
Computational and Structural Biotechnology Journal 20 (2022) 1487–1493
journal homepage: www.elsevier .com/locate /csbj
SaAlign: Multiple DNA/RNA sequence alignment and phylogenetic tree
construction tool for ultra-large datasets and ultra-long sequences based
on suffix array
https://doi.org/10.1016/j.csbj.2022.03.018
2001-0370/� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Abbreviations: DP, Dynamic programming; LCS, Longest common subsequence;
MSA, Multiple sequence alignment; SA, Suffix array.
⇑ Corresponding author.

E-mail address: liuzhibin@scu.edu.cn (Z. Liu).
1 These authors contributed equally to this work.
Ziyuan Wang a,1, Junjie Tan b,1, Yanling Long c, Yijia Liu a, Wenyan Lei a, Jing Cai d, Yi Yang a, Zhibin Liu a,⇑
aKey Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, Sichuan, PR China
bCenter for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders,
China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing
Medical University, Chongqing 400014, PR China
cCollege of Computer Science, Sichuan University, Chengdu 610064, Sichuan, PR China
dWest China School of Pharmacy, Sichuan University, Chengdu 610041, Sichuan, PR China

a r t i c l e i n f o
Article history:
Received 5 October 2021
Received in revised form 9 March 2022
Accepted 19 March 2022
Available online 21 March 2022

Keywords:
Sequence analysis
Alignment
Phylogenetic tree
Suffix array
a b s t r a c t

Multiple DNA/RNA sequence alignment is an important fundamental tool in bioinformatics, especially for
phylogenetic tree construction. With DNA-sequencing improvements, the amount of bioinformatics data
is constantly increasing, and various tools need to be iterated constantly. Mitochondrial genome analyses
of multiple individuals and species require bioinformatics software; therefore, their performances need
to be optimized. To improve the alignment of ultra-large datasets and ultra-long sequences, we opti-
mized a dynamic programming algorithm using longest common substring methods. Ultra-large test
DNA datasets, containing sequences of different lengths, some over 300 kb (kilobase), revealed that
the Multiple DNA/RNA Sequence Alignment Tool Based on Suffix Tree (SaAlign) saved time and compu-
tational space. It outperformed the existing technical tools, including MAFFT and HAlign-II. For mitochon-
drial genome datasets having limited numbers of sequences, MAFFT performed the required tasks, but it
could not handle ultra-large mitochondrial genome datasets for core dump error. We implement a mul-
tiple DNA/RNA sequence alignment tool based on Center Star strategy and use suffix array algorithm to
optimize the spatial and time efficiency. Nowadays, whole-genome research and NGS technology are
becoming more popular, and it is necessary to save computational resources for laboratories. That soft-
ware is of great significance in these aspects, especially in the study of the whole-mitochondrial genome
of plants.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During biological information processing, similarities among
sequences are used to construct phylogenetic trees for biological
analyses [1]. In recent years, with the extreme increase in next-
generation sequencing results, the data processing scale has grown
from Mega Byte (MB) and Giga Byte (GB) to Terabyte (TB), PB, and
even EB and ZB [2]. For instance, in metagenomics studies, millions
of sequence reads are analyzed to determine the functional or tax-
onomic contents of microbial samples from the environment [3,4].
Thus, the performance levels of multi-sequence analysis and phy-
logenetic tree construction tools must improve [5].

Numerous sequence alignment analysis software packages are
available online [6]. Existing state-of-the-art tools, such as MAFFT,
PASTA (>200,000 sequences MSA), ProbPFP (PHMM model opti-
mized by particle swarm optimization) and Minimap2 (developed
for nanopore sequencing), allow sequence alignments to be run on
a multi-thread workstation and for specific context. Additionally,
numerous phylogenetic tree construction software programs are
also being widely used in comparative genomics, cladistics, bioin-
formatics, and other fields [7–12]. MAFFT is a multiple sequence
alignment program for Unix-like operating systems. It offers a
range of multiple alignment methods, including L-INS-I and FFT-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2022.03.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.csbj.2022.03.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:liuzhibin@scu.edu.cn
https://doi.org/10.1016/j.csbj.2022.03.018
http://www.elsevier.com/locate/csbj


Z. Wang, J. Tan, Y. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 1487–1493
NS-2. Various iterations and optimizations to MAFFT have been
made by contributors worldwide, and it is, at present, the most
popular software for DNA and protein sequence alignments [7,8].
However, using MAFFT to align massive unrelated sequences is
highly time consuming [13]. In addition, those unrelated
sequences require more memory when using Dynamic program-
ming algorithms if the spatial complexity of Needleman–Wunsch
is O(n2) [13]. The user interface of MAFFT is still terminal based,
allowing the user to manipulate and select the algorithms.

Some software packages use distributed computing frame-
works, such as Hadoop and Spark, and they are gradually attracting
more attention [14]. Sequential SparkBWA, in which the Spark
cluster improves computing efficiency by using the BWA approach,
enabled multi-node computing to improve computing perfor-
mance [15].

For the global alignment of DNA sequences and the construction
of phylogenetic trees, many faster approaches using Spark have
been proposed, such as HAlign [16] and HAlign-II [17], that can
efficiently build phylogenetic trees from large numbers of biologi-
cal sequences and provide user-friendly web servers s through
high-performance and distributed-computing infrastructures.
However, these faster approaches also have some limitations.
Using the Needleman-Wunsch algorithm to pairwise align DNA
sequences illustrates high spatial complexity, which means only
comparisons of satellite RNA, viral DNA, and genetic segments
for eukaryotes can be performed, not whole-genome comparisons.
Even if genome-wide comparisons could be made, they would
require heavily loaded workstations and huge amounts of memory.
Additionally, the code is implemented in JAVA, which is less effi-
cient than software implemented in C language in terms of
sequence comparison speed.

Owing to frequent exposures to various oxidation reactions,
the variation rate of mitochondrial DNA is greater than that of
nuclear DNA [18]. The resulting polymorphisms provide markers
for comparisons of maternal DNA, and some polymorphic sites
are related to the evolution of regional populations. Mitochon-
drial DNA is inherited completely from the maternal line, and
there is no genetic recombination, so it can be used in the iden-
tification of maternal kinship [19]. As a result, a mitochondrial
genome analysis of multiple individuals allows us to classify dif-
ferent species in a unique way; however, it requires more com-
puting resources than using only a single gene. After
investigating some algorithms for string processing, we optimized
existing software using a distributed computing platform. We
implemented our system, which supports multi-threading and
multi-node computing, as well as allowing the adjustment of
the allocated memory and the number of nodes as needed, to
address ultra-large multiple biological sequence alignments and
large-scale phylogenetic tree constructions. The system is based
on the Apache Spark framework [20]. We adopt the optimized
Needleman-Wunsch algorithm for pair-wise sequence alignments
because it handles greater spatial complexity. Thus, the system
can perform whole-mitochondrial genome sequence alignments
and phylogenetic tree constructions.

This system provides an efficient and user-friendly tool with the
following attributes:

A framework that runs Center Star Strategy on a Spark cluster,
where the input data is streamed in parallel to the data nodes,
like PCs and servers, executing the Needleman-Wunsch
algorithm;
Presents phylogenetic trees in the popular Newick format [21];
The effects of the number of DNA sequences, sequence length,
and data nodes on the acceleration ratio have been studied;
There is a graphical interface to increase user friendliness; and
1488
5) The pair-wise sequence alignment algorithm and the phylo-
genetic tree construction algorithm are implemented by C lan-
guage, which increases their efficiency levels.

2. Results

2.1. Data and measurements

Balibase is the golden benchmark for most MSAs [22]. This data-
base, however, is relatively limited and is suitable for protein align-
ment only. Here, fungal ITS, complete viral, and mitochondrial
genomes were used because there is no benchmark dataset for
large-scale MSA issues. Because whole-genome sequence analyses
require effort and computing resources, both gene fragments and
complete genome datasets were included in this paper.

To test the performance of our program for large-scale data, we
used three types of datasets consisting of 100 (1x), 1,000 (10x), and
10,000 (100x) sequences (No dataset contains two identical DNA
sequences). In the fungal ITS genome 1x, 10x, and 100x datasets,
there were 100, 1,000, and 10,000 fungal ITS sequences, respec-
tively, with maximum and minimum lengths of 993 bp and
363 bp. This is a low similarity dataset.

To address DNA/RNA sequences with high similarity levels, we
also tested our program on two Coronavirus datasets. The first con-
tained 100 Coronavirus sequences, with an average length of
29,811.2 bp. The longest was 29,873 bp, while the shortest was
29,510 bp. The second dataset contained 1,000 Coronavirus
sequences, with an average length of 29,800.8 bp. The longest
was 29,901 bp, while the shortest was 29,407 bp. DNA datasets
are shown in Table 1.

To address long DNA/RNA sequences of different lengths, we
also tested our program on two mitochondrial genomes. The first
was a 2.60 MB archive, while the second dataset was 29.18 MB.
Detailed information regarding the experimental DNA datasets
are shown in Table 1.

2.2. Comparison with state-of-the-art tools

Large-scale data cannot be handled by any of the available
state-of-the-art MSA software tools. Therefore, only comparisons
with MAFFT and HAlign-II were performed using clusters in which
the node had 64 GB of memory, a 2.5 GHz 8 core CPU and a 64-bit
Ubuntu Operating SSystem (Table S1).

The sum-of-pair score (SPS) counts what percentage pairs of
residues are correctly aligned [23]. We use N denotes the number
of sequences whose length is M. If in column i, sequence � and
sequence y have residues aligned to the reference alignment’s seg-
ment, then pair value Pixy equals 2; if both alignments show a gap,
then Pixy equals 1, if mismatch Pixy equals 0. The total score is nor-
malized by the utmost possible score, in order that the range of
possible values is from 0 to 1, with 1 indicating multiple align-
ments that’s identical on the segments. The score Si with the i th
column and SPS are.

Si ¼
PN

j¼1

P
k–jPijk

SPS ¼
PM

i¼1
SiPMr

i¼1
Sri

8><
>:

where Mr is the number of columns in the segments of the refer-
ence alignment and Sri is the score Si for the ith column in the ref-
erence alignment.

The increase in the number of sequences in the experimental
dataset in this paper is different from previous experiments, and
our datasets were achieved by adding non-repeating DNA
sequences instead of simply repeating the original sequence set.



Table 1
Original dataset in the experiment.

Dataset Max Length Min Length Average Length Sequence Number File Size

ITS sequences(1X) 738 459 572.83 100 65KB
ITS sequences(10X) 902 346 587.4 1000 659KB
ITS sequences(100X) 993 363 584.23 10,000 6.42MB
virus genome(1X) 29,873 29,510 29811.2 100 3MB
virus genome(10X) 29,901 29,407 29800.8 1000 26.75MB
Mitochondrion genome (small) 363,329 208,098 268591.1 10 2.60MB
Mitochondrion genome (large) 362,070 232,242 298624.64 100 29.18MB

Z. Wang, J. Tan, Y. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 1487–1493
Using the center star MSA algorithm, the center sequence will be
longer, making the whole experiment more consistent with practi-
cal applications. The key goal of our work was to decrease the time
required by an MSA and increase the ability to manage large vol-
umes of data. Therefore, for large datasets, we concentrated on
the running time of SaAlign, which was also performed on only
one node.

In Table 2, the times required to analyze fungal ITS (a visualiza-
tion of phylogenetic tree of ITS 1X shown in Fig. 1), complete viral,
and mitochondrial genome datasets are shown. Different tools
generated varied performance outcomes for different types of
genomic datasets. Moreover, the sum-of-pairs value was chosen
for measuring the alignment performance [23,24]. However, the
SP value is not suited for massive multiple sequence alignment
because the score may be very large, and for achieving better eval-
uation of ultra-large-scale alignments, we employ average SPS as
the final metric of MSA experiments [17]. The accuracy is shown
in Table 3, using the average sum-of-pair score (SPS) to measure.
Finally, we give an example, which is a phylogenetic tree con-
structed by the FungiITS 1X dataset in Fig. 1 whose the lowest
bootstrap values are greater than 77% [25,26].

To test more accurately, each tested software was used in
multi-threading mode. SaAlign tools are multi-threaded tests in a
single node, support multi-threaded calculations, and depend on
the scheduling of the Spark platform. In addition to the SaAlign
console version, there is also a web-based version, as well as a node
management page through which parameters can be adjusted at
any time.

MAFFT and HAlign-II perform well for the alignment of short
DNA sequences (fungal ITS) when the number of sequences is
not extremely large. Under our server parameters, MAFFT does
not perform under abnormal conditions and results cannot be
achieved through regular activities. The time consumed by
HAlign-II was 49 min when handling the 100x fungal ITS dataset.
Likewise, SaAlign took 57 min.

MAFFT performs well for the alignment of few Coronavirus
sequences (100 Coronavirus sequences), taking 43.6 min to finish
the alignment. HAlign was unable to run and stopped while han-
dling coronavirus pairwise-alignment operations. When compar-
ing a range of 100 coronavirus sequences, SaAlign was
marginally slower than MAFFT (75.21 min vs 43.60 min, respec-
tively), but SaAlign had advantages in the processing of large-
scale coronavirus sequence datasets. It completed the alignment
in 20.2 h. Neither HAlign nor MAFFT could adequately manage
the alignment of 1,000 coronavirus sequences due to core dump/
memory error.

For longer sequences, such as mitochondrion genome, SaAlign
processed the two datasets provided here, while MAFFT operated
when the number of sequences was small but was not allowed
compare large numbers of sequences. Similar to the coronavirus
genome dataset, HAlign-II was influenced by large sequence
lengths during the pairwise alignment and was unable to process
the complete mitochondrial genome.
1489
2.3. Increasing the Spark platform’s efficiency

In Fig. 2 and Fig. 3, the data showed that with an increase in
nodes, the running time decreased, and memory efficiency signifi-
cantly increased, indicating a linear growth in capacity and com-
puting power along with nodes [27].

To determine the acceleration ratio of sequence set pairs in SaA-
lign with different sequence numbers on the Spark platform, we
tested the fungal ITS datasets with one to five nodes in clusters.
The dataset with the smallest number of sequences had a higher
acceleration efficiency when the number of nodes was less than
three. When the number of nodes exceeded four, the acceleration
ratios of datasets having more sequences were greater. When the
number of nodes was five, the acceleration ratio was greater than
four for the 20x functional test dataset, and this was considerably
greater than for the other two test datasets.

To determine the acceleration ratio of dataset pairs in SaAlign
with different lengths of sequences on the Spark platform, we
tested the 1x fungal ITS dataset, 1x Coronavirus dataset and the
same 1x dataset with one to five nodes in the clusters. For the fun-
gal ITS dataset (average length 572 bp), with the exception of the
small acceleration ratio when the number of nodes was two, as
the number of nodes increased, the inability to understand the
acceleration resulted in an acceleration ratio of less than 1 owing
to scheduling delays. For the other two datasets, their acceleration
ratios increased along with the measured nodes.

3. Discussion

Here, we developed a MSA tool based on the center star strat-
egy. To accelerate the MSA of incredibly close DNA sequences,
we used a suffix array. It functioned easily but was unable to han-
dle scalable data and genomes. It operated in parallel with Spark,
which is an open framework for parallel programming. SaAlign
has been shown by studies to manage >30,000 bp of sequencing
data. The increasing numbers of sequences in the experimental
datasets used here differs from previous experiments and were
achieved by adding non-repeating DNA sequences instead of sim-
ply repeating the original sequence set. The key goal of our work
was to increase the efficiency of the MSA and the ability to manage
huge amounts of data. Therefore, for large data, we concentrated
on decreasing the running time.

MAFFT and HAlign-II performed well for the alignment of short
DNA sequences (fungal ITS) when the number of sequences was
not extremely large. In addition, as the nodes increased more run-
ning time was saved. The processing of long sequences was more
effective in SaAlign than HAlign-II, owing to the optimization of
the algorithm based on the suffix array’s LCS algorithm used in
double-sequence comparisons. Additionally, using the Spark dis-
tributed framework helps in the management of huge quantities
of files. Thus, SaAlign has more time to analyze very large datasets
containing very long sequences. In addition, we used SPS to evalu-
ate the accuracy. The result (Table 3) showed that SaAlign software



Table 2
Running time with genome MSA.

ITS sequences
(1X)

ITS sequences
(10X)

ITS sequences
(100X)

Virus genome
(1X)

Virus genome
(10X)

Mitochondrion
genome(1X)

Mitochondrion
genome(10X)

MAFFT 3.2 ± 0.1 s 14.32 ± 1.2 min � 43.60 ± 2.8 min � 7.3h �
HAlign2.1 4.8 ± 0.3 s 8.41 ± 0.8 min 49.03 ± 2.2 min � � � �
SaAlign 23 ± 3.1 s 7.85 ± 1.3 min 57.25 ± 5.4 min 75.21 ± 4.9 min 11.6± 0.2h 1.81h 20.2h

Fig. 1. Phylogenetic tree of fungiITS 1X dataset.

Table 3
Average SPS with genome MSA.

Avg SPS ITS sequences
(1X)

ITS sequences
(10X)

ITS sequences
(100X)

Virus genome
(1X)

Virus genome
(10X)

Mitochondrion genome
(small)

Mitochondrion genome
(large)

MAFFT 0.826 0.851 � 0.815 � 0.926 �
HAlign2.1 0.722 0.723 0.735 � � � �
SaAlign 0.722 0.723 0.735 0.631 0.637 0.695 0.716

Z. Wang, J. Tan, Y. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 1487–1493

1490



Fig. 2. Running time with increasing worker nodes using datasets consisting
different number of sequences (5X, 10X and 20X denote dataset consisting 500,
1000 and 2000 sequences).

Fig. 3. Running time with increasing worker nodes using datasets consisting
different length of sequences (500X, 30,000X and 300,000X denote dataset
consisting sequences whose mean length are approximately 500, 30,000 and
300,000 bp).

Z. Wang, J. Tan, Y. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 1487–1493
had a good accuracy. Also, a bootstrap value of the phylogenetic
trees (Fig. 1) higher than 70% also illustrated a good accuracy
[25,26].

To investigate the influence of sequence number and length, we
measured the SaAlign acceleration ratio. When the sequence data-
set’s average sequence length and nodes were short, the accelera-
tion ratio was high. The acceleration ratio of the sequence dataset
having a large number of sequences increased as the number of
nodes expanded. The series length was longer when the estimation
nodes were the same, and the acceleration ratio was high.

According to Amdal’s law, if a portion of the program cannot be
parallelized, acceleration will not be ideal [27]. The dataset with
fewer sequences generated a shorter central sequence with the
same average sequence length; therefore, the transmission over-
head time was shorter. Additionally, the dataset with a reduced
number of sequences had more benefits in acceleration than other
1491
datasets having two nodes. The estimated acceleration became
comparatively significant as the number of nodes increases, and
the degree of parallelization is high. The effect of overhead
scheduling on the average running time decreased. Therefore,
when the number of nodes was high, there was a greater acceler-
ation ratio for sequence datasets with large numbers of sequences.

The time saved with long sequences was considerably greater
for datasets having the same number of sequences than for central
sequence transmission and scheduling. The propagation of the cen-
tral sequence and scheduling time greatly impacted the accelera-
tion ratio of the short sequence dataset. Additionally, the
acceleration ratio decreased, even to less than 1, as the number
of nodes increased. Clustering calculations had little impact on
synchronization for sequences having an average length of
500 bp and was not even conducive to enhancing the calculation
efficiency.

From the experiment with five nodes, it was predicted that, as
the number of nodes increased, different sequence datasets would
encounter a bottleneck of acceleration ratio growth. Therefore, we
needed to conduct further performance-related experiments to
optimize the selection of calculation nodes.

The tool was coded with C++ (DNA alignment algorithm) and
python (PySpark). Spark 2.4.1 and Python 3.7 were required for
use of the parallel tool.

Algorithms for phylogenetic tree construction often require
MSA outcomes as input results, even though MSA algorithms use
phylogenetic trees as guidance. Several free MSA phylogenetic tree
construction algorithms have been suggested for huge unaligned
DNA sequences, and they are often based on LCSs. The application
of the suffix array to calculate the LCS was important for improving
the performance of the sequence alignment. Protein sequences are
usually short, and the identified LCSs do not improve the perfor-
mance. However, for the analysis of metagenomic sequences, rela-
tively long LCSs may be identified, and they would improve the
computational performance. This method would be better suited
for DNA sequences than protein sequences.

MSAs are important fundamental tools in bioinformatics, espe-
cially for phylogenetic tree construction. With improvements in
DNA sequencing, the amount of bioinformatics data is constantly
increasing, and various tools need to be iterated constantly. Other
excellent methods have been developed to increase the computa-
tional time efficiency, even with a loss in precision loss, such as
ClustalW-MPI [28], Hadoop-BAM [29], HAlign [16,17], and HPTree
[30].The Smith-Waterman algorithm [31], suffix tree [32], and NJ
(Neighbor-Joining) methods [33] are used to allow maximum
use. MUSCLE [34], MAFFT [7,8], and Clustal-Omega [31] provide
hardware resources and computational power using the Spark dis-
tributed and parallel computing paradigm. MUSCLE [34], MAFFT
[7,8], and Clustal-Omega [31] have elevated accuracies for ultra-
large genomes and RNA MSA studies. There were remarkable
advantages in using distributed computing model methods, espe-
cially SaAlign, which provides the greatest memory performance.
The experimental findings suggested that SaAlign performs better
in terms of time efficiency, memory quality, and scalability with
respect to ultra-large nucleotide.
4. Method and implementation

4.1. Overview of Apache Spark

Apache Hadoop and Apache Spark are well-known open-source
frameworks in the field of distributed computing. Hadoop mainly
includes the Hadoop-distributed file system for distributed storage
and a parallel-programming model for large data sets. The Hadoop-
distributed file system stores data on inexpensive machines, pro-



Fig. 4. A simple Spark workflow.

Z. Wang, J. Tan, Y. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 1487–1493
viding dependable fault-tolerant mechanisms and high-aggregate
bandwidths across clusters, which are hidden from the users. The
Spark workflow is presented in Fig. 4.

In the literature, the term ‘‘RDDs” [35] is used to refer to resili-
ent distributed datasets, which is an abstract data structure of the
Spark framework that stores data objects in a distributed data clus-
ter. RDDs support an extensive variety of iterative algorithms, a
highly efficient SQL engine, Shark, and a large-scale graph comput-
ing engine called GraphX [36]. With memory-based data storage
and near-real-time processing power, Spark performs many times
faster than other big data processing technologies. This might be
because Spark stores intermediate results in memory rather than
writing them to disk. To ensure a reliable tolerance for faults, RDDs
are recomputed after data loss, such as the shutdown of individual
machines. Using RDDs, Spark can achieve up to 100 times the the-
oretical speed of Hadoop using real data sets.
Fig. 5. Alignment procedure of Needleman-Wunsch algorithm optimization by
longest common substrings.
4.2. Overview of center star algorithm with Spark

The center star and progressive tree methods are two basic mul-
tiple DNA/RNA sequence alignment (MSA) strategies. The center
star method runs faster, and it is, therefore, suitable for the MSA
of similar DNA sequences [37]. The main approach underlying
the center star method is to transform MSA into pairwise align-
ments based on a ‘‘center sequence”. To accelerate the whole com-
puting process, we used the Spark framework. The procedures are
based on HAlign and HAlign-II; however, considering the limited
memory of each computing node and the popularity of whole-
genome alignments of bacteria having more than 420,000 bp of
coding sequence, we adopted the optimized Needleman-Wunsch
algorithm for analyzing pairwise sequences to reduce the cost of
memory from O(mn) to O(min{m, n}). In addition, the optimization
of the longest common substring (LCS) using a suffix array algo-
rithm reduced the CPU time required.

Because the whole computing time is always considerable, to
avoid a crash or system faults, the dataset is checked first. Char-
acters except ‘‘ATCG” are viewed as illegal, and sequences con-
taining these illegal characters are reported before the
computing process begins. The procedures, based on the Spark
distributed framework, to perform multiple sequences alignments
are shown in Fig. 1 Supplementary. The neighbor-joining method
is a widely used method for constructing phylogenetic trees [33].
Neighbor-joining was used to construct a phylogenetic tree to
1492
verify the contribution of our MSA algorithm toward evolutionary
analysis.
4.3. Overview of the suffix array

To identify the LCS of two strings, we used a suffix array [38,39].
First, we concatenated two strings with a character in the middle
that does not appear in either string. The purpose was to separate
the two strings when later identifying the prefix. Then, we deter-
mined the suffix and the height arrays of the new concatenated
strings. The height array represents the longest common prefix of
the two suffixes adjacent to the rank. We identified the maximum
value in the height array and then determined whether the prefix
meets the requirements (we cannot judge whether the longest pre-
fix is derived from two strings or from one string). Using the suffix
array, we screened whether the selected longest prefix originated
from two strings. Finally, we ascertained the LCS from the two
strings.
4.4. Overview of the Needleman-Wunsch algorithm based on suffix
array optimization

The Needleman-Wunsch algorithm is a classic and widely used
algorithm to solve double-sequence alignment problems through
the use of dynamic programming. However, the space and time
complexity of common dynamic programming algorithms are not
ideal when facing long-sequence pairwise problems. To reduce
the memory load, the divide and conquer concept was used
through an optimized Needleman-Wunsch algorithm.

If the aligned sequences S1 and S2 are long, then they were
aligned recursively. Otherwise, they were pairwise aligned using
the Needleman-Wunsch algorithm and the recursiveness was
eliminated. First, the suffix array was used to determine the LCS
of S1 and S2. After the LCS sequence was found, S1 was divided into
Pre-S1 and S1-Post, and S2 was divided into Pre-S2 and Post-S2.
The above pairwise alignment process was repeated for two groups
of sequences (Pre-S1 and Pre-S2) and (S1-Post and Post-S2), as well
as splice Pre-S1, LCS, and S1-Post to obtain S1. The same procedure
was used to obtain S2. The pairwise-alignment model is shown in
Fig. 5 and the concrete pseudocodes are presented in Supplemen-
tary method.



Z. Wang, J. Tan, Y. Long et al. Computational and Structural Biotechnology Journal 20 (2022) 1487–1493
CRediT authorship contribution statement

Ziyuan Wang: Conceptualization, Methodology, Software, Vali-
dation, Writing – original draft. Junjie Tan: Data curation, Writing
– review & editing. Yanling Long: Visualization. Yijia Liu: Visuali-
zation. Wenyan Lei: Software, Validation. Jing Cai: Supervision. Yi
Yang: Supervision. Zhibin Liu: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This work was supported by funding from Sichuan Science and
Technology Program (No. 2021YFN0119), National Natural Science
Foundation of China (Grant No. 31870240).

Data availability

Software Source Code: https://github.com/YangyiLab/SaAlign.
DNA Sequences: https://github.com/YangyiLab/SaAlign.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.03.018.

References

[1] Hong Y, Guo M, Wang J. ENJ algorithm can construct triple phylogenetic trees.
Mol Ther Nucleic Acids 2021;23:286–93. https://doi.org/10.1016/j.
omtn.2020.11.004.

[2] Kolomvatsos K. A distributed, proactive intelligent scheme for securing quality
in large scale data processing. Computing 2019;101:1687–710. https://doi.org/
10.1007/s00607-018-0683-9.

[3] Wooley JC, Godzik A, Friedberg I. A primer on metagenomics. PLoS Comput Biol
2010;6:. https://doi.org/10.1371/journal.pcbi.1000667e1000667.

[4] Wooley JC, Ye Y. Metagenomics: facts and artifacts, and computational
challenges. J Comp Sci Technol 2010;25:71–81. https://doi.org/10.1007/
s11390-010-9306-4.

[5] Godini R, Fallahi H. A brief overview of the concepts, methods and
computational tools used in phylogenetic tree construction and gene
prediction. Meta Gene 2019;21:. https://doi.org/10.1016/j.
mgene.2019.100586100586.

[6] Smith DR. Buying in to bioinformatics: An introduction to commercial
sequence analysis software. Briefings Bioinf 2014;16:700–9. https://doi.org/
10.1093/bib/bbu030.

[7] Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for large-
scale multiple sequence alignments. Bioinformatics 2018;34:2490–2. https://
doi.org/10.1093/bioinformatics/bty121.

[8] Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: A novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids
Res 2002;30:3059–66. https://doi.org/10.1093/nar/gkf436.

[9] Pal J, Ghosh S, Maji B, Bhattacharya DK. Use of FFT in protein sequence
comparison under their binary representations. Comput Mol Biosci
2016;06:33–40. https://doi.org/10.4236/cmb.2016.62003.

[10] Mirarab S, Nguyen N, Guo S, Wang L-S, Kim J, Warnow T. PASTA: ultra-large
multiple sequence alignment for nucleotide and amino-acid sequences. J
Comput Biol 2014;22:377–86. https://doi.org/10.1089/cmb.2014.0156.

[11] Zhan Q, Wang N, Jin S, Tan R, Jiang Q, Wang Y. ProbPFP: a multiple sequence
alignment algorithm combining hidden Markov model optimized by particle
swarm optimization with partition function. BMC Bioinf 2019;20:1–10.
https://doi.org/10.1186/s12859-019-3132-7.

[12] Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics
2018;34:3094–100. https://doi.org/10.1093/bioinformatics/bty191.

[13] Jiang X, Fu X, Dong G, Li H. Research on Pairwise Sequence Alignment
Needleman-Wunsch Algorithm 2017;141:1041–6. 10.2991/icmmcce-
17.2017.187.
1493
[14] Lu HC, Hwang FJ, Huang YH. Parallel and distributed architecture of genetic
algorithm on Apache Hadoop and Spark. Appl Soft Comp J 2020;95:. https://
doi.org/10.1016/j.asoc.2020.106497106497.

[15] Abuín JM, Pichel JC, Pena TF, Amigo J. SparkBWA: speeding up the alignment of
high-throughput DNA sequencing data. PLoS ONE 2016;11:. https://doi.org/
10.1371/journal.pone.0155461e0155461.

[16] Zou Q, Hu Q, Guo M, Wang G. HAlign: Fast multiple similar DNA/RNA sequence
alignment based on the centre star strategy. Bioinformatics 2015;31:2475–81.
https://doi.org/10.1093/bioinformatics/btv177.

[17] Wan S, Zou Q. HAlign-II: Efficient ultra-large multiple sequence alignment and
phylogenetic tree reconstruction with distributed and parallel computing.
Algorithms Mol Biol 2017;12:1–10. https://doi.org/10.1186/s13015-017-
0116-x.

[18] Song Q, Du Y, Liu Y, Zhang G, Wang Y. Complete mitochondrial genome of
Aspergillus japonicus from the built environment and its phylogenetic
analysis. Mitochondrial DNA Part B 2020;5:1445–6. https://doi.org/10.1080/
23802359.2020.1735972.

[19] Merheb M, Matar R, Hodeify R, Siddiqui SS, Vazhappilly CG, Marton J, et al.
Mitochondrial DNA, a powerful tool to decipher ancient human civilization
from domestication to music, and to uncover historical murder cases. Cells
2019;8. https://doi.org/10.3390/cells8050433.

[20] Abuín JM, Lopes N, Ferreira L, Pena TF, Schmidt B. Big Data in metagenomics:
Apache Spark vs MPI. PLoS ONE 2020;15:e0239741.

[21] Junier T, Zdobnov EM. The Newick utilities: high-throughput phylogenetic tree
processing in the Unix shell. Bioinformatics 2010;26:1669–70. https://doi.org/
10.1093/bioinformatics/btq243.

[22] Thompson JD, Plewniak F, Poch O. BAliBASE: a benchmark alignment database
for the evaluation of multiple alignment programs. Bioinformatics
1999;15:87–8. https://doi.org/10.1093/bioinformatics/15.1.87.

[23] Carrillo H, Lipman D. The multiple sequence alignment problem in biology.
SIAM J Appl Math 1988;48:1073–82. https://doi.org/10.1137/0148063.

[24] Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment
with gene gain, loss and rearrangement. PLOS ONE 2010;5:e11147.

[25] Efron B, Halloran E, Holmes S. Bootstrap confidence levels for phylogenetic
trees. PNAS 1996;93:13429–34. https://doi.org/10.1073/pnas.93.23.13429.

[26] Soltis PS, Soltis DE. Applying the bootstrap in phylogeny reconstruction.
Statistical Sci 2003;18:256–67. https://doi.org/10.1214/ss/1063994980.

[27] Hill MD, Marty MR. Amdahl’s law in the multicore era. Computer
2008;41:33–8. https://doi.org/10.1109/MC.2008.209.

[28] Li K-B. ClustalW-MPI: ClustalW analysis using distributed and parallel
computing. Bioinformatics 2003;19:1585–6. https://doi.org/10.1093/
bioinformatics/btg192.

[29] Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Heljanko K.
Hadoop-BAM: directly manipulating next generation sequencing data in the
cloud. Bioinformatics 2012;28:876–7. https://doi.org/10.1093/bioinformatics/
bts054.

[30] Zou Q, Wan S, Zeng X. HPTree: Reconstructing phylogenetic trees for ultra-
large unaligned DNA sequences via NJ model and Hadoop. 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), 2016, p.
53–8. 10.1109/BIBM.2016.7822492.

[31] Pearson WR. Searching protein sequence libraries: comparison of the
sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.
Genomics 1991;11:635–50. https://doi.org/10.1016/0888-7543(91)90071-L.

[32] Su W, Liao X, Lu Y, Zou Q, Peng S. Multiple sequence alignment based on a
suffix tree and center-star strategy: a linear method for multiple nucleotide
sequence alignment on spark parallel framework. J Comput Biol
2017;24:1230–42. https://doi.org/10.1089/cmb.2017.0040.

[33] Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–25. https://doi.
org/10.1093/oxfordjournals.molbev.a040454.

[34] Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time
and space complexity. BMC Bioinf 2004;5:1–19. https://doi.org/10.1186/1471-
2105-5-113.

[35] Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M, et al. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of NSDI 2012: 9th USENIX Symposium on
Networked Systems Design and Implementation. p. 15–28.

[36] Xin RS, Gonzalez JE, Franklin MJ, Stoica I. GraphX: A resilient distributed graph
system on spark. 1st International Workshop on Graph Data Management
Experiences and Systems, GRADES 2013 – Co-Located with SIGMOD/PODS
2013 2013. 10.1145/2484425.2484427.

[37] Sun Y, Zhang Z, Wang J. A novel algorithm for DNA multiple sequence
alignment based on the sliding window and the keyword tree. Int J Biosci,
Biochem Bioinform 2013;3:271–5. https://doi.org/10.7763/ijbbb.2013.v3.211.

[38] Na JC, Park H, Lee S, Hong M, Lecroq T, Mouchard L, et al. Suffix array of
alignment: A practical index for similar data. Lecture Notes in Computer
Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 2013;8214 LNCS:243–54. 10.1007/978-3-
319-02432-5_27.

[39] Bingmann T. Scalable string and suffix sorting. Algorith. Techn. Tools
2018:1–396.

https://github.com/YangyiLab/SaAlign
https://github.com/YangyiLab/SaAlign/tree/main/dataset
https://doi.org/10.1016/j.csbj.2022.03.018
https://doi.org/10.1016/j.omtn.2020.11.004
https://doi.org/10.1016/j.omtn.2020.11.004
https://doi.org/10.1007/s00607-018-0683-9
https://doi.org/10.1007/s00607-018-0683-9
https://doi.org/10.1371/journal.pcbi.1000667
https://doi.org/10.1007/s11390-010-9306-4
https://doi.org/10.1007/s11390-010-9306-4
https://doi.org/10.1016/j.mgene.2019.100586
https://doi.org/10.1016/j.mgene.2019.100586
https://doi.org/10.1093/bib/bbu030
https://doi.org/10.1093/bib/bbu030
https://doi.org/10.1093/bioinformatics/bty121
https://doi.org/10.1093/bioinformatics/bty121
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.4236/cmb.2016.62003
https://doi.org/10.1089/cmb.2014.0156
https://doi.org/10.1186/s12859-019-3132-7
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1016/j.asoc.2020.106497
https://doi.org/10.1016/j.asoc.2020.106497
https://doi.org/10.1371/journal.pone.0155461
https://doi.org/10.1371/journal.pone.0155461
https://doi.org/10.1093/bioinformatics/btv177
https://doi.org/10.1186/s13015-017-0116-x
https://doi.org/10.1186/s13015-017-0116-x
https://doi.org/10.1080/23802359.2020.1735972
https://doi.org/10.1080/23802359.2020.1735972
https://doi.org/10.3390/cells8050433
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0100
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0100
https://doi.org/10.1093/bioinformatics/btq243
https://doi.org/10.1093/bioinformatics/btq243
https://doi.org/10.1093/bioinformatics/15.1.87
https://doi.org/10.1137/0148063
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0120
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0120
https://doi.org/10.1073/pnas.93.23.13429
https://doi.org/10.1214/ss/1063994980
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1093/bioinformatics/btg192
https://doi.org/10.1093/bioinformatics/btg192
https://doi.org/10.1093/bioinformatics/bts054
https://doi.org/10.1093/bioinformatics/bts054
https://doi.org/10.1016/0888-7543(91)90071-L
https://doi.org/10.1089/cmb.2017.0040
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1186/1471-2105-5-113
https://doi.org/10.1186/1471-2105-5-113
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0175
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0175
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0175
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0175
https://doi.org/10.7763/ijbbb.2013.v3.211
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0195
http://refhub.elsevier.com/S2001-0370(22)00093-9/h0195

	SaAlign: Multiple DNA/RNA sequence alignment and phylogenetic tree construction tool for ultra-large datasets and ultra-long sequences based on suffix array
	1 Introduction
	2 Results
	2.1 Data and measurements
	2.2 Comparison with state-of-the-art tools
	2.3 Increasing the Spark platform’s efficiency

	3 Discussion
	4 Method and implementation
	4.1 Overview of Apache Spark
	4.2 Overview of center star algorithm with Spark
	4.3 Overview of the suffix array
	4.4 Overview of the Needleman-Wunsch algorithm based on suffix array optimization

	CRediT authorship contribution statement
	Declaration of Competing Interest
	ack15
	Acknowledgements
	Data availability
	Appendix A Supplementary data
	References


