNA.

MATERIALS AND METHODS

DNA and topoisomerases

Plasmids pBR322 (4.3 kb) and YCp50 (7.9 kb) were
purified by density gradient centrifugation in cesium
chloride following standard procedures. Topoisomerase I
of vaccinia virus (T1) was produced in Escherichia coli and
purified as previously described (26). A CTD-less topo-
isomerase II of Saccharomyces cerevisiae (T2) was
produced from pGAL1Top2(1196)-HMK-His (27) in the
protease-deficient yeast strain BCY123-Dtop1. This strain
was constructed by disrupting the TOP1 gene in BCY123,
as previously described (28). T2 was purified following the
procedures previously described for the full-length yeast
topo II (4). T2 was stored at a concentration of 2mg/ml
at �80�C, and working stocks at 100 ng/ml were kept
at �20�C in 50mM Tris-HCI (pH 8), 1mM ethylenedia-
minetetraacetic acid (EDTA), 500mM KCI, 7mM
2-mercaptoethanol, 100 mg/ml bovine serum albumin
(BSA) and 50% (v/v) glycerol. The T2 derivative, in
which the C-gate can be reversibly locked by a pair of
engineered disulfide bonds, was obtained by mutating
two amino residues, N1043C and K1127C, as previously
described (6). This enzyme was produced and kept under
the same conditions as T2, but omitting sulfhydryl
reagents in all buffers.

Figure 1. DNA transport mechanism and DNA supercoil simplification
activity of topoisomerase II. (A) General structure and main steps of the
DNA transport mechanism: T-segment capture at the N-gate, T-segment
passage across the DNA-gate and T-segment release by the C-gate. CTDs,
which are dispensable for DNA transport activity, are not shown. (B)
Steady-state Lk distributions produced by vaccinia virus topoisomerase
I (T1) and S. cerevisiae topoisomerase II (T2) after relaxation of a nega-
tively supercoiled 7.9-kb plasmid (Ø). The reactions (enzyme/DNAmolar
ratio of 0.5:1, during 30min at 37�C), DNA electrophoresis and analysis
of Lk distributions were done as detailed in the ‘Materials and Methods’
section. The gel position of supercoiled (S), nicked (N) and Lk topoiso-
mers (Lk) is indicated. Lane plots compare the variance (RLk=<Lk2>eq/
<Lk2>T2) and the central value (�LkS=LkS�Lk0) of both Lk distribu-
tions. Mean ± SD values of RLk and �LkS are from three experiments.
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DNA relaxation and analysis of Lk distributions

DNA plasmids (0.2 pmol) were incubated with
T1(catalytic excess) or T2 (at the specified molar ratio)
in a 50-mL volume of 50mM Tris–HCl (pH 8), 1mM
EDTA, 150mM KCl, 8mM MgCl2, 7mM
2-mercaptoethanol and 100 mg/ml BSA. T2 reactions
were initiated by the addition of ATP (1mM) when
indicated. Temperature and incubation times are specified
in each experiment. Reactions were stopped with the
addition of 20mM EDTA, 0.5% (w/v) sodium dodecyl
sulphate (SDS) and 100 mg/ml proteinase K, and
incubated for 15min at 50�C. Reaction samples were
loaded onto 0.8% (w/v) agarose gels. DNA electrophor-
esis was carried out at 1.6V/cm for 18 h in TBE buffer
(50mM Tris-borate, 1mM EDTA) containing 0.2mg/ml
chloroquine. In these conditions, the distributions of Lk
topoisomers of relaxed DNA circles adopt positive writhe
and migrate faster than nicked circles. Gels were stained
with ethidium bromide, destained in water and photo-
graphed over an ultraviolet light source with a Kodak
GL1500 camera. Plots of Lk distributions and quantifica-
tion of Lk topoisomers were done using Kodak Molecular
Imaging Software v4.5 and Image 1.34 s. The topoisomer
variance of Lk distributions <�Lk2> was calculated as
�[pi(�Lki)2]/�pi, where pi is the amount of each topoiso-
mer i in the distribution and �Lki is the linking number
for topoisomer i relative to that of a reference topoisomer
near the center of the distribution.

T-segment capture in single Lk topoisomers

Individual Lk topoisomers of pBR322 (4.3 kb) were
purified from unstained agarose gel slices.
Approximately 50 fmol of DNA topoisomer and 25 fmol
of T2 were mixed at 25�C in a 25 -mL volume containing
50mM Tris–HCl (pH 8), 1mM EDTA, 150mM KCl,
8mM MgCl2, 7mM 2-mercaptoethanol and 100mg/ml
BSA. AMPPNP was added to 2mM to close the N-gate
and form high salt-resistant T2/DNA complexes (3). After
5min of incubation, 1 volume of 2M NaCl was added,
and the mixture was passed through a GF/C (Whatman)
fiberglass filter as described in (29). Free DNA molecules
were recovered from the filtrate, and T2-bound DNA
circles were eluted from the filter with 1% SDS. Both frac-
tions were analyzed by electrophoresis (2V/cm for 14 h) in
1% agarose in TBE buffer (50mM Tris-borate, 1mM
EDTA) containing 0.2 mg/ml chloroquine. DNA popula-
tions were quantified by phosphor-imaging analysis of the
gel-blot probed with 32P-labeled DNA obtained by
random priming.

T-segment backtracking in single Lk topoisomers

Approximately 50 fmol of gel-purified Lki topoisomer and
25 fmol of the T2 derivative, in which the C-gate was
locked by a pair of disulfide bonds, were mixed at 15�C
in a 40 -mL volume of 50mM Tris–HCl (pH 8), 1mM
EDTA, 25mM KCl, 8mM MgCl2 and 100mg/ml BSA.
The mixture was supplemented either with ATP (1mM) or
AMPPNP (2mM) and incubated for 5min. Half of the
mixture (20 mL) was then shifted to 40�C. After 5min of

incubation, both reactions were quenched with 1 volume
of 50mM EDTA, 1% (w/v) SDS. DNA products were
analyzed by electrophoresis in 1% agarose gel in TBE
buffer (50mM Tris-borate, 1mM EDTA) containing
0.2mg/ml chloroquine. DNA populations were quantified
by phosphor-imaging analysis of the gel-blot probed with
32P-labeled DNA obtained by random priming.

Construction of T2"83

Plasmid pGAL1Top2(1196)-HMK-His was used as poly-
merase chain reaction template to generate an 83-amino
acid deletion between Leu1039 and Trp1122 of the TOP2
gene. Primer �83-Fwd, 50 GCGGGTTGGTCATTGACC
AAGGAAAG 30, was complement to the 3367–3386
TOP2 gene fragment and had a 50-six nt tail (italicized)
coding for Ala-Gly. Primer �83-Rev, 50 GGCCGCTAAC
TCCTTTTCAATAATCA 30, was reverse complement to
the 3098–3117 TOP2 gene fragment and included a 50-six
nt tail (italicized) coding for Ala-Ala. Both primers were
extended in a thermal cycler by PfuDNA polymerase. The
reaction products were digested with DpnI endonuclease
to degrade the initial template, and the amplified DNA
was transformed into E. coli DH5a electrocompetent
cells. Transformants were screened for those containing
the religated DNA plasmid that substituted the 83
amino acids by the spacer sequence Ala-Ala-Ala-Gly,
which gave rise to unique NotI and SacII restriction
sites. The modification was confirmed by DNA
sequencing. The new plasmid, pGALT2�83HMK-His,
was introduced in the BCY123-Dtop1 yeast strain to
overexpress and purify T2�83, following the procedure
described in (4).

RESULTS

Simplified distributions of DNA supercoils produced by
topoisomerase II

Figure 1B compares the distributions of DNA linking
number topoisomers (Lk) obtained after incubating a
supercoiled DNA plasmid with topoisomerase I of vac-
cinia virus (T1) and topoisomerase II of S. cerevisiae
(T2). As expected, T2 generated an Lk distribution, the
variance <�Lk2> T2 of which was smaller than that of the
thermal equilibrium Lk distribution <�Lk2>eq produced
by T1 in the same reaction conditions. The parameter RLk,
defined as <�Lk2>eq/<�Lk2> T2, was �1.6. Because the
center of the non-equilibrium Lk distribution generated by
T2 (LkS) did not always coincide with the equilibrium
center (Lk0) produced by T1, LkS–Lk0 was defined as
�LkS. This simplification activity of T2 is efficient and
robust. With T2/DNA molar ratios of 1:1, a negatively
supercoiled 7.9-kb plasmid was relaxed and its thermal
Lk distribution narrowed (RLk�1.6) in �1min
(Supplementary Figure S1A). Similar RLk values were
achieved in a broad range of salt concentrations, from
10 to 250mM KCl (Supplementary Figure S1B), and
reaction temperatures, from 10 to 45�C (Supplementary
Figure S1C). However, the symmetry of the narrowing
process (�LkS) highly depends on the reaction tempera-
ture. At 25�C, �LkS�0; at higher temperature, �LkS>0;
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and, at lower temperature, �LkS<0. Thus, thermal
changes do not deviate LkS as much as they deviate Lk0

(Supplementary Figure S1C).

Supercoil simplification is not determined by
T-segment capture

Figure 2A shows the Lk distributions produced by T1 and
T2 on a 4.3-kb plasmid at 25�C. Because type-IIA topo-
isomerases change Lk in steps of two, the Lk distribution
generated by T2 is in fact composed of two independent
Lk distributions, one of odd values and one of even
values. Therefore, topoisomers Lk0 and Lk0�2 have
steady-state concentrations (C0 and C-2) related by the
equation C�2/C0 = k(0,� 2)/k(�2, 0), where k(0, �2) is the
rate constant for conversion of Lk0 molecules into Lk0�2,
and k(�2, 0) is the reverse rate constant (23,30). As
expected, T2 activity produced a C�2/C0 ratio (0.17)
much lower than that generated by T1 (0.35). To reduce
C�2/C0, T2 must decrease k(0, �2)/k (�2, 0). In a covalently
closed DNA circle, any DNA transport event done by T2
results in a change in Lk. Therefore, rate constants k(0, �2)
and k(�2, 0) may relate directly to the corresponding
probability (P) of capturing and passing a T-segment
across the G-segment. It would then follow that C�2/
C0=P(0, �2)/P(�2, 0). Later, we present experimental
evidence that disproves this equality.
Biochemical studies have shown that a T-segment

cannot be accommodated between the closed N-gate and

the DNA-gate of T2 (31). This restraint is consistent with
the swapped configuration of the closed N-gate (32),
which enforces unidirectional passage of the T-segment
across the DNA-gate following the capture step.
Consequently, P(0, �2) and P(�2, 0) can be calculated by
examining the fractions of Lk0 and Lk0�2 bound to T2
that interconvert after the irreversible closure of the N-
gate with the non-hydrolysable ATP analog AMPPNP
(Figure 2B) (33). Thus, we purified the Lk0 and Lk0�2

topoisomers and conducted these one-step reactions in
the same conditions used to calculate C0 and C�2. We
found that the probability of capturing a T-segment to
convert Lk0 into Lk0�2 was 0.17, whereas the probability
to convert Lk0�2 into Lk0 was 0.50 (Figure 2C). These
values predicted a P(0, �2)/P(�2, 0) ratio of 0.34. This
value was similar to the C�2/C0 ratio at thermal equilib-
rium (0.35) and thus differed from the steady-state C�2/C0

ratio generated by T2 (0.17). Therefore, the mechanism
that narrows the equilibrium distributions of DNA super-
coils does not rely on T-segment capture probability.

Passed T-segment can backtrack across the DNA-gate
and N-gate

Once the captured T-segment has crossed the DNA-gate,
it can be accommodated in the central cavity of the topo-
isomerase (6,31). To complete DNA transport, the passed
T-segment has to be expelled by the C-gate. Otherwise, if
the N-gate reopens or loosens its swapped configuration,

Figure 2. Interconversion of Lk topoisomers and their T-segment capture probability. (A) Lk distributions produced by T1 and T2 on a 4.3-kb
plasmid at 25�C. Lane plots compare the concentration (C) of topoisomers Lk0�2 to Lk0 in the equilibrium distribution generated by T1 (0.35) and in
the non-equilibrium distribution produced by T2 (0.17). (B) A T2 enzyme bound to a G-segment will capture and pass a T-segment with some
probability after the irreversible closure of the N-gate with AMPPNP. Thus, in a covalently closed DNA circle, DNA capture probability (P) is the
fraction of G-segment-bound DNA molecules that change Lk (2 U) on addition of AMPPNP. (C) Topoisomers Lk0�2 and Lk0 were purified and
each was incubated at 25�C with T2 (enzyme/DNA molar ratio of 0.5:1). AMPPNP was added to irreversibly close the N-gate and thus allow only
one DNA passage event per enzyme. Reaction mixtures were filtered through glass fibers to separate free DNA (f) from DNA circles bound to T2
(b). See ‘Materials and Methods’ section for details. The gel-blots show the DNA populations in f and b. The position of Lk0�2, Lk0 and Lk0+2 is
indicated (�2, 0,+2). Nicked circles (N) and linear molecules (L) were generated during manipulation. The probability of capturing a T-segment to
convert Lk0–2 into Lk0 [P(�2 to 0)] was calculated as Lk0 divided by the sum of circles bound to T2 (Lk0�2+Lk0). Likewise, the probability of
capturing a T-segment to convert Lk0 into Lk0�2 [P(0 to �2)] was calculated as Lk0�2 divided by the sum of circles bound to T2 (Lk0+Lk0�2+Lk0+2).
Mean±SD values are from two experiments.
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the T-segment could still backtrack across the DNA-gate
and produce no net DNA transport. This uncoupling
between T-segment capture and transport has been
observed in DNA gyrase when the supercoiling density
of DNA reaches a threshold (10). Later, we present
experimental evidence that such backtracking can also
occur in T2.

Previous studies have shown that when the C-gate of T2
is locked by means of engineered disulfide bonds, each
enzyme bound to supercoiled DNA can change Lk only
by 2 U because any T-segment passed ends up entrapped
inside the topoisomerase (6,31). In those experiments,
DNA supercoiling energy favored unidirectional
movement of the T-segment, and backtracking was not
observed. Here, we conducted a similar experiment but
with relaxed DNA. To test backtracking, we purified a
precise topoisomer (Lki) within the simplified Lk distribu-
tion produced by T2. Lki was chosen because Lki<Lk

S at
15�C and Lki>Lk

S at 40�C (Figure 3A). In this way, we
could invert the preferential directionality of a T-segment
across the DNA-gate by changing the reaction tempera-
ture from 15 to 40�C. Accordingly, we first incubated Lki
with T2 (with the C-gate locked and in presence of ATP)
at 15�C. As expected, a fraction of Lki was converted into
Lki+2. Next, we raised the temperature to 40�C. As a
result, the Lki+2 fraction nearly disappeared and a
fraction of Lki�2 molecules developed (Figure 3B). The
disappearance of the Lki+2 revealed the backtracking of
T-segments entrapped at 15�C. Likewise, the appearance
of Lki�2 indicated that such T-segments had escaped by
the N-gate. Only by this way could new T-segments have
been captured and passed at 40�C to produce the

population of Lki�2. We corroborated that backtracking
requires the opening of the N-gate by doing an analogous
experiment, in which we added AMPPNP instead of ATP.
In this case, Lki were also converted into Lki+2 at 15�C.
However, because AMPPNP did not allow the N-gate to
reopen, no more Lk changes occurred when the tempera-
ture was raised to 40�C (Figure 3C).

Simplified Lk distributions widen when T-segment
backtracking is precluded

The above results indicated that backtracking of passed
T-segments is possible when DNA topology is near equi-
librium. Accordingly, we envisaged that T2 narrows equi-
librium Lk distributions because passed T-segments
driving Lk away from equilibrium are more prone to
backtrack than those driving Lk toward it (Figure 4A).
If this hypothesis is correct, interfering with the reopening
of the N-gate while T2 is narrowing an Lk distribution, it
should broaden the Lk distribution because none of the
T-segments being passed at that time would be able to
backtrack (Figure 4B). Thus, we relaxed a supercoiled
plasmid with T2 in the presence of ATP. Once the
reaction had reached the steady state, we blocked the
reopening of the N-gate by adding an excess of
AMPPNP over the initial ATP concentration. As seen in
Figure 4C, the simplified Lk distribution generated by T2
readily increased its variance on the addition of
AMPPNP. This broadening cannot be attributed to
contaminating topo I because T2 was purified from
�top1 cells, and no trace of DNA relaxation activity
was observed in the absence of ATP. Likewise, this
broadening was unlikely to be produced by the structure

Figure 3. Backtracking of the T-segment across the DNA-gate and N-gate. (A) The gel compares Lk distributions of a 4.3-kb plasmid generated by
T2 at 15 and 40�C. The position of the Lki topoisomer is indicated. Note that Lki<Lk

S at 15�C and Lki>Lk
S at 40�C. (B) The gel-blot shows the

purified Lki topoisomer and its reaction with T2, which had the C-gate locked (enzyme/DNA molar ratio of 0.5:1). The mixture was first incubated
at 15�C during 5min in the presence of ATP and sampled. The mixture was then shifted to 40�C for 5 more minutes and sampled. See ‘Materials and
Methods’ section for details. (C) Experiment done as in (B), but in the absence of ATP and with AMPPNP added at 15�C. In this way, both the C-
gate and N-gate were locked after T-segment passage. The position of topoisomers Lki-2, Lki and Lki+2 is shown. Nicked circles (N) and linear
molecules (L) were generated during manipulation.
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of T2/AMPPNP complexes, as previous studies indicated
that they do not significantly alter the topology of the
interacting DNA (19). Yet, because each T2/AMPPNP
complex precluded at most one backtracking event, this
effect had to be stoichiometric and, effectively, the
widening increased with the molar ratio of T2 to DNA.
Note also that the widening was not symmetric. This shift
occurred because LkS>Lk0 at 30�C (Supplementary
Figure S1C). Accordingly, most DNA passage events
displaced the non-equilibrium distribution (centered in
LkS) toward the equilibrium distribution (centered in
Lk0). Remarkably, an identical result was obtained by
blocking the reopening of the N-gate in a different way.
Instead of adding AMPPNP to compete with ATP,
we added the N-gate inhibitor ICRF193 (34,35)
(Supplementary Figure S2).
To further verify that supercoil simplification depends

on the backtracking of passed T-segments that drive Lk
away from equilibrium, we conducted a similar experi-
ment but using as initial DNA substrate a purified Lk
distribution previously narrowed by T2. As seen in
Figure 4D, the simplified Lk distribution was not altered
after T2 incubation, either in the absence or presence of
ATP. However, it clearly broadened when incubation with

T2 was followed by the addition of AMPPNP. As
expected, without possible backtracking of passed
T-segments, most DNA passage events tended to
convert the non-equilibrium Lk distribution into the
thermal equilibrium distribution produced by T1.

C-gate integrity is required to simplify equilibrium
Lk distributions

The mechanism for topology simplification inferred from
the above results predicted another experimental outcome:
if the C-gate were deleted to leave the central chamber of
T2 open, all passed T-segments would readily exit the
enzyme and produce net transport. Consequently,
topology simplification that relies on DNA backtracking
would not occur. To test this hypothesis, we engineered a
T2 polypeptide chain (T2�83), in which 83 amino residues
of the C-gate of T2 (36), between L1039 and W1122, were
substituted by a short residue linker (AAAG) (Figure 5A).
T2�83 was produced in the yeast strain BCY123-Dtop1
and purified to test its activity (Supplementary Figure S3).
Filter-binding assays (29) revealed that, although T2�83
binds DNA, it does not form high salt-stable complexes
with circular DNA following AMPPNP addition

Figure 4. Simplified Lk distributions widen when T-segment backtracking is precluded. (A) We hypothesize that the narrowing of Lk distributions
occurs because T-segments that deviate Lk from equilibrium are those more prone to backtrack. (B) Compounds that block the reopening of the
N-gate (AMPPNP or ICRF-193) impede DNA backtracking, and therefore they should interfere with the simplification activity of T2 during steady
state. (C) A 7.9-kb supercoiled DNA plasmid was incubated with T2 (T2/DNA molar ratios of 1:1 and 2:1) in the presence of ATP (0.1mM) at 30�C.
After 25min, half of each reaction was sampled (lane a), and AMPPNP (2mM) was added to the other half for 5 more minutes (lane b). Gel plots
compare the variance of Lk distributions (<�Lk2>) before and after the addition of AMPPNP (T2/DNA molar ratio of 2:1). (D) Lanes DNA(T1)

and DNA(T2) show the Lk distributions of a 7.9-kb plasmid produced by T1 and T2, respectively. The DNA(T2) sample was purified and incubated
again with T2 (T2/DNA molar ratio of 2:1) during 5min in the absence of ATP, in the presence of ATP (1mM) and in the presence of AMPPNP
(2mM). Reaction settings, gel electrophoresis and analyses of Lk populations were as described in the ‘Materials and Methods’ section.
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(Supplementary Figure S4). This observation
corroborated that the disruption of the C-gate lets the
central chamber of the enzyme permanently open and,
hence, it cannot produce a toroid around DNA on
closure of the N-gate.

T2�83 relaxed supercoiled DNA in an ATP-dependent
manner (Figure 5B). However, the specific activity of
T2�83 was near two orders of magnitude below that of
T2 because it required a 2-h incubation at an enzyme/
DNA molar ratio of 1:1 to produce steady-state Lk dis-
tributions (Figure 5B). This reduced activity was expected,
as the global stability of the enzyme could be altered and
its interdomain couplings could be less efficient in the
absence of the C-gate interface. When we compared the
steady-state Lk distributions produced by T2�83, T2 and
T1 in the same reaction conditions and longer incubation
times (6 h), we found that T2�83 was not able to simplify
DNA topology to below equilibrium (Figure 5C). This
outcome could not be attributed to contaminating topo
I because T2�83 was purified from �top1 cells. To further
corroborate that simplified Lk distributions were not the
final product of T2�83 activity, we use as initial DNA

substrate of the relaxation reaction an Lk distribution pre-
viously narrowed by T2. As shown in Figure 5D, incuba-
tion of the simplified Lk distribution with T2�83 in
the absence of ATP produced no changes. However, in
the presence of ATP, T2�83 broadened and shifted
the Lk distribution into a shape similar to that produced
by T1. Therefore, the C-gate integrity was not essential
for relaxing DNA supercoils but it was required for
narrowing Lk distributions to below the equilibrium
values.
Given that T2�83 has the C-gate permanently open, it

is conceivable that this enzyme may be able to conduct
DNA transport in reverse. However, when a simplified Lk
distribution was incubated with T2�83 and AMPPNP
was added (instead of ATP), a broadening effect was
also observed (Figure 5D, right). Because a T-segment
cannot be held between the DNA-gate and the closed
N-gate, this observation argued against DNA passage in
reverse. Yet, it cannot be fully discredited that a
T-segment enters by the open C-gate, crosses the DNA-
gate and then exits by the N-gate before it closes on
nucleotide binding.

Figure 5. Disruption of the C-gate precludes the simplification of equilibrium DNA topology. (A) Structure of the promoter region that configures
the central chamber of T2 and the replacement of 83 amino residues of the C-gate domain, between L1039 and W1122, by an AAAG linker (T2�83).
(B) Time course relaxation of a negatively supercoiled DNA plasmid (7.9 kb) with T2�83 (E/DNA molar ratio of 1, 37�C) in the absence and
presence of ATP (1mM). (C) Comparison of the steady-state Lk distributions produced by T2�83, T2 and T1 (E/DNA molar ratio of 1:1, 37�C,
6 h). Plots of the Lk distributions and mean RLk (SD) values of from three experiments are shown. (D) Lanes DNA(T1) and DNA(T2) show Lk
distributions produced by T1 and T2. The DNA(T2) sample was purified and incubated with T2�83 (E/DNA molar ratio of 1:1, 37�C, 30min) in the
absence and presence of ATP (1mM). The DNA(T2) sample was also incubated with T2�83 (E/DNA molar ratio of 5:1, 37�C, 30min) alone or
following the addition of AMPPNP (2mM). Reaction settings, gel electrophoresis and analyses of Lk populations were as described in the ‘Materials
and Methods’ section. N, nicked circles. S, supercoiled DNA.
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DISCUSSION

The experiments reported here uncover several new traits of
the DNA transport mechanism of topoisomerase II. First,
T-segment capture probability is determined mostly by
DNA thermodynamics. Therefore, the mechanism that
simplifies equilibrium DNA topology must operate after
the capture of the T-segment. Second, once a passed
T-segment has reached the central chamber of the topo-
isomerase, it is able to backtrack across the DNA-gate
and N-gate, thus reverting DNA transport. This possibility
elucidates why T-segment capture is not the sole determin-
ant of DNA transport probability. This notion of
T-segment backtracking is not entirely new, as it has been
also observed in DNA gyrase (10). Third, simplification of
equilibrium DNA topology does not occur when the back-
tracking of T-segments is prevented. We supported this
conclusion in two ways: by blocking the reopening of the
N-gate and by removing the C-gate. All these findings
strongly suggest that the C-gate of topoisomerase II chal-
lenges the release of passed T-segments, and that this re-
straint allows proofreading DNA topology after T-segment
passage, either to complete or to cancel DNA transport.
The factors that control the C-gate of type-IIA are

unknown. The C-gate status could depend on the DNA-
gate, such that the closure of either gate permits the
aperture of the other (37,38). However, crystal images of
type-IIA with both gates closed indicate that DNA-gate
closure does not strictly enforce C-gate opening (39,40).
Thus, C-gate aperture could be triggered by the steric hin-
drance of the passed T-segment after the DNA-gate closes
(31,41). In any case, the exit of the T-segment across the
C-gate is a dissociation process, the rate of which must be
affected by the molecular environment (i.e. friction and
electrostatic protein–DNA interactions) and the global
DNA topology (i.e. thermodynamic energy of the cross-
over of the G-segment with the passed T-segment).
Consequently, T-segment dissociation is likely to be fast
when DNA transport is energetically favorable, but slow
when DNA transport reaches or eventually departs from
topology equilibrium. In this last case, if the N-gate
reopens before the T-segment has escaped by the C-gate,
our results demonstrate that backtracking of the
T-segment can occur. We envisaged then that equilibrium
DNA distributions are narrowed because passed
T-segments that deviate DNA topology from the equilib-
rium center are those more likely to backtrack.
Accordingly, removing the C-gate should increase the dis-
sociation rate of such T-segments and preclude the simpli-
fication activity, as demonstrated by our results.
The simplification of DNA topology to below equilib-

rium values is an uphill reaction that, like DNA supercoiling
by gyrase, could not occur without consuming ATP.
However, in contrast to DNA supercoiling by gyrase, the
amount of free energy required here is insignificant (<1%)
compared with the total free energy available from ATP
hydrolysis (16). Actually, all type-IIA consume ATP, re-
gardless of the energetics of the topology interconversions
(42,43). These premises have led to the proposal that the
main and ancestral role of ATP is the coordination of the
enzyme gates to prevent DNA double-strand breaks (41,44).

In this regard, our present findings provide additional
insight on the role of ATP. Enzymatic proofreading
requires some irreversible steps to improve the selectivity
of a reaction. The capture of a T-segment by the N-gate
and its subsequent release, by either the C-gate or N-gate,
are separated by the irreversible use of ATP. Therefore, the
ATP cycle of type-IIA enables a proofreading scheme, in
which the first step of selection (capture) is either enhanced
or neutralized by the second (release). While T-segment
capture probability relies mainly on DNA topology, the
dissociation rate of the T-segment depends again on DNA
topology and the constraints of the C-gate. Therefore, com-
bination of both selection levels can produce an acute non-
linear relationship between DNA capture probability and
effective DNA transport (Figure 6A).

A striking observation in our study is the effect of tem-
perature on �LkS (Supplementary Figure S1C). Previous
studies postulated that �LkS could result from three-
segment interaction geometry (19). This hypothesis is no

Figure 6. Post-DNA passage proofreading mechanism of topoisomer-
ase II. (A) Under PPR, DNA transport probability results from two
levels of selection. First, DNA juxtaposition probability determines
T-segment capture by the closure of the N-gate on ATP binding.
Second, after T-segment capture and passage, the C-gate challenges
the T-segment to dissociate from the ‘proofreading complex’. When
DNA topology favors quick dissociation, the T-segment crosses the
C-gate and completes DNA transport. However, when dissociation is
not favored, ATP hydrolysis and reopening of the N-gate occurs before
the T-segment has escaped by the C-gate. In this case, the T-segment
backtracks and produces no net DNA transport. (B) PPR permits the
removal of topological constraints generated during DNA transcription
and replication (quick dissociation of passed T-segments). PPR
prevents the entanglement of independent chromosome domains when
their DNA strands come in proximity due to molecular crowding (slow
dissociation of passed T-segments).
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longer valid because it fails to explain why LkS does not
parallel the thermal changes of Lk0. The reduced thermal
deviations of LkS observed here suggest that DNA
behaves as if its free length were shorter. This shortening
effect may reflect the formation of the proofreading
complex, which entraps a crossover of the G-segment
and the passed T-segment. Thus, the DNA is transiently
divided into two smaller thermodynamic domains during
the proofreading step.

The biological relevance of the type-IIA capacity to
simplify the equilibrium topology of DNA in free
solution has been enigmatic because this activity cannot
be extrapolated to in vivo systems (16). We believe that the
post-DNA passage proofreading mechanism (PPR)
disclosed here elucidates this matter. Unlike other
models of topology simplification (15,17–20), in which
DNA transport probability is determined just by
T-segment capture, the PPR mechanism weighs the dis-
sociation rate of passed T-segments. Dissociation across
the C-gate is likely to be favored when the topoisomerase
inverts DNA crossovers generated by topological stress
(i.e. catenanes between newly replicated DNA duplexes
and supercoils arising during DNA replication and tran-
scription). However, dissociation may be less favored
when the topoisomerase inverts transient juxtapositions
of intracellular DNA that are merely due to molecular
crowding. In this case, PPR can cancel DNA transport
and prevent type-IIA topoisomerases from randomly
entangling the vast concentration of intracellular DNA
(Figure 6B). Thus, PPR may play a fundamental role in
preserving the high compartmentalization of chromo-
somal territories during interphase, and in keeping sister
chromatids topologically unlinked even though they are in
close contact until anaphase. This crucial discrimination
of intracellular DNA juxtapositions could not be possible
if DNA transport selectivity of type-IIA were determined
solely by T-segment capture probability.

Because all type-IIA topoisomerases that simplify equi-
librium DNA topology present high structural conserva-
tion of the N-gate, DNA-gate and C-gate (1,2), the PPR
mechanism may be a common trait of these enzymes. In
this regard, the more distant related family of type-IIB
topoisomerases (i.e. archea topo VI) does not have a
C-gate to challenge the release of passed T-segments
and, remarkably, these enzymes do not simplify DNA
topology to below equilibrium values (45).

PPR complements the other mechanisms that control
the DNA transport selectivity of type-IIA enzymes
in vivo. While the geometry of the interacting DNA
segments optimizes the removal of harmful knots and
catenanes, the PPR mechanism minimizes the random
formation of such entanglements in the first place.
Uncovering the DNA damage and chromosomal aberra-
tions that result from interfering with the PPR mechanism
opens up an interesting area for future research.
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