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Abstract

In-silico methods for the prediction of epitopes can support and improve workflows for vac-

cine design, antibody production, and disease therapy. So far, the scope of B cell and T cell

epitope prediction has been directed exclusively towards peptidic antigens. Nevertheless,

various non-peptidic molecular classes can be recognized by immune cells. These com-

pounds have not been systematically studied yet, and prediction approaches are lacking.

The ability to predict the epitope activity of non-peptidic compounds could have vast implica-

tions; for example, for immunogenic risk assessment of the vast number of drugs and other

xenobiotics. Here we present the first general attempt to predict the epitope activity of non-

peptidic compounds using the Immune Epitope Database (IEDB) as a source for positive

samples. The molecules stored in the Chemical Entities of Biological Interest (ChEBI) data-

base were chosen as background samples. The molecules were clustered into eight homo-

geneous molecular groups, and classifiers were built for each cluster with the aim of

separating the epitopes from the background. Different molecular feature encoding

schemes and machine learning models were compared against each other. For those mod-

els where a high performance could be achieved based on simple decision rules, the molec-

ular features were then further investigated. Additionally, the findings were used to build a

web server that allows for the immunogenic investigation of non-peptidic molecules (http://

tools-staging.iedb.org/np_epitope_predictor). The prediction quality was tested with sam-

ples from independent evaluation datasets, and the implemented method received notewor-

thy Receiver Operating Characteristic-Area Under Curve (ROC-AUC) values, ranging from

0.69–0.96 depending on the molecule cluster.

Author summary

Small molecules found in cosmetics, foodstuffs, dyes, and industrial materials, but also

those produced by plants, bacteria, and animals can trigger strong reactions of the human

immune system and can therefore be hazardous to health. In the present work, several

thousand immune-reactive small molecules (so-called non-peptidic epitopes) were
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classified by molecular structure and studied with the aim of identifying specific parts of

the molecules responsible for such immune responses. Using a machine-learning

approach (random forests and neural networks), we identified some substructures that

appear strikingly often in non-peptidic epitopes and which may be responsible for the

hazardous immune response. Such knowledge may help to explain allergic reactions to

chemicals and also to minimize the health risks of new chemicals in industrial production.

To support this endeavor, we have implemented the method in a publicly available web

application. This can be used for the prediction and identification of non-peptidic epi-

topes and their underlying substructures.

Introduction

Defense against pathogens via the adaptive immune system depends on the distinction

between endogenous and exogenous molecules produced by the host and pathogen, respec-

tively. This distinction is made by receptors located on the surface of T and B lymphocytes.

The specific part of an antigen that interacts with the T cell receptor (TCR) or B cell receptor

(BCR) is known as the epitope.

T cells recognize antigens bound to the major histocompatibility complex (MHC) pre-

sented on the surface of cells. All nucleated cells present endogenous antigens via MHC class I

molecules as a self/non-self distinction feature. Professional antigen-presenting cells, such as

macrophages and B cells, present antigens primarily derived from the extracellular space via

MHC class II molecules. B cell recognition is mediated by receptors located on the cell mem-

brane. Activated B cells differentiate into plasma cells, which can secrete a soluble form of

their receptors as antibodies. Antibodies can impede the function of pathogens or tag the path-

ogen for elimination by macrophages. Specific antibodies with targeted recognition are widely

used as therapeutic antibodies [1], immunodiagnostic tools [2], and immunoassays [3–5].

The vast majority of known epitopes are derived from proteins. However, peptides are not

the only entities that can be detected by the immune system. In fact, there are other molecular

classes that elicit an immune response, such as lipids, carbohydrates, drugs, and metals [6].

Small molecular entities, such as metals (e.g., nickel) and organic compounds (e.g., aniline and

its derivatives) are referred to as haptens. Generally, they must conjugate with larger carrier

proteins to be recognized by T cells or specific antibodies. Larger molecular entities, such as

polysaccharides [7,8], glycolipids [9], and lipids [9,10], can lead to an immune response

directly. Cross-reactive carbohydrate determinants play a major role in allergic disease and

anaphylactic events [11,12].

Although the exact molecular activation mechanism of haptens can be complex and is often

not completely understood, hapten-carrier conjugates are frequently recognized by antibodies

produced by B-cells [13]. However, in 1992 it was shown that also T-cells can recognize hap-

tens which are covalently bound to MHC-associated peptides [14]. Subsequently, it was

observed that T-cell activation by small organic compounds is also possible via a noncovalent

direct binding to the MHC, e.g., the drug carbamazepine [15] or the drug abacavir that is rec-

ognized by specific key residues in the peptide-binding groove [16]. Furthermore, inorganic

ions such as Ni(2+) can bind at the interface of the T-cell receptor, probably at a high-affinity

coordination site [17].

Recognition of epitopes associated with pathogens (e.g., bacteria, virus, fungi) leads to the

protection of the host from further exposure. However, unwanted immunogenicity can lead to

serious health problems for the host. When natural or synthetic compounds, derived from
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food, cosmetics, or plants, are recognized by the immune system, an allergy may occur, which

can lead to symptoms such as skin inflammation and asthma. The immune response against

therapeutics, mediated by so-called anti-drug antibodies, can decrease or even reverse the

effects of the drug [18]. Furthermore, induced autoimmune responses can also be directed

against the body’s own biomolecules. Although more than 100 different autoimmune diseases

are described [19], their exact causes are mostly unknown.

Various approaches for the prediction of peptidic epitopes have been described [20,21].

Most of these prediction approaches use known peptidic epitopes to generate rule-based or

machine learning-based classifiers. Consequently, the bottleneck for efficient epitope predic-

tion is created by the availability and quality of known epitopes. The Immune Epitope Data-

base (IEDB) is a continuously updated large collection of literature-derived epitopes [22],

which has been the source of training samples for various peptide-based epitope prediction

tools.

To the best of our knowledge, the immunogenic recognition of non-peptidic compounds

has not yet been studied systematically and, thus far, no method has been described to predict

non-peptidic epitopes. The prediction is a crucial step towards the prevention of allergic reac-

tions and for the development of non-harzadous materials, cosmetics, and drugs. Further-

more, it would allow for risk assessment prior to labor-intensive experimental assays.

The largest collection of curated non-peptidic epitopes exists in the IEDB, where more than

2700 non-peptidic structures with reported positive B cell and/or T cell assays are described.

Detailed information about the molecules, the selection process, and applied assays for epitope

detection are provided in the IEDB and in the related manuscripts [22,23]. These molecules

were used as positive samples and compared against background molecules from the Chemical

Entities of Biological Interest (ChEBI) database [24]. Different molecular encoding schemes

and machine learning models were benchmarked for their ability to predict the epitope activity

of non-peptidic molecules. The findings were compiled into a prediction web server, which

allows for the thorough immunogenic assessment of non-peptidic molecules.

Methods

Dataset

The entirety of molecules in the ChEBI database [24] was assigned as a background dataset

(downloaded: May 11, 2020). ChEBI has both manually curated and automatically assigned

molecular structures. Only the molecules curated by the ChEBI team (marked with three stars

in the database) were used. Positive structures tested in B cell and/or T cell assays were down-

loaded from the IEDB via a web-interface query (https://www.iedb.org/; downloaded: May 11,

2020). All structures were parsed using the cheminformatics python package RDKit [25], and

those with duplicate SMILES [26] were removed. The final dataset included 42,643 back-

ground molecules, 579 molecules tested positive in T cell assays, and 2,140 molecules tested

positive in B cell assays.

Molecules that were added to the IEDB or ChEBI databases after May 11, 2020 were used as

an independent test dataset to benchmark the developed prediction tool using samples that

were not used in the cross-validation. The test dataset included 2,190 ChEBI background mol-

ecules; 71 molecules tested positive in T cell assays and 47 molecules tested positive in B cell

assays.

Molecular fingerprints encoding

The molecules were encoded into vectors by applying the Morgan fingerprint algorithm, also

referred to as Extended-connectivity fingerprint (ECFPs) [27], using RDKit. The Morgan
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algorithm creates substructures of molecules by generating circular patterns with a certain

radius from each atom in the molecule. Resulting substructures are used to set bit features (1 if

the substructure is present in the molecule and 0 if the substructure is absent) or count features

(the number of occurrences of the substructures in the molecule) in an array referred to as the

fingerprint of the molecule.

The RDKit implementation of the Morgan fingerprint allows for the creation of different

features considering molecular chirality, which were then also benchmarked.

Clustering into homogeneous molecular subsets

Molecular subgroups, such as fatty acids, carbohydrates, and small molecules might activate B

cells and T cells with different mechanisms. To examine such a dependency, we clustered all

molecules into structural classes.

The ChEBI dataset was converted into folded Morgan bit fingerprints (1024 bits, radius: 3,

non-chiral). The molecules were clustered using the k-means clustering algorithm imple-

mented in the machine learning python package Scikit-learn [28]. The optimal number of

clusters was determined using the elbow method [29]. The clusters were described using

BiNChE ontology enrichment analysis [30], allowing for the interpretation of the clusters

based on functional compound classes. BiNChE returns a table with corrected p-values, the

fold-enrichment (ratio between the enrichment in the selected samples and enrichment in the

background samples), and the sample coverage (percentage of the molecules that contain the

ontology term) of significant ontology terms.

To visualize the clusters in a 2D representation, the vectors were transformed into 2 orthog-

onal components that explain the maximum amount of variance using Principal Component

Analysis (PCA) [31] as implemented in Scikit-learn [28].

Epitope prediction

Unfolded Morgan count fingerprints (radius: 3, chiral) were used to train the classification

models. We considered count features as advantageous to bit features since there are various

examples where repetitive molecular structures (e.g., fatty acids) play an important role in

immune cell recognition [32]. These molecules would lead to identical bit-based fingerprints,

but different count-based fingerprints.

The fingerprints were computed for each cluster separately. Molecules with identical finger-

prints were removed from the dataset. The fingerprints were trimmed to include only those

features which occurred in at least 10 molecules. Specific count features in a Morgan finger-

print can highly correlate. To derive clear decision rules, correlating fingerprint features,

which exceeded a Pearson Correlation Coefficient (PCC) of more than 0.8 to any other feature,

were removed.

For each cluster, two machine learning models were compiled that predict the probability

of a molecule to act as a B cell or T cell activating epitope. Different models were created and

compared against each other. RF, k-NN, and NN algorithms with default parameters as imple-

mented in Scikit-learn were used. For the RF models, 100 iterations were selected. Further-

more, dummy RF models were designed to validate the experimental set-up. For the dummy

models, the positive samples were assigned from the background by random shuffling. The

percentage of positive samples was identical to the real epitope percentage in each cluster. The

dummy classifier should demonstrate that no learning process can be achieved from arbitrary

samples. All classifiers were benchmarked using a repeated (3 times) 5-fold stratified cross-val-

idation. The classifier performance was compared using the ROC-AUC metric.
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Benchmark against Tanimoto similarity-based classifiers

The RF classifiers were compared against a classifier that uses a Tanimoto similarity-based pre-

diction approach. The similarity classifiers were designed as follows: for each molecule, the

Tanimoto similarity to all known epitopes in a cluster was calculated using unfolded Morgan

count fingerprints (radius: 3, chiral). The highest similarity was then assigned as a score of this

structure to be an epitope.

All similarity-based classifiers were benchmarked using repeated (3 times) 5-fold stratified

cross-validation. The classifier performance was estimated by computing the ROC-AUC metric.

Fingerprint substructures

To extract fingerprint features that are important to distinguish epitopes from the background,

a statistical investigation of the feature importance was carried out for each cluster. The inves-

tigation was focused on those features for which classification models with high performance

(> 0.8 ROC-AUC) could be built using a set of not more than 8 features. To analyze the feature

importance, the chi-squared feature selection approach implemented in the Scikit-learn [28]

“SelectKBest” algorithm was applied. For each feature the probability was calculated that the

feature count of the epitopes was selected from the population of the background molecules.

The Bonferroni corrected p-values were used as a measure for the feature importance.

The following statistical parameters were calculated for important features:1) fraction of epitopes

that contain the feature (epitope coverage); 2) epitope coverage divided by the background coverage

(fold-enrichment), and 3) the mean count difference between epitopes and the background (only

molecules that have this feature at least once were included). 2D Depictions of the substructures cor-

responding to the fingerprint features were computed using the custom RDKit function.

Results

Clustering into homogeneous molecular subsets

The molecules stored in the IEDB (2,719 positive epitope samples) were merged with the

ChEBI molecules (42,643 background samples) and converted into bit features using the Mor-

gan fingerprints algorithm [27], and clustered into homogenous molecular subsets using k-

means clustering. The total number of clusters was determined by plotting of the cluster inertia

(i.e., density of the clusters) against the number of clusters. The appearance of a kink in the

plot (elbow method) would indicate an ideal cluster number (see Fig 1).

Even though an unambiguous kink is not observed, the cluster inertia decreases only mar-

ginally for more than 8 clusters. This cluster number was chosen and the individual clusters

were further described. The principal component visualization of the clusters (Fig 2) shows

that the clusters overlap and have different sizes. The distribution of the non-peptidic epitopes

within each cluster is shown via a PCA in Fig A in S1 Appendix.

Epitopes that tested positive in B and T cell assays are present in all clusters except for Clus-

ter 3, which contains only non-epitopes. Cluster 3 comprises exclusively Coenzyme A (CoA)-

derived molecules (Fig 3). The clusters were described by an ontology enrichment analysis as

output of the BiNChE- web tool [30]. For example, for cluster 4, all enriched ontology terms

were related to glucoside and oligosaccharide molecules; therefore, the cluster name “gluco-

side/oligosaccharide derivatives” was chosen (Table 1). In the same way, the cluster names

were determined for all other clusters (Table 2).

Most clusters can be distinguished, since their ontology terms are highly enriched—except

for clusters 6 and 7, which do not allow a clear cluster description (complete results of the

BiNChE analysis in Table A of S1 Appendix).
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The diversity of the clusters is represented by the number of automatically generated Mor-

gan fingerprint features (Table 2). Cluster 7 generated the most features with an array size of

63 x 106 values (11,805 samples x 5,370 features).

Performance of different Morgan fingerprint parameters

The radius and chirality options for the Morgan fingerprint generation were analyzed with

regard to the epitope prediction performance of random forest (RF) classifiers. The perfor-

mance was evaluated using the Receiver Operating Characteristic Area Under Curve

(ROC-AUC) metric. The classification performance was slightly better using chiral finger-

prints as compared to non-chiral fingerprints (ROC-AUC difference of 0.01–0.02) for all radii

parameters (Fig 4). All clusters show the poorest performance when the fingerprints are gener-

ated with the radius option 0. The substructures generated with this option only include atom

type and connectivity information. The performance increases in many cases with higher

radii, although this tendency cannot be observed for all clusters. Cluster 1 and 2 show the

strongest fluctuation regarding the radii parameter.

Chiral fingerprints with a radius of 3 were chosen for the following model benchmark and

comparison with Tanimoto similarity-based reference classifiers.

Model performance

The epitope prediction performance of different machine learning models were compared.

The RF and neural network (NN) models performed similarly for most molecular clusters and

immunogenic pathway Both models outperformed the k-nearest neighbor (k-NN) models. RF

models, trained on randomly assigned positive samples (referred to as dummy models),

yielded an ROC-AUC close to 0.5 for all feature sets (Figs 5 and 6).

Epitope prediction

The RF classifiers were compared to Tanimoto similarity-based classifiers (Fig 7). It can be

observed that, with increasing number of features, the RF models can separate epitopes from

the background molecules with high ROC-AUC scores of at least 0.8 for all clusters. In all

Fig 1. Cluster inertia plotted against the number of clusters (k). The cluster inertia is computed as the sum of

squared distances of samples to their closest cluster.

https://doi.org/10.1371/journal.pcbi.1009151.g001
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cases, the RF models yield at least similar ROC-AUC values or outperform the similarity

models.

Most remarkable are those RF models that yielded high ROC-AUC (> 0.8) values even

with low feature sets (clusters 4 and 5 and the T cell epitopes of cluster 2). The related substruc-

tures were investigated in detail in the following section.

Fig 2. Principal component visualization of the ChEBI dataset. (a) Principal components of the 8 clusters and their sizes. (b) T cell epitopes. (c) B cell

epitopes.

https://doi.org/10.1371/journal.pcbi.1009151.g002
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The best RF models were used to predict the samples from the independent test dataset of

molecules that were not used for the initial training of the classifiers. The performance on the

test dataset is shown in Table 3.

Important substructure features

For those models where a small feature set was sufficient to reach ROC-AUC values above 0.8,

the specific features were further analyzed. Each feature is described by an enrichment analysis

(epitope coverage and fold-enrichment). The feature interpretation comprises the models for

the T cell epitopes of the fatty acid derivatives (cluster 2), the T and B cell epitopes of the gluco-

side / oligosaccharide derivatives (cluster 4) and the T and B cell epitopes of the nucleobase-

containing molecular entities (cluster 5).

Fig 3. Example molecules for each cluster generated for the ChEBI dataset. ChEBI IDs used for the example molecules: (a)

Steroid/terpenoid like: CHEBI:776; (b) Betaine/glycerolipid derivatives: CHEBI:17636; (c) Fatty acid derivatives: CHEBI:16196; (d)

Acyl-CoA derivatives: CHEBI:11010; (e) Glucoside/oligosaccharide derivatives: CHEBI:16551; (f) Nucleobase-containing molecular

entities: CHEBI:15422; (g) Diverse small molecules: CHEBI:55395; (h) Cyclic Halide / Phenols: CHEBI:59246. All examples represent

molecules that have been tested positive in B cell essays—except for the acyl-CoA derivatives, where no epitope was described.

https://doi.org/10.1371/journal.pcbi.1009151.g003

Table 1. BiNChE ontology analysis of cluster 4. The name “glucoside/oligosaccharide derivatives” was chosen for this cluster.

ChEBI ID ChEBI Name Fold-enrichment Sample coverage (%)

CHEBI:22485 glucosamine oligosaccharide 23.71 10

CHEBI:22483 amino oligosaccharide 22.51 18

CHEBI:63563 oligosaccharide derivative 21.27 27

CHEBI:63353 disaccharide derivative 19.46 9

CHEBI:22798 beta-D-glucoside 18.45 11

CHEBI:35436 D-glucoside 18.32 12

CHEBI:60980 beta-glucoside 18.24 11

CHEBI:24278 glucoside 17.93 12

CHEBI:35313 hexoside 17.30 13

CHEBI:33563 glycolipid 12.97 17

https://doi.org/10.1371/journal.pcbi.1009151.t001
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Cluster 2—fatty acid derivatives

The significant fingerprint features for T cell classification of fatty acid derivatives are listed in

Table 4, with the corresponding substructures shown in Fig 8.

The most important fingerprint feature (ID: 161963127) represents a carbon chain sub-

structure. This substructure can be found in almost all molecules (epitopes and background)

in this cluster (Fold-enrichment: 1.32). The significant difference is given by the mean sub-

structure count of 14.21. Most epitopes possess much longer fatty acid chains than the ChEBI

background molecules in the cluster.

Most of the other substructures can be associated with the attachment of a single sugar moi-

ety to the fatty acid molecules. The most significant of those features (ID: 408739733) can be

found in 27% of the epitopes, but not at all in the ChEBI background dataset.

Cluster 4—glucoside / oligosaccharide derivatives

The T cell epitopes of the glucoside/oligosaccharide derivatives can be classified with high

accuracy based on only one substructure (see Table 5). Surprisingly, this is the same

Table 2. Summary of the compiled molecular clusters. The mean fold-enrichment can be used as an indicator of the homogeneity of the cluster.

Cluster Name MeanFold-enrichment Number of molecules B cell T cell Fingerprint size

0 steroid/terpenoid like 9.33 6,758 191 57 5,942

1 betaine/glycerolipid derivatives 17.28 1,817 36 31 634

2 fatty acid derivatives 20.59 3,801 59 56 1,381

3 acyl-CoA derivatives 69.73 1,476 0 0 606

4 glucoside/oligosaccharide derivatives 19.01 4,712 1,079 106 3,636

5 nucleobase-containing molecular entities 9.64 1,861 101 15 1,167

6 diverse small molecules 2.49 12,086 252 94 2,267

7 cyclic halide/phenols 3.37 12,272 422 220 5,370

https://doi.org/10.1371/journal.pcbi.1009151.t002

Fig 4. Cross-validation performance of the RF models for different radii parameters used to generate Morgan

fingerprints. The prediction of epitopes that tested positive in T cell assays (a) and B cell assays (b).

https://doi.org/10.1371/journal.pcbi.1009151.g004
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Fig 5. Model comparison for different feature sets for the epitopes that tested positive in B cell assays. Cluster 3 was not

benchmarked, since there were no epitopes in this structural class.

https://doi.org/10.1371/journal.pcbi.1009151.g005
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Fig 6. Model comparison for different feature sets for the epitopes that tested positive in T cell assays. Cluster 3 was not

benchmarked, since there were no epitopes in this structural class.

https://doi.org/10.1371/journal.pcbi.1009151.g006
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Fig 7. Performance of the epitope classifiers for different feature sets. Cluster 3 is not benchmarked, since there were no epitopes in

this structural class. The RF classifiers are depicted with a continuous line and the similarity classifiers are shown with a dotted line.

https://doi.org/10.1371/journal.pcbi.1009151.g007

PLOS COMPUTATIONAL BIOLOGY Prediction of non-peptidic epitopes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009151 February 18, 2022 12 / 24

https://doi.org/10.1371/journal.pcbi.1009151.g007
https://doi.org/10.1371/journal.pcbi.1009151


fingerprint feature (ID: 161963127) as the key substructure for the T cell epitopes of the fatty

acid derivatives.

A histogram of the substructure distribution in the epitopes and the ChEBI dataset is

shown in Fig 9. The vast majority of known T cell epitopes (85%) have a long carbon chain

attached to the glucoside, which can only be found in 18% of the overall ChEBI glucosides.

The model for the B cell epitopes of glucoside/oligosaccharide derivatives requires 8 features

to reach a ROC-AUC of 0.8 (see Fig 10). The statistics of these features are shown in Table 6.

The most important substructure is again represented by the fingerprint feature with the ID

161963127. Nevertheless, the fatty acid attachment is much less common for the B cell epitopes

(18%) as compared to the T cell epitopes (85%). Surprisingly, the B cell epitopes that possess

this fatty acid attachment tend to have shorter chains as compared to the background mole-

cules of the cluster (mean count difference: -8.43).

The other fingerprint features correspond either to specific sugar moieties (IDs: 26675433,

2456262944, 784020300) or aromatic substructures (IDs: 951226070, 26234434). While the

specific substructures of sugar moieties can be found predominantly in the epitopes, features

involving aromatic entities are more often found in the background molecules. Another sub-

structure that is enriched in the epitope dataset is given by the feature with the ID 411967733,

a secondary amide.

Cluster 5—nucleobase-containing molecular entities

Most features of the B cell epitopes of nucleobase-containing molecules can be associated with

common nucleobases (see Fig 11). The classification decision can be explained by the

Table 3. Epitope prediction performance of the RF models on the test dataset. The ROC-AUC values could not be computed for some clusters because of missing posi-

tive samples.

Cluster # B cell epitopes B cell ROC-AUC # T cell epitopes T cell ROC-AUC ChEBI Background

0 3 0.76 6 0.72 255

1 0 - 0 - 5

2 0 - 11 0.78 113

4 31 0.69 24 0.91 894

5 0 - 0 - 28

6 2 0.74 10 0.94 386

7 11 0.96 20 0.79 509

All 47 0.82 71 0.86 2190

https://doi.org/10.1371/journal.pcbi.1009151.t003

Table 4. Most important fingerprint features for the prediction of T cell epitopes of the fatty acid derivatives (cluster 2). The fingerprint feature IDs correspond to

Fig 8. The corr. p-value is based on the hypothesis (H0), that the feature count is equally distributed in the epitopes and the background. For explanation of other feature-

specific metrics see Methods. For those features where no examples are present in the background dataset, the fold-enrichment and mean count difference cannot be

computed.

IDs Corr. p-value Epitope coverage (%) Fold-enrichment Mean count difference

161963127 <1.00E-250 98 1.32 14.21

408739733 7.06E-173 27 - -

404279373 6.41E-126 18 - -

135162652 5.34E-115 18 - -

3567570924 6.45E-87 29 29 0

266675433 2.53E-74 47 5.22 0.70

3836949038 1.71E-63 18 - -

2632434419 1.68E-52 4 - -

https://doi.org/10.1371/journal.pcbi.1009151.t004
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Fig 8. Substructures of most significant fingerprint features for the classification of T cell epitopes of the fatty

acid derivatives (cluster 2). A depiction of each feature is shown (smaller box) alongside an example molecule

containing it (larger box). In the feature box, the central atom is labeled with a purple sphere; aliphatic ring atoms are

labeled with grey spheres. In the molecule box, all matched feature atoms are labeled with blue spheres. The statistics of

the features are shown in Table 4.

https://doi.org/10.1371/journal.pcbi.1009151.g008
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substructure count difference, meaning that the epitopes tend to have more nucleobases than

the background molecules of the cluster (see Table 7).

The T cell epitopes can be classified solely on the presence of a single carbon chain moiety

at the phosphorus backbone of the nucleobase (see Fig 12). This substructure can only be

found in the epitope dataset and not in the background molecules (see Table 8).

Prediction tool

To allow the investigation of epitope activity of non-peptidic molecules, a prediction tool was

developed (http://tools-staging.iedb.org/np_epitope_predictor). The tool takes a simplified

molecular-input line-entry system (SMILES) representation of a molecule as input and per-

forms a two-step analysis. First, the molecular class of the compound is predicted. In addition

to the class membership, BiNChE statistics of the given class are shown (Table A in S1 Appen-

dix). Second, the likelihood that a molecule could be an epitope binding to B cell or T cell

Table 5. Most important fingerprint feature for the prediction of T cell epitopes of the glucoside/oligosaccharide derivatives (cluster 4). The fingerprint feature cor-

responds to Fig 9.

IDs Corr. p-value Epitope coverage (%) Fold-enrichment Mean count difference

161963127 <1.00E-250 85 4.72 0.66

https://doi.org/10.1371/journal.pcbi.1009151.t005

Fig 9. Histogram of the fingerprint feature (ID:16163127) count responsible for T cell prediction of the glucoside/

oligosaccharide derivatives (cluster 4). The vast majority of epitopes have a long fatty acid chain attached to the

glycoside. (a) Example molecule with 20 fingerprint features; all matched feature atoms are labeled with blue spheres.

(b) Depiction of the fingerprint feature; the central atom is labeled with a purple sphere.

https://doi.org/10.1371/journal.pcbi.1009151.g009
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Fig 10. Substructures of most significant fingerprint features for the classification of B cell epitopes of the

glucoside/oligosaccharide derivatives (cluster 4). A depiction of each feature is shown (smaller box) alongside an

example molecule containing it (larger box). In the feature box, the central atom is labeled with a purple sphere;

aliphatic and aromatic ring atoms are labeled with grey and yellow spheres. In the molecule box, all matched feature

atoms are labeled with blue spheres.

https://doi.org/10.1371/journal.pcbi.1009151.g010
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receptors is predicted. The RF models built with the highest feature set were chosen for this

task. For each epitope type, the significant fingerprint features found in the molecule are

shown.

Furthermore, the fingerprint features of the 5 most similar epitopes from the IEDB are

listed next to the query molecule, which allows for direct comparison of the substructures. The

feature similarity is computed using Euclidean distance of the fingerprint feature counts.

Moreover, the overall Tanimoto similarity, using unfolded Morgan count fingerprints (radius:

3, chiral) between the query molecule and the target epitopes, is computed. A link to the

ChEBI entry of the query molecule is provided, which allows further investigation of similar

epitopes. It is planned to update the tool regularly to allow for an analysis of non-peptidic epi-

topes based on the current state of the IEDB.

The tool was built as a small python application, that is controlled via a web interface based

on the Django [33] web framework. The code of the application is open-source and available

via (https://github.com/IEDB/NP_epitope_predictor) under the NPOSL-3.0 license.

Discussion

Clustering into homogeneous molecular subsets

A benefit of the application of unfolded Morgan fingerprints is that the features can be easily

interpreted; an advantage that has also been exploited before, e.g., for predictive (Q)SAR mod-

els [34]. The presented two-step approach could be used as a basis for the implementation of a

general clustering-classification algorithm for molecular classification problems.

Most of the computed clusters contained uniform molecule sets, which could be described

with BiNCHE ontology analysis. Nevertheless, the entire ChEBI database contains a diverse

range of small biologically relevant molecules and, subsequently, some molecules are difficult

to aggregate. This could be observed especially for cluster 6, which is a collection of diverse

small molecules, simply because molecules with few substructure features are aggregated by k-

means clustering logic. Interestingly, the most distinct cluster, cluster 3, which comprises

exclusively CoA derivatives, does not contain any known epitopes. It can be hypothesized that

the lack of CoA-related epitopes is due to the involvement of CoA in various crucial biological

functions, such as fatty acid synthesis and the citric acid cycle. An immune response against

such a biologically vital molecule might be generally suppressed due to negative selection dur-

ing immune cell maturation. The putative suppression of immune cell responses against vital

self-molecules should be further investigated, for example based on co-factor-related

compounds.

Table 6. Most important fingerprint features for the prediction of B cell epitopes of the glucoside/oligosaccharide derivatives (cluster 4). The fingerprint feature IDs

correspond to Fig 10.

IDs Corr. p-value Epitope coverage (%) Fold-enrichment Mean count difference

161963127 1.17E-216 18 0.90 -8.43

266675433 1.18E-188 100 1.00 2.79

2456262944 1.04E-137 94 1.00 1.71

951226070 2.11E-105 1 0.06 1.20

411967733 1.06E-86 64 1.78 0.13

784020300 4.72E-86 57 1.90 0.25

26234434 1.51E-77 0 0.00 -0.95

1858577693 2.46E-74 35 1.94 0.36

161963127 <1.00E-250 85 4.72 0.66

https://doi.org/10.1371/journal.pcbi.1009151.t006

PLOS COMPUTATIONAL BIOLOGY Prediction of non-peptidic epitopes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009151 February 18, 2022 17 / 24

https://github.com/IEDB/NP_epitope_predictor
https://doi.org/10.1371/journal.pcbi.1009151.t006
https://doi.org/10.1371/journal.pcbi.1009151


Fig 11. Substructures of most significant fingerprint features for the classification of B cell epitopes of the

nucleobase-containing molecular entities (cluster 5). A depiction of each feature is shown (smaller box) alongside an

example molecule containing it (larger box). In the feature box, the central atom is labeled with a purple sphere;

aliphatic and aromatic ring atoms are labeled with grey and yellow spheres. In the molecule box, all matched feature

atoms are labeled with blue spheres. The statistics of the features are shown in Table 7.

https://doi.org/10.1371/journal.pcbi.1009151.g011
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Table 7. Most important fingerprint features for the prediction of B cell epitopes of the nucleobase-containing molecular entities (cluster 5). The fingerprint feature

IDs correspond to Fig 11.

IDs Corr. p-value Epitope coverage (%) Fold-enrichment Mean count difference

151749292 <1.00E-250 32 16.00 5.29

10565946 <1.00E-250 80 1.23 8.77

1026924773 <1.00E-250 7 3.50 18.96

77544489 1.73E-231 45 3.75 2.77

2245384272 7.80E-228 99 1.03 5.37

422715066 2.00E-218 36 2.40 4.30

5685888 1.39E-129 43 0.65 6.25

95089064 6.80E-125 31 3.10 2.67

https://doi.org/10.1371/journal.pcbi.1009151.t007

Fig 12. The feature responsible for the prediction of T cell recognition of the nucleobase-containing molecular entities (cluster 5). A depiction of the

feature is shown (smaller box) alongside an example molecule containing it (larger box). In the feature box, the central atom is labeled with a purple sphere. In

the molecule box, all matched feature atoms are labeled with blue spheres.

https://doi.org/10.1371/journal.pcbi.1009151.g012
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Epitope prediction

The radius parameter of the Morgan fingerprint algorithm led to different classification per-

formances concerning the observed clusters. We settled for a radius of 3 as a compromise for

the subsequent analysis, since most models showed good performance with this option. We

decided that the additional inclusion of different radius options for the model comparison

would have made the subsequent investigation too complex. Nevertheless, the strong perfor-

mance fluctuation of clusters 1 and 2 concerning the radius option may be related to fatty acid

and glycolipid molecules, which possess repetitive molecular characteristics.

Different machine learning models were compared for the ability to predict B cell- or T

cell-related epitope activity. The RF and NN models could outperform the k-NN models in all

categories. The hyperparameters of the models were not optimized, because this could have

led to overfitting of the models to the training samples. The overall experimental set-up was

tested using the dummy RF classifiers (trained on randomly assigned positive samples). These

classifiers showed the expected ROC-AUC of 0.5 for all instances, confirming that no informa-

tion leak or stratification bias occurred with the given dataset.

The performance of all models increased with the number of features used to train the mod-

els. In most cases, the ROC-AUC approached a plateau, indicating that more features did not

lead to further information gain. The increase of features for a fixed number of training sam-

ples can often lead to a performance drop, due to the addition of potentially uninformative fea-

tures—referred to as the Hughes phenomenon [35]. This drop could only be observed in very

few cases, such as the RF model for cluster 1 (both epitope types). The lack of a performance

drop could be explained by the nature of the Morgan fingerprint features. Given that the Mor-

gan fingerprints are based on correlating substructures; additional features are likely to be

redundant but not uninformative. This would explain the plateau for high feature numbers.

The RF classifiers were compared against Tanimoto-similarity based classifiers. The Tani-

moto-similarity based classifiers can be regarded as reference models to estimate the perfor-

mance of memorizing the overall molecular structure as opposed to generalization. Indeed, it

can be observed that for most clusters the similarity models and the RF models perform com-

parably, given enough features. Only the RF models built for the B cell epitopes achieved sig-

nificantly better ROC-AUC scores in some cases. This could be explained by the higher

number of positive training samples for the B cell epitopes.

Because the epitopes were manually collected, it is conceivable that a certain amount of

sampling bias can be attributed to the dataset. Overfitting to similar molecules is a frequently

encountered problem in molecular encoding based machine learning tasks [36]. A straightfor-

ward approach to avoiding overfitting is the choice of models trained with few features regard-

ing the training samples. Consequently, the models that yielded good performance even for

low feature sets are most likely to allow for correct predictions of novel molecules. This was

achieved for clusters 4 and 5 and the T cell epitopes of cluster 2. Those models are most likely

to allow for predictions of epitopes based on specific features instead of overall molecular

similarity.

A common approach to estimate the performance of a classifier on novel samples is the

usage of an independent test dataset, such as one that is not used in the model building

Table 8. Most important fingerprint feature for the prediction of T cell epitopes of the nucleobase-containing molecular entities (cluster 5). The fingerprint feature

corresponds to Fig 12.

IDs Corr. p-value Epitope coverage (%) Fold-enrichment Mean count difference

3994088662 1.41E-192 60 - -

https://doi.org/10.1371/journal.pcbi.1009151.t008
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process. Therefore, the updated samples from the IEDB and ChEBI, which were collected after

the initial training of the classification tool, were chosen. Although some clusters had no repre-

sentative positive samples in the test dataset, the overall performance allowed for the classifica-

tion of B and T cell epitopes with high ROC-AUC scores.

Interpretation of substructure features

The most important factor to classify fatty acid T cell epitopes (cluster 2) can be associated with

the length of the fatty acid. Another important feature is given by the attachment of a sugar to

the fatty acid chain. This finding is consistent with the features observed for the glucoside/oligo-

saccharide derivatives (cluster 4). The attachment of long carbon chains to the glycoside is

highly correlated to T cell activation. In summary, it can be concluded that long fatty acid

chains, especially with specific saccharide moieties, are the most significant indicator for T cell

recognition. The T cell recognition of glycolipids by CD1 proteins has been described by Young

et al. [32]. It was shown that T cells can specifically discriminate various moieties attached to

the fatty acid. This is consistent with the findings derived from the observed models.

The most important feature for glucoside/oligosaccharide derivative (cluster 4) B cell epi-

tope classification is also given by the chain length of fatty acid attachments. Surprisingly, the

chain length is negatively correlated with B cell activation (observed in 18% of the epitopes).

This means that glycoside molecules, which do have a short fatty acid, tend to be recognized

by B cells, while longer fatty acid attachments are not. In general, the B cell epitope classifica-

tion of cluster 4 is rather difficult to interpret, because various sugar and aromatic substruc-

tures are involved. The most intuitive finding is given by the feature with the ID 411967733

(see Fig 10). The corresponding substructure represents a secondary amide which is present in

all samples of cluster 4 (Fold-enrichment: 1). But the epitopes have 2.79 times more instances

of this moiety. Secondary amides are part of the building blocks (N-acetylglucosamine and N-

acetylmuramic acid) of peptidoglycans as well as lipopolysaccharides (LPS). It is not surprising

to find such a feature enriched in the epitope dataset, because these moieties (which are found

in the cell walls of bacteria) are common non-self-microbial signatures [37] found in patho-

gen-associated molecular patterns (PAMPs). Although PAMPs are often associated with the

initial defense provided by the innate immune system [38], they are also commonly encoun-

tered as bacterial-specific antibody counterparts [39–41].

The B cell epitopes of the nucleobase-containing molecules (cluster 5) can be classified

based on the number of nucleobases. This finding may be attributed to the data collection pro-

cess of the ChEBI and IEDB databases. ChEBI does not curate nucleobases derived from nor-

mal metabolism (e.g., DNA and RNA fragments), while the IEDB includes any nucleobase-

containing entity with a positive immune cell assay. This could have led to an accumulation of

molecules with longer nucleobase chains in the IEDB dataset.

The T cell epitopes of the nucleobase-containing molecules (cluster 5) could be classified

based on only one substructure feature. This substructure, an ethyl ester attached to the phos-

phor part (ID: 399408862), could be found in 60% of the epitopes and none of the 187 back-

ground molecules. An investigation of the samples revealed that all the epitopes were collected

from the same study by Tanaka et al. [42]. On the one hand, this finding highlights the poten-

tial risk of data collection bias for machine learning models built from small datasets; therefore,

we evaluated the final models using a test dataset, where the retrieval of the samples from dif-

ferent studies was ensured. On the other hand, the finding supports the power of the developed

method because the study by Tanaka et al [42] showed that monoethyl phosphates mimic

mycobacterial antigens. Our model could derive the importance of this moiety based on the

provided samples.
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Conclusions

In the presented work, the first general attempt was made to predict the recognition of non-

peptidic molecules by B cell and/or T cell receptors. The generated models, as implemented in

the web server, allow for a comprehensive analysis of non-peptidic molecules regarding epi-

tope activity—despite the limitations of the available training dataset. The implemented pre-

diction, as well as the shown similarity to known epitopes, allows users to judge whether the

prediction is based on specific molecular features or on overall molecular similarity. The note-

worthy ROC-AUC scores for the independent test dataset demonstrate the general usability of

the software to investigate the epitope activity of novel non-peptidic molecules. The provided

framework allows for a continuous update of the generated models and calculated decision

rules with each major update of the IEDB. Thus, our framework provides a solid basis for the

community to further explore non-peptidic epitopes.
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