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Abstract: Polyphenylene sulfide (PPS) is a high-performance semi-crystalline thermoplastic polymer
that is widely used in the automotive, electronics, and aerospace industries, as well as other fields.
However, PPS introduces several challenges in fused deposition modeling owing to its inherent
properties of crystallization and thermal crosslinking. The present study demonstrates the effects
of the thermal processing and heat treatment conditions on the accuracy and mechanical properties
of PPS samples three-dimensionally printed through fused deposition modeling. By measuring the
degree of crystallinity and thermal crosslinking of three-dimensionally printed PPS samples, we found
that the thermal history affects the three-dimensionally printed PPS properties. Results show that the
accuracy of three-dimensionally printed PPS samples can be improved by means of air-forced cooling
in fused deposition modeling. The balance between mechanical strength and ductility was regulated
by altering the heat treatment conditions. This approach is applicable to eliminating the warpage of
semi-crystalline polymer in three-dimensional printing (not only for PPS) and provides a method of
improving the mechanical properties of three-dimensionally printed PPS samples.

Keywords: 3D printing; additive manufacturing; polyphenylene sulfide; thermal processing condition;
heat treatment condition

1. Introduction

Polyphenylene sulfide (PPS) is a semi-crystalline thermoplastic material having an asymmetrical
rigid backbone chain comprising para-substituted phenylene rings and sulfur atoms. It is a polymer
material having good dimensional stability, high-temperature stability, chemical resistance, and flame
retardance, and it is easily processed. It also possesses the characteristics of aging resistance, radiation
resistance, and nontoxicity [1–5]. PPS can be used in the electronics, automotive, and aerospace
fields owing to its superior properties. The process of heating of PPS as a typical semi-crosslinking
polymer obviously affects the final mechanical properties owing to the crystalline and cross-linking
properties being dependent on the heat treatment history, ambient temperature, and other ambient
conditions [6,7]. Park et al. [8] analyzed the solid-phase crosslinking process of PPS resin in the
temperature range of 200–250 ◦C. Their results show that a higher oxygen concentration and ambient
temperature increase the crosslinking rate and crosslinking degree of PPS.

Three-dimensional (3D) printing technology manufactures parts layer by layer from bottom to
top [9]. 3D printing technology has surpassed traditional manufacturing methods in many respects:
it provides more design freedom, is capable of quickly forming complex structural parts, and has the
advantages of low manufacturing costs, a short development cycle, and high production efficiency [10].
Fused filament fabrication (FFF) is the most widely used technology in 3D printing. An object
is deposited on a build platform by melting and extruding the polymer filament following the
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deposition trajectory, and 3D parts are ultimately built through accumulation layer by layer [11].
The materials commonly used with this technology are acrylonitrile butadiene styrene, polylactic acid,
polycaprolactone and polycarbonate [12–16]. Most studies on 3D printing with PPS have focused on
the exploration of printable parameters of PPS and its composites and the effect of printing parameters
on warpage. Kishore et al. [17] formed high-performance semi-crystalline thermoplastic PPS and
polyether ketone ketone and analyzed the rheological properties and thermal properties of these
materials. On this basis, the parameters important to printability were determined. Fitzharris et al. [18]
analyzed warpage due to residual stresses during the cooling of PPS and PP for different printing
speeds through finite element analysis. DeNardo et al. [19] developed a CAMRI system for printing
high-performance PPS with 50 wt. % carbon fibers. The system replaced the traditional molten extrusion
system with a single screw extrusion system.

Complex thermal conditions affect the degree of crystallinity and the degree of crosslinking
of the extruded material in the melting and deposition processes of a typical heat crosslinking
semi-crystalline PPS. Controlling the thermal properties of the material in the forming process is
important to improving the forming quality and accuracy of fused deposition modeling samples.
Yang et al. [20] analyzed the effects of the ambient temperature and heat treatment conditions on
the tensile properties of 3D-printed poly(ether ether ketone) (PEEK) samples. By controlling the
thermal condition, PEEK samples with different elongations at break and tensile strengths were
built. Wang et al. [21] analyzed the effects of the build platform temperature and layer thickness
on the impact properties of 3D-printed polylactic acid samples. Their results showed that when the
thickness of the layer was 0.2 mm and the substrate temperature was 160 ◦C, the 3D-printed samples
had greater impact strength than injection molding samples. This greater impact strength is mainly
due to the smaller cell sizes and lower molecular degradation compared with the injection sample.
Kishore et al. [22] improved the surface temperature of the printing layer before the FFF process
by means of infrared heating in a large-area 3D printing system to improve adhesion between the
acrylonitrile butadiene styrene materials. The above studies reveal that the thermal condition in the
process of FFF affects the mechanical properties of 3D-printed samples.

The present study therefore focuses on the thermal history of 3D-printed PPS samples and
analyzes the effects of the thermal processing conditions and heat treatment condition on the
mechanical properties (i.e., tensile strength, fracture resistance and impact strength) of the 3D-printed
PPS samples. The degree of crystallinity, oxidation crosslinking and temperature distribution in the
printing process under different thermal conditions were measured to reveal the relationships between
the thermal history and the microstructure and mechanical properties of 3D-printed PPS samples.
The mechanical properties of 3D-printed PPS samples can be controlled by adjusting the thermal
treatment conditions.

2. Materials and Methods

2.1. Materials

Crosslinking PPS resin pellets (A900) were obtained from Toray Industries Co., Ltd. (Tokyo, Japan).
The PPS filament with a diameter of 1.75 mm was extruded by a twin-screw extruder (sjzs-10z, Ruiming
Experimental Instrument Co., Ltd., Wuhan, China). The temperatures of the three heating zones were
270, 289 and 280 ◦C. Before extrusion, PPS pellets were dried at 120 ◦C for 12 h to remove moisture.

2.2. Experimental Procedure

A self-made PPS 3D printing system was adopted to print PPS samples. The 3D printing of PPS
under an air-forced cooling condition and natural cooling condition was realized with a fan installed
on the extrusion head. Figure 1 presents a schematic diagram of the PPS 3D printing and experimental
equipment, while Table 1 gives the PPS 3D printing parameters. The temperature distribution of
the upper/lower surface during printing was measured separately using an infrared thermograph
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(A310, FLIR System Inc, Boston, MA, USA). The lower surface temperature distribution was observed
through germanium infrared optical windows, which were installed on the build platform of the 3D
printer. All measurements were performed at 27 ◦C air temperature and a relative humidity of 60%.
The distance between the camera lens and the sample’s surface was about 0.55 m. The emissivity
coefficient of the 3D-printed samples was set at 0.91. The 3D-printed PPS models printing on the x–y
plane with a layer thickness of 0.3 mm (z-direction) for mechanical performance testing are shown in
Figure 2.
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Figure 1. PPS 3D printing: (a) Schematic diagram of PPS 3D printing; (b) image of the extrusion head.

Table 1. Printing parameters of 3D-printed PPS.

Parameter Value

Nozzle diameter 0.4 mm
Nozzle temperature 285 ◦C

Printing speed 1 680 mm/min
Layer thickness 0.3 mm

Number of contours 1
Infill pattern Rectilinear
Raster angle 45◦/−45◦

Raster width 0.4 mm
Raster gap 0 mm

Extrusion multiplier 0.9
Outline overlap 0.06 mm

1 The first-layer printing speed was reduced by 50% to improve bed adhesion.

Polymers 2018, 10, x FOR PEER REVIEW  3 of 13 

 

FLIR System Inc, Boston, MA, USA). The lower surface temperature distribution was observed 
through germanium infrared optical windows, which were installed on the build platform of the 3D 
printer. All measurements were performed at 27 °C air temperature and a relative humidity of 60%. 
The distance between the camera lens and the sample’s surface was about 0.55 m. The emissivity 
coefficient of the 3D-printed samples was set at 0.91. The 3D-printed PPS models printing on the x–y 
plane with a layer thickness of 0.3 mm (z-direction) for mechanical performance testing are shown in 
Figure 2. 

 
Figure 1. PPS 3D printing: (a) Schematic diagram of PPS 3D printing; (b) image of the extrusion head. 

Table 1. Printing parameters of 3D-printed PPS. 

Parameter Value 
Nozzle diameter 0.4 mm 

Nozzle temperature 285 °C 
Printing speed 1 680 mm/min 
Layer thickness 0.3 mm 

Number of contours 1 
Infill pattern Rectilinear 
Raster angle 45°/−45° 
Raster width 0.4 mm 
Raster gap 0 mm 

Extrusion multiplier 0.9 
Outline overlap 0.06 mm 

1 The first-layer printing speed was reduced by 50% to improve bed adhesion. 

Figure 2. Dimensions for the 3D-printed PPS samples: (a) Tensile sample geometry; (b) Izod notched 
notched impact sample geometry; (c) compact tensile sample geometry. Figure 2. Dimensions for the 3D-printed PPS samples: (a) Tensile sample geometry; (b) Izod notched

notched impact sample geometry; (c) compact tensile sample geometry.

To analyze the effects of heat treatment conditions on the properties of 3D-printed PPS samples,
samples printed under the air-forced cooling condition were heated in air from room temperature
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to different heat treatment temperatures over a period of 100 min. The heat treatment conditions of
3D-printed PPS samples under air-forced cooling conditions are shown in Figure 3.
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2.3. Testing of Mechanical Properties

Tensile tests, impact tests and Mode-I fracture tests were carried out according to ISO 527, ISO 180
and ISO 13586 respectively. The dimensions of test models were adjusted to ensure the uniformity
of thickness of each layer after slicing the 3D model compared with the standard model. Tensile and
fracture tests were carried out on an electronic universal testing machine (UTM5000, Shenzhen SUNS
Technology Stock Co. Ltd., Shenzhen, China). The loading rate in the tensile test was 1 mm/min,
while that in the fracture test was 10 mm/min. An Izod notched impact test was carried out on
a Ceast pendulum impact tester (JJ-20, Changchun Intelligent Instrument and Equipment Co., Ltd.,
Changchun, China) with a pendulum energy of 5.5 J. Each value of a mechanical property is the
average value of five samples under different thermal conditions. To improve the measurement
accuracy of the dimensions of 3D-printed samples, a noncontact 3D scanner (EaScan-T, Hangzhou
Shining 3D Tech Co., Ltd., Hangzhou, China) was employed to scan the 3D-printed samples and obtain
the point cloud data of the printed sample. In Mode-I fracture tests, to ensure that the crack extended
along the pre-notch in the loading process and reduce the residual stresses at the crack tip, a natural
crack having a depth of 2 mm, as recommended in the test standard, was created during the printing
process by adjusting the print layer thickness at the front end of the notch (from 0.3 to 0.2 mm). In the
experiment, the curve of the force (P) versus displacement (δ) was recorded, and Pmax and PQ were
obtained according to the 5% secant line criterion of the force–displacement relation. The critical stress
intensity factor KIC was calculated as

KQ =
(

PQ/BW1/2
)

f (x), x = a/W (1)

where 0.2 < x < 0.8, a is the crack length, W is the samples width, and

f (x) =
(2 + x)

(
0.886 + 4.64x − 13.32x2 + 14.72x3 − 5.6x4)

(1 − x)
3
2

(2)

2.4. Differential Scanning Calorimetry Analysis

A thermal analysis differential scanning calorimeter (Q2000, TA Instruments, New Castle, DE,
USA) was used to determine the thermal response of 3D-printed PPS samples under different thermal
conditions. All samples were heated from room temperature to 350 ◦C under a nitrogen atmosphere at
a rate of 10 ◦C/min. To ensure the accuracy of crystallinity, 3–5 mg samples were cut from the inside
of the fracture tensile samples. The degree of crystallinity (Xc) under different thermal conditions was
calculated as

Xc = [(∆Hm + ∆Hc)/∆Hθ ]× 100% (3)
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where ∆Hc and ∆Hm are respectively the enthalpies of recrystallization and melting. The melting
enthalpy of 100% crystalline PPS (∆Hθ) is 77.5 J/g [23].

2.5. Fourier Transform Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) (Nicolet Nexus 670, Thermo Fisher Scientific,
Waltham, MA, USA) was performed for the 3D-printed PPS samples under different thermal conditions
with a single-reflection attenuated total reflectance (ATR) accessory. ATR-FTIR spectra were collected
at room temperature over a scanning range of 4000–600 cm−1 with a spectral resolution of 4 cm−1.
The surface of FTIR test is the cross sections of 3D-printed samples under different thermal conditions.

3. Results and Discussion

3.1. FTIR Analysis

Figure 4 shows the FTIR spectra recorded from 3D-printed PPS samples under different thermal
conditions. All characteristic bands, including those of the benzene ring and C–H at 1571 and 1076 cm−1,
are present. This indicates that PPS material maintains good stability after high-temperature treatment.
After heat treatment, the PPS samples show obvious characteristic peaks at 1904 and 1180 cm−1 that
should, respectively, be attributed to –C=O and –S=O stretching vibrations. This indicates that the peaks
are formed by thermal oxidative crosslinking and an oxidation reaction in the printing PPS process.
The thermal crosslinking of PPS depends on the temperature and time of exposure to air. In the printing
process, although PPS was heated to its melting point, it cooled in just a few seconds. There was no
obvious oxidative crosslinking phenomenon for the 3D-printed PPS samples.
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3.2. DSC Analysis

Figure 5 shows crystallization and melting thermograms of 3D-printed PPS samples under
different thermal conditions. Table 2 lists the quantitative data of the peak temperature and enthalpies.
It is seen that the PPS crystallization temperature range is 126.37–135.27 ◦C. Furthermore, for both
air-forced cooling and natural cooling conditions, there is an obvious recrystallization peak at 129 ◦C.
When the samples are heated to 130–240 ◦C, the recrystallization peak diminishes or even disappears.
This is mainly due to the sufficient reordering of the molecular chains in the sample, resulting in
higher crystallinity and the establishment of a tighter polymer chain network. With an increase in
the heat treatment temperature, the melting peak widens, which is mainly due to the thermal oxygen
crosslinking reaction of the PPS molecules in the process of heat treatment and the greater number of
C–O bonds. The PPS molecular chain undergoing oxidation and crosslinking has reduced molecular
mobility during the cooling crystallization process that may not be sufficient to allow completion of
the crystallization process. When the temperature increases again, the molecular chains with different
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molecular weights have slightly different mobility associated with a wider melting peak and the
double melting peak.
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Table 2. Thermal properties of 3D-printed PPS samples.
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Enthalpy (J/g) Crystallinity (%)
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3.3. Effect of the Thermal Processing Condition on Temperature Profiles and the Accuracy of 3D-Printed
PPS Samples

Figure 6 shows 3D-printed PPS samples. It is seen that the color of the PPS 3D-printed sample under
the air-forced cooling condition is close to the color of the PPS pellet, while the color of heat-treated
samples varies from ivory to brown in association with the increase in the heat treatment temperature.
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Figure 7 shows the temperature profiles of the upper and lower surfaces of the 3D-printed PPS
samples and the warpage of 3D-printed PPS samples. Figure 7a shows that the temperature at the
sample center rises rapidly to the nozzle temperature and then decreases rapidly with by the nozzle
leaving from measurement point. In the process of printing each layer, there are three peaks, specifically
two secondary peaks that appear to coincide with the process of printing contours and a primary peak
relating to the process of printing the infill pattern. Note that the primary peak reaches about 300 ◦C,
which is different from the actual nozzle temperature of 285 ◦C. This difference is mainly due to the
measurement being confounded by infrared reflections from the nozzle. In addition, emissivity was
adopted by employing a semi-melted PPS material, while the thermal distribution was dominated
by the brass nozzle when the nozzle moved past the measuring point, resulting in the deviation of
the measurement. For the 3D-printed PPS samples under air-forced cooling, the peak temperature
reduced rapidly and remained lower than Tc. For the 3D-printed samples under the natural cooling
condition, there was no adequate heat transfer in the envelope region. Figure 7b,c clearly shows
that the heat-affected zone under the natural cooling condition is larger than that for the sample
under the air-forced cooling condition. A comparison of the 3D-printed PPS samples and 3D model
shows that the maximum deviation is +0.79/−0.89 mm under the air-forced cooling condition and
+0.89/−2.38 mm under the natural cooling condition. It is seen that the sample under the condition
of air-forced cooling is of high precision and the decrease of warpage due to residual thermal stress
is attributed to the effective heat transfer through convection with the environment. In summary,
the air-forced cooling method effectively controls the temperature distribution of the 3D-printed PPS
sample and improves the accuracy of the 3D-printed PPS sample in the FFF process.
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3.4. Tensile Properties of 3D-Printed PPS Samples

Figure 8 shows the tensile stress–strain curves and tensile strengths of 3D-printed PPS samples.
It is seen that the heat treatment process affects the tensile properties of 3D-printed PPS samples.
The 3D-printed PPS samples without heat treatment show greater break elongation. The 3D-printed
PPS samples without heat treatment have a ductile behavior with plastic deformation. The samples
show no obvious necking propagation and the fracture is at an angle of 45◦ to the loading direction.
However, the samples that were heat treated had no obvious plastic deformation and necking
propagation. As the loading increased, the samples broke rapidly after reaching maximum stress.
These results indicate that a ductile-brittle transition in 3D-printed PPS samples occurred as the
samples were heated above the crystallization temperature Tc. Heat treatment is a feasible way
to regulate the ratio of the crystalline region and amorphous region of 3D-printed PPS samples,
and the ratio is a crucial factor affecting the mechanical properties. Figure 8b shows that the tensile
strength of the sample at 240 ◦C was up to 108% higher than that of the sample subjected to air-forced
cooling. The strengths and elastic moduli of 3D-printed samples increased with an increase in the heat
treatment temperature.

The improvement in the tensile strength and elastic modulus is closely related to the crystallinity
of materials and the crosslinking of molecular chains. Table 2 and Figure 6 reveal that with an increase
in heat treatment temperature, the crystallinity rises from 19.13% to 64.08% and oxygen is continuously
introduced in the molecular chain. Without considering the effects of the other printing parameters
on the forming sample, the heat treatment method improves the tensile properties of 3D-printed
PPS samples.
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It is worth noting that the mechanical properties of 3D-printed samples are not only related to the
inherent properties of PPS materials but also depend on the macroscopic structure (i.e., voids between
adjacent filaments, the directions of filaments and the diffusion degree at the interfaces of adjacent
filaments) resulting from the complex printing trajectory. Figure 9 illustrates the fracture morphology
of 3D-printed PPS samples. Figure 9a,b show localized necking and diffusion accompanying the
increase in loading at the end of a filament, indicated by a white arrow in Figure 9a, and extensive
crazing around the fracture. This is mainly because the semi-melted filament extruded from the nozzle
produces a temperature gradient along the radial direction during solidification. The region close to the
filament surface has sufficient heat convection with the environment, while the main cooling process
at the core of a filament is heat transfer by conduction between adjacent filaments. The temperature
gradient change results in a non-uniform crystallization region in which the outer filament is disordered
and loose and the inner filament has stronger bonds among molecular chains. As the loading increases,
the inner filament has better plastic deformation. When a critical value is reached, filament localized
necking occurs, followed by micro-crack growth at the surface of the filament. Furthermore, diffusion
between adjacent filaments results in a number of cavities and propagation associated with increasing
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loading due to insufficient bonding under the air-forced cooling condition. Figure 9b–f show that
cavities are effectively suppressed when PPS samples are built at a higher environmental temperature.

Figure 9c,d show that the fracture contains a large number of flake-like structures and the necking
phenomenon of the 3D-printed PPS sample disappears. The fracture surface roughness and the
fracture extend in different directions at different levels [24]. With an increase in the heat treatment
temperature, the void size reduces and the diffusion between the adjacent filaments and interlayer
increases. When the heat treatment temperature reaches 240 ◦C, the fracture surface is perpendicular
to the direction of the load, and the angle of 3D-printed samples heat treated at 130–200 ◦C between
the fracture surface and the loading direction remains about 45◦. The fracture morphologies of the
3D-printed PPS samples under heat treatment are covered with a fast-fracture zone and micro-ductile
tearing, while the weak point of intercrystalline zones in the 3D-printed PPS samples under heat
treatment at 240 ◦C is one reason for the fracture.
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Table 3 gives the filament dimensions of 3D-printed PPS samples. The dimensions of a filament
(a and b) remain constant, while the diffusion of the adjacent filament (H) and interlayer (c) increase.
This is due to molecular motion being sufficient for the coalescence of cavities and the diffusion
of interfaces when the heat treatment is above the glass transition temperature. The internal voids
observed in Figure 9b are greatly reduced. It is therefore considered that the defects of the 3D-printed
PPS samples can be effectively suppressed through heat treatment.

Table 3. Measured filament dimensions of 3D-printed PPS samples.

Thermal Condition H (µm) a (µm) b (µm) c (µm)

130 ◦C 87.6 ± 8.2 290.7 ± 10.7 306.7 ± 15.6 134.1 ± 9.2
150 ◦C 108.8 ± 6.1 297.6 ± 12.1 380.8 ± 10.2 187.9 ± 10.5
200 ◦C 144.9 ± 10.5 299.4 ± 13.1 364.7 ± 8.9 240.8 ± 16.9
240 ◦C 204.9 ± 13.1 303.2 ± 11.2 370.8 ± 13.5 248.5 ± 19.8
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3.5. Fracture Toughness of 3D-Printed PPS Samples

The fracture toughness of 3D-printed PPS samples is mainly attributed to interlayer bonding.
Figure 10 shows the force–displacement curve and KIC. The sample had the best interlayer strength,
followed by the sample heated at 240 ◦C. The sample that was naturally cooled had lower fracture
toughness than the other samples. The samples under the natural cooling condition exhibit low
interlayer strength. This may be caused by the residual stress leading to layer delamination and
dislocation. Figures 8 and 9 show that the samples that experienced air-forced cooling have typical
plastic deformation behaviors. In fracture toughness tests, the samples under air-forced cooling were
more able to resist crack extension, while the samples under heat treatment exhibited brittle fracture.
Table 3 shows that the width of the interlayer bonding increases from 134.06 to 248.54 µm with the
increase in heat treatment temperature. Heat treatment is an applicable method of improving the
interlayer strength. The elimination of the interface between the semi-melt extrusion filament and the
solidified previous filament provides resistance to fracturing. The heat treatment method therefore
provides an effective way to improve the interlayer strength.
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3.6. Izod Notched Impact Properties of 3D-Printed PPS Samples

The impact strength is essentially an energy index that depends on the sum of various energies
consumed by the material in the process of impact fracture. Figure 11 is the Izod notched impact
strength of 3D-printed PPS samples. The figure shows that the impact strength of the PPS sample
that experienced air cooling is 17.04 kJ/m2, which is obviously higher than the impact strength of the
samples that underwent heat treatment. For the 3D-printed PPS sample, the impact properties of the
sample are affected by the strength and modulus of the sample, the crystallinity and crosslinking of
the material, the arrangement of the filaments, and the density of infill. The impact test mainly relates
to the comprehensive state of the strength and plasticity of the material under the test conditions,
and an increase in the plasticity of the material greatly improves the impact resistance of the material.
When the sample is printed under air cooling conditions, the crystallinity of the sample is low and
the amorphous region is larger. This leads to better ductility and greater toughness of the sample,
and ultimately strong impact resistance. With the increase of heat treatment temperature, the samples
exhibit a weaker resistance to the impact load and lower strength due to the increase of crystallinity.
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4. Conclusions

It is important to analyze the effect of the thermal condition on the performance of 3D-printed PPS
samples as PPS is a semi-crystalline thermoplastic polymer sensitive to oxidation. The PPS material
undergoes a four-step (drying, screw extrusion, 3D printing and heat treatment) heating process
from pellet to 3D-printed sample. The thermal history strongly affects the degree of crystallinity
and crosslinking.

In the printing process, air-forced cooling improves the precision of the 3D-printed sample.
The maximum deviation decreases from +0.89/−2.38 mm under the natural cooling condition to
+0.79/−0.89 mm under the air-forced cooling condition. Most studies have focused on improving the
environment temperature in an effort to restrain the non-uniform thermal gradients. We here propose
reducing crystallinity by increasing the cooling rate to improve the precision of the 3D-printed sample.

The mechanical properties of 3D-printed samples are another important index. Heat treatment
compensates for the insufficient strength of a sample that has undergone air cooling. A higher heat
treatment temperature benefits the tensile strength and fracture toughness. The tensile strength
increases from 27.7 to 57.3 MPa and the fracture toughness of 3D-printed PPS samples increases from
1.29 to 1.74 MPa·m1/2. Meanwhile, the elastic modulus increasing from 1.45 to 3.21 GPa, which is too
high, results in the sample being unable to withstand a greater impact strength.

The mechanical properties of 3D-printed samples depend not only on inherent material properties
(i.e., crystallization and crosslinking) but also on the 3D printing parameters (e.g., the infill and thermal
processing conditions). The tensile strength and impact strength are mainly dictated by the degree of
crystallinity and crosslinking. The heat treatment method provides an effective way to improve the
interlayer strength. The diffusion of the interlayer, warpage and delamination depend on the thermal
conditions during printing. The proper selection of thermal processing and heat treatment conditions
will allow the processing of high-performance 3D-printed PPS samples.
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