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Abstract

Review Article

IntroductIon

Modern pathology practice is moving toward a digital 
workflow, cumulating in utilizing computer screens to view 
scanned histology slides. This process of digitization of glass 
slides, in combination with the development of specialized 
software tools to identify and measure events previously 
observed via a microscope, has brought about the ability for 
pathologists to utilize digital image analysis on tissue sections. 
Tissue image analysis, when performed correctly, can result in 
the generation of tissue-derived readouts that are precise and 
highly reproducible.

This white paper provides an introduction to the digital 
analysis of scanned tissue slides and outlines the current state 
of available software tools as well as their advantages and their 
limitations. In addition, we provide examples of areas in which 
these tools are currently utilized to generate data in preclinical 
and clinical workflows that go beyond the conventional 
histopathological data provided by manual pathology review.

Image analysis and whole‑slide imaging
The term “image analysis” has been reserved for the specific 
discipline that aims to obtain meaningful information from 
images in an objective and reproducible manner. The origin 
of analyzing images with objective tools is almost as old as 
microscopy itself. It started with measuring and counting when 
Leeuwenhoek developed a system to measure microscopic 
objects in the 17th century.[1]

Although there were many incremental advances throughout 
the centuries, image analysis remained largely unchanged 
until the advent of digital imaging and computerized analysis 
in the second half of the last century. From the 1970s on, new 
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tools were developed that allowed for easier measurement of 
cellular or tissue components. In 1980, video cameras became 
widely available, leading to further improvement of available 
systems.[1] Around the year 2000, digital slide scanners became 
commercially available, and whole‑slide imaging (WSI) started 
to become increasingly common.

The reader is advised to review the Digital Pathology 
Association’s (DPA) white paper on WSI for an introduction to 
the technical and workflow aspects of digitizing glass slides.[2] 
To summarize, the traditional glass histology slide is digitized 
via a slide scanner and can be viewed on a computer screen 
or handheld device at a similar resolution as light microscopy. 
Compared to the general workflow of how tissue sections are 
prepared and viewed under a microscope, this digital workflow 
requires additional equipment (e.g., slide scanner, image storage, 
and digital pathology workstation for viewing), trained personnel, 
and specific quality control steps (e.g., quality control of scans), 
all of which require increased information technology and 
departmental resources.[3] However, there are multiple advantages 
of transitioning to a digital workflow, including ease of slides and 
cases sharing (consulting with other pathologists, or collaborating 
within interdisciplinary research teams), standardization of 
teaching, organization of archived digitized slides, and extraction 
of complex data in a highly reproducible fashion via specialized 
software.[4] The pathologist plays a key role both in the process 
of slide digitization and in the subsequent data generation via the 
use of appropriate image analysis algorithms.

Whole‑slide images of tissue samples are rich in information, 
some of which was previously only accessible visually by a 
trained pathologist or biotechnologist whose expertise was 
based on previous experience and training. Therefore, manual 
readouts could easily be influenced by inherent cognitive and 
visual bias.[5] With a digital image, however, some of this 
information is amenable to more precise and reproducible 
extraction, which can reduce or potentially eliminate human 
bias. In response to this new technology, the market is rapidly 
expanding with new companies that sell optimized software 
for extracting relevant digital information from images or that 
offer the data generation as a service.

Application areas of image analysis
Utilizing digital image analysis tools, the most commonly used 
categories of measurements that can be extracted from digitized 
tissue slides are area based, cell based, and measurements 
pertaining to objects in the tissue aside from cells.[4]

Area‑based measurements include the most basic assessments, 
for example, quantifying the areas (2‑dimensional) of a certain 
stain (e.g., chemical or immunohistochemistry [IHC] stain), 
the area of fat vacuoles, or other events present on a slide. 
Cell-based measurements aim at identifying and enumerating 
objects, e.g. cells. This identification of individual cells enables 
subsequent assessment of subcellular compartments. Finally, 
algorithms can be utilized to assess events or objects present on 
tissue sections that may not be comprised of individual cells. 
More detailed descriptions are given in the following sections.

When undertaking assessment and quantification of biomarkers, 
image analysis tools can be of great value to standardize the 
analysis as well as minimize bias, subjectivity, and variability 
in the generated data. This includes the application of standard 
scoring paradigms to IHC‑stained sections (e.g., programmed 
death-ligand 1 [PD-L1] scoring and human epidermal 
growth factor receptor 2 [HER2] scoring), as well as aid in 
the quantification of in situ hybridization (ISH) dots. These 
assessments can further be tuned to limit the quantification 
of the present biomarker to tissue compartments (e.g., tumor 
and stroma) and subcellular compartments (membranous, 
cytoplasmic, nuclear, or combination thereof), to consider 
variable staining thresholds, and/or to enable more global 
biomarker data collection that then can be interrogated in 
postprocessing steps. In addition, digital tissue image analysis 
tools can be applied not only to routine formalin‑fixed, 
paraffin‑embedded tissues but also to frozen sections, 
whole organ, and embryo mounts.[6-9] Similarly, a whole 
host of staining techniques (and combinations thereof) 
can be amendable to image analysis, not limited to routine 
hematoxylin and eosin (H and E) staining, IHC, or ISH 
labeling (chromogenic and fluorescent).[4,10‑13]

While image analysis tools not only reduce bias introduced by 
both visual limitations and cognitive traps, they also enable 
capturing of data from tissue slides that may not be accessible 
during manual assessment via routine microscopy.[5,14]

Image analysis tools are already widely used in both clinical 
research and translational research, as well as various 
disciplines, ranging from oncology and immuno‑oncology, 
to cardiology and hepatology, neurosciences, and many 
others.[8,11,15‑20]

the BasIcs of Image analysIs

Cellular analysis
One of the most fundamental units in a typical histology image 
is the cell. In H and E‑stained slides, in particular, cell nuclei 
are prominently visible structures. Other cellular compartments 
are often visible as well and the cell’s cytoplasm has its own 
characteristic staining attributes.[21-23] Second‑order structures 
formed from arrangements of cells are readily observed in 
microscopic images and provide important cues that support 
several scoring and grading systems in cancer.[24,25] A common 
theme for computational image analysis is to achieve a 
quantitative representation of cell staining, morphology, and 
architecture that can ultimately be used to support diagnosis 
and prediction.[4] Therefore, demarcating cells or subcellular 
structures are among the first and most important steps of many 
image analysis routines.

This specification (enumeration of many objects is possible, 
cells is only one option) was specifically requested by 
reviewers. The term “segmentation” represents a process in 
which an image is spatially parsed into constituent parts that 
have some significance or utility. Segmentation can be applied 
to a histology image to delineate tissue compartments such 



J Pathol Inform 2019, 1:9 http://www.jpathinformatics.org/content/10/1/9

Journal of Pathology Informatics 3

as stroma or epithelium, to distinguish tumor from benign 
regions, or to identify subcellular structures such as cell 
nuclei. Cell segmentation generally refers to the process of 
identifying groups of pixels that represent a cell. Segmentation 
typically involves two key steps: identification of candidate 
pixels and demarcation of these pixels into compartments 
that best approximate the spatial confines of a single cell. 
This process is often difficult in the presence of adjacent or 
overlapping cells which can lead to undersegmentation (the 
representation of more than one cell as a single object).[26] 
Methods to avoid undersegmentation may, however, result 
in oversegmentation (the erroneous division of a single cell 
into multiple objects) [Figure 1].[27] A number of segmentation 
algorithms have been developed to identify cells in histology 
images. These algorithms typically employ fixed or adaptive 
thresholding, watershed segmentation, active contour models, 
template matching with shape priors, or a probabilistic 
framework and may consist of multiple stages that can 
incorporate a combination of these strategies.[28-42] When 
selecting a segmentation algorithm, users are often faced with 
the decision to prioritize sensitivity (how likely the algorithm 
is to capture a weakly stained nucleus or cell), specificity (how 
well the algorithm rejects artifacts), contour accuracy (how well 
the algorithm can approximate the exact shape of the nucleus 
or cell), and the likelihood of under‑ and oversegmentation. 
Ground truth defined by manual demarcation of cells by 
trained observers can help users evaluate the performance of 
a particular segmentation algorithm.[43]

One of the most common uses of image analysis in pathology 
is to support the approximation of protein expression as 
assessed by IHC. For example, for invasive breast cancer, 
the College of American Pathologists’ (CAP) guidelines 
instruct pathologists to report the percentage and intensity 
of cells positively stained for estrogen receptor (ER) and 
progesterone receptor (PR), which can ultimately guide 
treatment strategy.[44,45] This procedure can benefit from the aid 
of quantitative image analysis, which in some cases has been 
shown to surpass pathologist performance.[46-48] Quantitative 
scoring of nuclear stains such as ER and PR requires 

segmentation of both positive and negative stained cell nuclei. 
Conventionally, ER and PR expression is parsed according to 
the intensity of staining. Stained nuclei are categorized into 
0 (negative), 1+ (lightly stained), 2+ (intermediately stained), 
and 3+ (darkly stained) groups that are typically defined by a 
fixed threshold. The threshold may be applied to the overall 
intensity of the pixels, a single red, green, and blue channel, or 
to a single channel following a stain separation procedure.[49] 
Once the distribution of 0, 1+, 2+, and 3 +cells is determined, 
a laboratory may report a measure of intensity either as a 
simple average (usually rounded) or can use a weighted 
scoring system such as the H‑score that combines information 
about the intensity of staining with the percentage of cells 
stained [Equation 1]. Although there is a direct relationship 
between H‑score and the more conventional percent positive 
metric, H‑score may have additional prognostic value not 
wholly captured by percent positivity.[50-52]

Equation 1: H =3 × (%3+) +2 × (%2+) + (%1+)

IHC is often used to also detect proteins expressed on the cell 
membrane or in the cytoplasm. One of the most widely used 
examples is HER2, a protein expressed at the cell membrane 
whose expression can directly guide treatment strategy and 
prognosis in a number of different tissues.[53-55] In breast tissue, 
guidelines for interpretation of HER2 expression are fairly 
well established and have undergone multiple modifications by 
consensus groups, most recently in 2018 with a set of updated 
CAP guidelines for scoring and interpretation.[56-58] The scoring 
strategy for HER2 combines both staining intensity and the 
circumferential pattern of staining (stain completeness), both of 
which are ultimately used to establish a HER2 score. Likewise, 
PD‑L1, a membrane protein whose expression can determine 
treatment eligibility for immunotherapy, is recommended 
to be interpreted according to the staining intensity, spatial 
distribution of staining, and prevalence of staining in the 
tissue.[59-61] Image analysis routines can be harnessed to 
characterize these patterns of staining. The authors believe 
that quantitative image analysis can enhance the accuracy 
and reproducibility of interpretation of the staining pattern of 
various biomarkers.

Cell morphology can also provide important clues to support 
diagnosis and prediction. A number of classical studies have 
shown that nuclear area and shape (e.g., circularity and 
aspect ratio) carry prognostic value independent of other 
information.[62-67] Consequently, many groups have developed 
image analysis procedures to quantitatively measure these 
features to predict outcomes or to characterize tumors.[68-71] 
Additional cellular features such as H and E staining attributes 
and texture, nuclear/cytoplasmic ratio, and automated mitotic 
detection have also been used.[72]

Color normalization
One of the main obstacles to the development of successful 
image analysis routines is that stained tissue exhibits significant 
variability in color, making it difficult to apply simple rules 
to a dataset with vast differences in staining properties. For 

Figure 1: Hematoxylin and eosin‑stained image analyzed using the “cell 
detection” algorithm in QuPath (open‑source tool). Nuclear segmentation, 
depicted as red outlines, was fragmented in the rightmost image by 
setting the noise reduction Gaussian filter σ = 1.0. Conversely, nuclear 
oversegmentation was achieved by setting σ = 2.5. Black arrows 
in the left image denote examples of single objects that consisted of 
multiple nuclei
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example, as noted in the previous sections, staining thresholds 
can often be an important element to an image analysis 
algorithm. However, when excessive staining variability is 
present in a dataset, applying a threshold may produce different 
results not due to intrinsic properties of the tissue but rather 
due to different staining or imaging protocols. Other image 
analysis procedures not based on threshold can also do poorly 
on image sets with significant color variability.[73] Figure 2 
shows an example of different H and E staining appearances 
across tissue processed by different institutions, but variation 
within the same institution is also common.[23,73]

Color normalization is an image processing tool that has 
been developed to mitigate the effects of color variation by 
transforming the color properties of an image to align to a 
single standard, often specified by the user. This serves two 
purposes: (1) it reduces the overall staining variation within a 
sample and (2) it forces the color of the image to adhere to a 
desired color standard which can be useful for visualization. 
A number of different color normalization approaches have 
been developed that utilize intensity thresholding, histogram 
normalization, stain separation, color deconvolution, and 
structure‑based color classification.[29,49,74‑82] Many of these 
techniques have demonstrated a reduction in color variability 
by a factor of 2 or more. However, it is important to detect 
and assess distortions in the image that may potentially be 
introduced by these techniques.

typIcal algorIthm graphIcal user Interface

There are numerous software packages, which are used by 
pathologists and researchers to step through the workflows 
described in previous sections.

Beneath the image analysis software are numerous 
computational algorithms that utilize a variety of parameters 
as inputs and perform the actual processing and segmentation 
of the image. Graphical user interfaces (GUIs) essentially 
expose the “knobs” underlying the algorithms, thus enabling 

end users who might lack a background in software engineering 
to interpret the image data and guide the analytic process.

A typical GUI walks the user through a series of steps. 
As an example, in the following, we describe a two‑color 
chromogenic assay stained with hematoxylin, brown (Ki‑67 
marker), and red (CD3 T cell marker). The GUI would include 
a number of user-input parameters such as:
1. Color definition – Ability to set the color for each of the 

stains. In this example, blue for hematoxylin, brown for 
Ki‑67, and red for CD3. Because actual stain colors vary, 
this GUI could include an eyedropper tool (or a tool with 
similar functionality) which allows the user to identify 
an example stain in the image

2. Nuclear detection – Many algorithms start with nucleus 
or cell detection. This GUI may include parameters such 
as nuclear size, color threshold, roundness, eccentricity, 
and other parameters to identify individual nuclei while 
excluding nonnuclear structures

3. Marker detection for each biomarker – This GUI would 
include parameters such as biomarker color (e.g., brown 
for Ki‑67), cellular compartment (nuclear, cytoplasm, 
and membrane: e.g., nuclear for Ki‑67), and intensity 
threshold to identify the desired stain in the right 
compartment, while excluding background staining

4. Expression categories – This GUI would include values 
to separate detected cells into negative, low, medium, or 
high (0, 1+, 2+, or 3+) based on the intensity thresholds. 
Depending on the use of an algorithm, some of these 
categories may be locked down to ensure reproducibility 
of results

5. Image analysis outputs – There are a plethora of image 
features output by algorithms. A GUI may include options 
to export only a subset of information.

An image analysis workflow is an iterative process where 
the user is adjusting the algorithm parameters, running 
the algorithm on a subset of images, and then evaluating the 
algorithm performance until sufficient algorithm performance 

Figure 2: Sample hematoxylin and eosin images obtained from six sources designated on the right depict different color attributes commonly encountered 
when viewing digital images of slides across laboratories or across imaging modalities
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is achieved. At times, for example, as part of a clinical trial, 
certain parameters are locked down after an algorithm has 
been validated, while others remain adjustable. GUIs often 
include tools for “fine tuning” the parameters where the user 
can adjust parameters and view results in real time. These 
tuning methods may improve accuracy via the establishment 
of a “human‑in‑the‑loop” step, wherein pathologists contribute 
to the “ground truth.”

High content feature outputs
As an algorithm identifies cells and cellular compartments, it 
can extract information from each of these compartments, the 
individual cell (cellular or object data), as well as the entire 
population of cells (summary data) in the tissue analyzed. 
Examples are numerous: an algorithm may determine 
the cytoplasmic area of each cell, the membrane staining 
intensity, the number of ISH dots per nucleus, as well as 
cellular roundness, eccentricity, and many more.[4] For each 
of these parameters, the entire population of cells present can 
be analyzed or summarized. This can be, for example, in the 
form of plotting the data as a histogram incorporating all data 
points or a single score for the entire tissue.

Furthermore, objects that are comprised of cells can be 
interrogated similarly. For example, blood vessels are formed 
by cells, but when analyzing them via image analysis, one is 
rarely interested in the data of individual cells, but in the data 
of individual vascular profiles as well as the entire population 
of vessels.[4,83] This may include parameters such as major and 
minor diameter, circumference, and area.

Analog to this, analysis of tissue components that may not 
be formed by cells can yield similar data. For example, 
the analysis of vacuoles will result in both population data 
(e.g., average area of vacuoles, average circumference, 
range of major diameter), as well as individual vacuole data 
characterizing each vacuole identified.[84]

Utilizing the data mentioned above, algorithms can compute 
various tissue scores. Commonly used manual scoring 
paradigms range from classifying an entire tissue as positive or 
negative for a given analyte based on IHC staining, generation 
of a percent positive stain of a tissue compartment (e.g., percent 
positive neoplastic cells), scoring paradigms that combine 
percentage of biomarker‑positive cells with the IHC staining 
intensity, to more complex scoring paradigms such as H‑score 
or AllRed score. A review of these scoring approaches can be 
found in Aeffner et al.[5]

Many of the routine manual scoring paradigms commonly 
used are available in the commercially available software 
packages. In addition, individual Food and Drug 
Administration (FDA)‑approved image analysis solutions 
for specific scoring scenarios are available for selecting 
stains and indications (e.g., HER2 scoring in breast cancer). 
Due to the wealth of data generated, and the computational 
power of algorithms, a multitude of new scoring paradigms 
are possible that go beyond what a pathologist can generate 

via manual evaluations. These scoring paradigms may be 
logical expansions of existing ones, e.g., expansions of the 
H‑score into other cellular compartments or combinations 
thereof.[85] Others are novel assessments, which, in the case of 
the Immunoscore®, have already proven their utility and are 
actively used in the clinic.[86]

Beyond two‑dImensIonal Image analysIs: 
stereology and dIgItal three‑dImensIonal 
modelIng

While the most commonly used application of image analysis 
results in the interrogation of two‑dimensional (2D) tissue 
slides of a three‑dimensional (3D) object, this assessment is 
not always representative of the entire object due to inherent 
biases.[84] The two largest sources of bias are sampling 
bias and geometrical bias.[87] Stereology is the study of 
3D representation from a limited 2D sampling and aims at 
minimizing bias by utilizing calculations (statistical theory 
and stochastic geometry) and stringent sampling methods.

In the context of tissue analysis, sampling bias means 
the probability of staining, sectioning, and imaging the 
structures of interest. If the subject of the study is sufficiently 
small, it may be missed if only a few planar sections are 
examined. For example, 2D sections limit the accuracy 
of quantification of findings such as chronic allograft 
vasculopathy. It has been shown that this quantification can 
be improved by reconstructing the murine coronary system 
in 3D from 2D digitized slides.[88] Similarly, geometric bias 
speaks to the fact that planar sampling may systematically 
miss structures of interest if a poor or unlucky sampling 
plane is selected. One of the promises of automated WSI is 
the ability to increase sampling (both in terms of numbers 
of slide, as well as of areas samples within a slide) and 
thus minimize the chances for these systematic biases to 
affect outcomes. Factors such as tissue shrinkage (which 
can vary section to section and sample to sample) must 
also be considered to ensure accurate and representative 
sampling.[89,90]

Image analysis combined with a stereology approach should 
be considered when an expected effect size is small or an 
unbiased estimate is required to compare effects across 
multiple experimental groups.

Due to the advances of digital image analysis, stereology 
has recently become more efficient and less cumbersome.[87] 
However, it remains a time‑intensive methodology that 
requires to be performed by a skilled stereologist to 
ensure proper study design, sample preparation, and data 
interpretation, as well as specially trained histologists for 
pristine sample preparation.[87] Furthermore, it requires the 
usage of a significant amount of tissue, planning, and up‑front 
work. Pilot studies are imperative for successful and accurate 
data generation.[87] Hence, stereology is not a methodology 
that can be applied retrospectively to a sample set.[90]
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A full review of stereology as a methodology is beyond the 
scope of this manuscript but has been provided elsewhere.[87,90‑94] 
Commercial image analysis solutions are available that include 
stereology modules to aid in application of the stereology 
method to whole-slide images.

the pathologIst’s role In the Image analysIs 
workflow

Within the general workflow of digital pathology and tissue 
image analysis, the pathologist plays an important role to 
ensure the value and quality of generated data. While extensive 
knowledge on algorithm development and image analysis 
tools is helpful, it is not a requirement. The value a pathologist 
brings to this workflow greatly lies in the technical knowledge 
of tissue handling, fixation, processing, and staining, as well 
as the specialty expertise in biology, histology, pathology, 
pathophysiology, biomarker expression, comparative 
anatomy, etc.[4]

Before engaging in any image analysis workflow, the quality 
of the tissue, histology slide, stain, and scan should be 
confirmed to ensure that it meets a quality standard that will 
allow collection of meaningful and reproducible data.[2,4,95,96] 
The validity of image analysis data can be greatly hampered 
by performing analysis on low‑quality tissue, histology slides, 
and/or not properly optimized staining results.[84] Preanalytical 
variables such as interval between tissue harvest and fixation 
and total fixation time are often poorly controlled.[97,98] Quality 
control within a pathology laboratory is addressed later in this 
publication.

Region of interest selection
Whole-slide images contain a vast amount of information that 
can be difficult from a computational standpoint to process in 
their entirety. Furthermore, not every region in the whole‑slide 
image is necessarily informative. Expanses of normal tissue 
and stromal cells, for example, may even have the effect of 
“diluting” useful information about the disease state in some 
image analysis algorithms, an effect that has an analog in 
molecular diagnostics.[99] Efforts to confine the image analysis 
region to one or more smaller regions of interests (ROIs) 
are therefore often necessary to create an accurate and 
computationally viable method for tissue image analysis.

Manual versus automated image annotations
Before running any type of image analysis algorithm on a 
particular slide, image annotations (also known as image 
masking) of ROIs are usually a prerequisite. Annotation 
allows the algorithm to focus on a particular area of the slide 
to perform the analysis. Two main strategies for annotating 
images can be employed: manual or automated.

Manual annotations often encompass drawing digital 
lines (inclusion and exclusion annotations) on whole‑slide 
images to mark an ROI for the algorithm.[4] The algorithm 
will analyze all tissues included in the inclusion annotation, 
but omits analysis in that area for tissue regions marked with 

exclusion annotations. Those exclusions may include tissue 
structures not deemed for analysis, areas of necrosis, tissue 
artifacts, and staining artifacts. While manual annotations can 
be performed by a trained technician, final review and approval 
by a pathologist is advised.[4]

More tools have become available to automate the annotation 
process, especially as part of commercial software packages. 
In these solutions, the algorithm may come preprogrammed 
to identify specific features (e.g., mitotic figures and epithelial 
cells) or can be taught to identify specific features or 
structures (e.g., lung cancer nodules, glomeruli, and vessels), 
utilizing machine learning algorithms (discussed later). The 
accuracy of these automated annotations should nevertheless 
be checked by a pathologist as well.

Finally, crowdsourcing (as in soliciting help from a large 
number of individuals via web‑based tools) of image 
annotations has recently been studied and may be an option 
for specific and large‑scale studies.[100]

In addition to ensuring quality of annotations, the review by a 
pathologist may also gain valuable insight into the population 
of the study slides to be analyzed and highlight specific issues 
or potential pitfalls that may need to be considered during 
algorithm development.[4]

Pathologist’s role in algorithm development and data 
review
The pathologist plays a crucial part in the iterative process of 
algorithm development and the review of generated data and 
its interpretation.

Whenever the assessment of biomarker expression via 
staining intensity is part of the objective of an analysis, final 
algorithm thresholds should be approved by a pathologist 
before data generation.[101,102] This is often done by reviewing 
the performance of test algorithms and thresholds on selected 
smaller areas of the ROI.[4]

These test algorithms should also be reviewed for other 
performance criteria. For example, are cells or other desired 
structures correctly identified and enumerated? Is the target 
tissue correctly identified and separated from other structures 
not intended for analysis? Is staining adequately classified 
(i.e., staining intensity or ISH dots as part of a scoring 
paradigm)? While it is not necessary for an algorithm to 
perform with 100% precision and accuracy, a reasonable 
level of performance should be met that correlates with 
the general goals of the analysis.[103,104] For example, it 
may be acceptable for a study which is designed to rank a 
large number of samples or tissue microarray (TMA) cores 
by staining to be less accurate, whereas a clinical study to 
inform treatment decisions or prognosis may be required to 
meet a more stringent predetermined expectation of accurate 
classification.[105] Specific samples that do not meet these 
predetermined criteria should be failed upon review, which 
should trigger either reworking of the algorithm, reanalysis, and 
re‑review or exclusion from analysis.[4] However, depending 
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on the software solution or image analysis toolbox used, the 
researcher or pathologist’s ability to modify algorithms to 
improve performance may be limited. On the other hand, some 
commercially available solutions can provide so many options 
for modification that may be difficult to use or require image 
analysis experts to be involved in the workflow.[84,97]

Once test algorithms meet desired performance criteria, final 
analysis can be performed on a study set of slides. A pathologist 
should review the algorithm performance, typically by 
viewing the markup images (also known as segmentation 
overlays), a visual representation of the image segmentation 
and classification [Figure 3]. Different institutions practice 
different review strategies, ranging from review of every 
individual slide and markup to only reviewing a certain 
percentage of analysis runs. The appropriate extent of analysis 
review should be informed by the general question interrogated 
via image analysis and the impact of the data on research, 
decision‑making, and ultimately patients. Only data from 
algorithms that pass the pathologist’s review and the general 
performance criteria should be included in final reporting.[106] 
It is not uncommon that, for a few slides, no suitable analysis 
solution can be found.

Final data interpretation should also involve the expertise 
of a pathologist, but can be performed by a larger team with 
specialty expertise in various areas relevant to the objectives 
of the analysis. Due to large amounts of data generated, it 
is advised to have a biostatistician as part of such team.[4] 
Some commercially available algorithm solutions come with 

data interrogation and plotting tools to aid in this step of the 
analysis. Similarly, some image analysis service providers 
offer further statistical analysis and expert interpretation of 
study data as part of the service package.

Importance of quality control
Although there have been some quality assurance programs 
instituted for IHC (e.g., United Kingdom National External 
Quality Assessment System and International Quality Network 
for Pathology), there are few quality assurance check programs 
available to users in digital pathology.[107,108] Creating a similar 
quality stain across different runs of IHC is critical for achieving 
the optimal value from image analysis. Therefore, a human is 
still required for quality assurance of digital images before they 
can be processed by an image analysis algorithm. Inter- and 
intrarun variability in staining quality can generally be tolerated 
by pathologists during manual assessment. However, when 
image analysis tools are used to ask more detailed questions, 
utilizing the same slides displaying variable staining, results may 
be greatly influenced by inconsistent staining results. Similarly, 
technical aspects of the slide digitization, for example, maximum 
magnification, image compression, and color palette, can have 
an effect both on the viewed digital image and on the final 
image analysis results. Tissue heterogeneity can also introduce 
variability within the image analysis process.[84]

The validation of an image analysis algorithm for a specific 
biomarker assay is dependent on a number of other factors 
related to the histology, staining and scanning quality, and 
equipment. The level of validation is dependent on the assay’s 
intended use, often referred to as “fit‑for‑purpose”. Whereas a 
clinical biomarker assay would require rigorous validation, a 
research or exploratory assay may require less.

For clinical use of an image analysis algorithm, it is important 
to know the use cases that the algorithm is intended for 
and to make sure that the algorithm is adequately validated 
for those specific tissue conditions, such as frozen tissue, 
formalin‑fixed tissue, B5‑fixed tissue, or decalcified tissue. In 
the future, there are likely to be more commercially available 
solutions for image analysis in the clinical space. This will be 
similar to purchasing an analyzer for the clinical pathology 
laboratory. However, the image analysis algorithms will need 
to be internally validated by each of the institutions before 
the algorithms can be used for clinical care. National societies 
such as the CAP are creating guidelines to facilitate adoption 
of image analysis into routine pathology workflows.

machIne learnIng and artIfIcIal IntellIgence

Speaking the artificial intelligence language
The field of artificial intelligence (AI) comes with its own broad 
vocabulary. Many of these terms are used interchangeably 
or erroneously in common parlance.[109] While a number of 
resources exist online that go into great depth in explaining the 
nuances of the language around AI, there are some concepts 
at the core of most AI that can serve pathologists as a baseline 
in understanding the technology:[110]

Figure 3: (a) A mouse xenograft tumor sample is stained with hematoxylin 
and Ki67 (DAB). (b) An enlarged region is shown where nuclei are stained 
blue and Ki67+ cells are brown. (c) A pathologist‑trained random 
forest classifier is developed to identify tumor (green), stroma (blue), 
necrosis (red), and glass (gray). (d) The algorithm parameters are 
fine‑tuned with the pathologist’s input to optimize the nuclear segmentation 
and to define intensity thresholds to categorize the expression into four 
bins: 0+ (blue), 1+ (yellow), 2+ (orange), and 3+ (red)

a b

c d
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•	 AI – The broadest of these concepts, AI refers to any 
technology in which machines can perform activities 
considered “smart” or “human” in nature. This could 
involve hard coding the machine to perform specific tasks 
intelligently, machine learning, and other approaches[111]

•	 Machine learning – Machine learning is the specific 
branch of AI in which machines are exposed to a large 
amount of data with the expectation that these machines 
establish their own patterns to interpret and act on new 
data[112]

•	 Deep learning – Deep learning is a subset of machine 
learning. However, while supervised machine learning 
algorithms require some level of input in training, deep 
learning leverages artificial neural networks (ANNs) 
to make its own determination as to whether its 
interpretation or prediction is correct[113-115]

•	 Supervised and unsupervised learning – The goal of 
machine learning, at its core, is to develop a machine that 
is capable of going from a set of inputs to a set of outputs. 
Supervised learning is the application of this concept with 
a known, defined set of outputs on which the system is 
assessed, while unsupervised learning has no predefined 
output set and enables the machine to determine what it 
defines as the natural patterns present in the data[109,116]

•	 ANNs – Our own brains operate through a complex 
network of interconnected neurons. An ANN is a set 
of layered, connected artificial neurons, with a defined 
pathway for how data are propagated and moved through 
the system.[117] These ANNs provide a means of getting 
an output that is the result of several, often independent, 
steps of computation, weighting, and assessment.[118,119]

Brief history and evolution of artificial intelligence
Although AI is a very young field of inquiry, with some of 
the key contributors still being alive today, it has already 
been through several hype cycles and deep “AI winters” in 
its evolution.

Some now propose, however, that in 2018, the “plateau of 
productivity” has truly been reached and large-scale societal 
impact will be realized. In 2008, Thomas Fuchs, to some the 
“founding father of computational pathology”, demonstrated 
the utility of computational pathology with analysis of 
TMAs and survival prediction of renal clear cell carcinoma 
patients.[120] The advent of graphics processing units (GPUs) 
in the late 2000s further advanced the field, and in 2012, 
Dan Ciresan et al. showed a significant improvement on 
the best performance in the literature for multiple image 
databases using multicolumn deep neural networks for 
image classification – the era of convolutional neural 
networks (CNNs) was born.[121]

Where are we now?
AI as applied to medical image analysis is still a very young 
but rapidly burgeoning field. It is <10 years since the advent 
of GPUs and CNNs, both of which have radically advanced 
the opportunities in this space. The following are some of the 

areas in pathology and related fields which either already have 
seen or are likely to soon see the implementation of AI:

•	 Radiomics and Pathomics – In other data‑rich fields of 
medicine, AI is already being implemented in health‑care 
practices as a means of addressing workload volume 
and driving augmentative insights. For example, service 
providers exist that offer workload easing AI at a fixed 
per-case price in the field of radiology.[122] Similar 
nondiagnostic workflow applications of AI are valuable for 
pathology. As AI becomes an increasingly relevant part of 
individual fields of medicine, overlap and cross‑specialty 
application is natural progression for the technology[123,124]

•	 New Integrative Diagnostics for Oncology: Computational 
methods have revolutionized the ability to assess the 
quantitative, spatial, and temporal architecture of tumors. 
Anant Madabhushi, for example, has pioneered new 
methods to measure tumor‑infiltrating lymphocytes and 
proposed an image‑based risk score, which computes the 
probability of disease aggressiveness using features mined 
from medical images for a variety of cancers.[120,125]

• Further potential in pathology:
• Companion diagnostics – As pharmaceutical 

companies continue to develop targeted approaches 
to cancer therapy, there is a growing need for 
companion diagnostics. Conventionally, these have 
been biomarker specific. However, AI may serve as a 
separate approach to correlate patterns in tissue with 
likelihood or degree of response to therapies[113,126]

• Computer‑aided diagnosis – Training an AI product 
as an inferential tool inherently lends itself toward 
assisting in diagnosis. Whether this ultimately in 
an application that presents measurements and 
quantifications of parameters already used in 
diagnostic assessment or develops as a predictive 
indicator, AI will have a growing role to play in the 
diagnostic element of pathology[127]

       •    The Camelyon17 was organized by the Diagnostic 
Image Analysis Group and Department of 
Pathology of the Radboud University Medical 
Center (the Netherlands). The purpose of this 
challenge was to come up with a fully automated 
method to identify breast cancer metastases in 
whole-slide images of lymph nodes and to classify 
each lymph node into one of four stages: (1) 
cancer negative, (2) isolated tumor cells, (3) 
micrometastases, or (4) macrometastases. More 
information including data and results can be 
found at https://camelyon17.grand-challenge.org/
(last accessed: October 14, 2018).[128] A similar 
previous challenge was called Camelyon16, and 
it is expected that comparable future challenges 
will be opened up to continue to incentivize and 
highlight technological advances in this area

       •    A global initiative to better understand 
kidney disease, which is using unsupervised 
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learning of whole‑slide images, is the nation 
institutes of health NIH‑lead Kidney Precision 
Medic ine  Pro jec t  (KPMP),  which  has 
revealed new insights into the morphology 
of glomerular diseases (https://www.niddk.
nih.gov/research-funding/research-programs/
kidney-precision-medicine-project-kpmp; last 
accessed: October 3, 2018).

IncorporatIng Image analysIs Into pathology 
workflow

Depending on if image analysis tools are used within a clinical 
setting or as part of a research laboratory in drug development, 
different aspects need to be considered with regard to how to 
best integrate image analysis within the laboratory’s workflow.

Clinical/diagnostic workflow
The value added by image analysis in pathology is exemplified 
by biomarkers, mitotic detection, nuclear morphology 
detection, cancer grading, hematology, and others.[72,84,129‑133] 
The most frequent application for patient care purpose is a 
quantitative analysis of IHC study of ER, PR, and HER2 for 
breast cancer as prognostic and predictive biomarkers.

The key elements to incorporate image analysis in pathology 
workflow include the quality of the slides (sectioning, staining, 
and scanning), image quality, ROI selection, algorithm 
selection, and the expertise of the pathologist who will be able 
to correlate the image analysis result with the relevant clinical 
information to make sure it is appropriate for that particular 
patient/case. Using breast cancer biomarker quantitative image 
analysis as an example, a few comments on algorithm selection 
and the role of pathologists are addressed here.

A good quantitative image analysis algorithm produces 
accurate, precise, and reproducible results. Accuracy defines 
the degree of correctness or true values of a given laboratory 
result comparing to a gold standard, which implies freedom 
of error. Precision defines the degree to which a test provides 
the same measurement over time.[134] There are basically three 
types of algorithm available currently in the diagnostic space: 
(1) FDA‑cleared – FDA has determined that the commercially 
available product is substantially equivalent to another legally 
marketed algorithm for the same purpose as safe and effective. 
A premarket notification is referred as to 510(k);[135] (2) 
non‑FDA approved commercially available – these products 
can be FDA registered for investigational use only; and (3) 
laboratory developed test – the algorithm is designed and 
used within a single laboratory according to the laboratory’s 
own procedure. When laboratories choose to use quantitative 
image analysis for clinical purpose, the quantitative image 
analysis system and algorithm must be validated for diagnostic 
interpretation. Validation is designed to gather and document 
evidence that a system or test will consistently produce a 
result that meets predetermined acceptance criteria. Clinical 
laboratory improvement amendments and CAP require that 

laboratories validate the performances of tests to meet the 
operational needs of the tests.[136] FDA‑cleared quantitative 
image analysis systems and algorithms have less validation 
burden than non-FDA-cleared products for the laboratory.

As an example, according to the ASCO/CAP HER2 guideline, 
quantitative image analysis can be used to achieve consistent 
interpretation. To further guide pathologists to improve 
accuracy, precision, and reproducibility in the interpretation 
of HER2 in breast cancer using image analysis, CAP 
developed evidence-based recommendations. These include 
11 recommendations, 7 of which are based on CAP laboratory 
accreditation requirements and 4 are based on expert consensus 
opinions. In summary, quantitative image analysis and 
procedures must be validated before implementation, followed 
by regular maintenance and ongoing evaluation of quality 
control and quality assurance. HER2 analysis performance, 
interpretation, and reporting should be supervised by 
pathologists with expertise in image analysis.[137]

Research and drug development image analysis workflow
Research laboratories performing tissue‑based research, 
especially biomarker discovery, were early adopters of digital 
pathology due to the valuable and multiparametric outputs 
offered by quantitative image analysis. It is the pharmaceutical 
and academic research market which appears to be the majority 
of users of digital pathology image analysis systems.

High‑throughput tissue biomarker screening, particularly in 
the area of oncology, was bolstered by the introduction of 
digital pathology image analysis. TMAs, made by transferring 
cylindrical cores of tissue from paraffin‑embedded donor blocks 
into recipient paraffin, can contain tens to thousands of tissue 
specimens.[138] TMA slides are probed using typical IHC or 
ISH techniques to allow biomarkers to be compared across 
all specimens simultaneously. TMAs save precious tissue and 
remove issues associated with slide-to-slide staining variability. 
TMA workflow tools available within many of today’s digital 
pathology image analysis platforms complement this powerful 
technology by automating the segmentation and analysis of 
tissue cores, thus allowing biomarker expression to be scored 
quickly and objectively. TMAs are used to address a variety of 
different research questions: to investigate the state of the cancer 
proteome at different stages of tumorigenesis, to understand 
biochemical pathways involved in the development of different 
types of cancer, to identify potential new therapeutic targets, 
and to screen candidate prognostic or predictive biomarkers.

Within the field of immuno‑oncology, researchers have made 
extensive use of tissue image analysis tools. For example, it 
has been shown that the number and location of CD8-positive 
lymphocytes is critical for measuring immune response in 
PD-L1-positive and PD-L1-negative non-small cell carcinoma 
samples via analysis with commercial software.[139] Utilizing 
TMAs of colonic adenocarcinomas, open‑source software 
demonstrated its ability to analyze IHC staining for CD3, CD8, 
p53, and PD‑L1.[140] In breast carcinoma TMAs, it was shown 
that analysis with a commercial software yielded superior 
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results over manual scoring when evaluating the biomarker 
Ki‑67, ER, PR, and HER2.[46]

While TMAs offer the advantage of being able to screen 
biomarker expression across large numbers of specimens 
simultaneously, the small TMA cores may not adequately 
capture information about tissue and biomarker heterogeneity. 
It is not uncommon in cancer to find significant regional 
heterogeneity in tumor biomarker expression within a single 
biopsy, and in some cases, such as with HER2 expression, this 
heterogeneity may impact patient outcomes.[141,142] Likewise, in 
immuno‑oncology, lymphocytes may be unevenly distributed 
within the tumor microenvironment; therefore, a single field of 
view or biopsy core may not always be representative. Some 
modern digital pathology image analysis platforms provide 
tools to help researchers with these “big picture” questions. 
For example, biomarker heterogeneity can be visualized 
by creating a spatial plot of cell data and color-coding dots 
based on the level of biomarker expression [Figure 4a]. 
Researchers can easily identify “hot spots” of high (or low) 
expression across whole‑slide tissues using these “heat map” 
views. Spatial plots can also be used to quantify the spatial 
distances between different cell types in the tissue, such as 
lymphocytes and tumor cells [Figure 4b]. In the latter instance, 
multiple biomarkers may be required to differentiate specific 
immune and tumor cell phenotypes. In instances where 
more than two markers are required, fluorescent whole‑slide 
scanning or multispectral imaging platforms are employed 
in combination with compatible algorithms to facilitate 
multiplexed analysis.[143]

Digital pathology image analysis and related technologies are 
applicable to areas of research beyond oncology. Scientists 
interested in metabolic disease states, such as diabetes, may 
use image analysis to understand the metabolic state of the 

pancreas in animal models. In this instance, image analysis is 
used to measure overall expression of metabolic hormones, 
insulin, glucagon, and/or somatostatin and to quantify the 
relative number of cells that are secreting these hormones 
within the pancreatic islets [Figure 5a].[144-146] Changes to 
islets and pancreatic structure can occur as a result of drug 
toxicity as well. In this instance, machine learning‑based 
tissue classification approaches are useful for evaluating the 
relative composition and morphology of the pancreas.[146] 
Neuroscientists interested in Alzheimer’s disease have adopted 
digital pathology image analysis and stereological approaches 
to quantify density and size of beta‑amyloid plaques in 
cortex and hippocampus [Figure 5b].[147-149] In sciatic and 
optical nerve, digital image analysis is used to calculate axon 
G‑ratios, a measurement of myelination.[150] Digital pathology 
image analysis is also ideally suited for screening whole brain 
tissues for rare, but physiologically relevant events, such as 
microhemorrhages, which may be missed using conventional 
microscopy. Large brain sections must be mounted on large 
format slides, and the development of slide scanners that can 
handle larger formats has greatly expanded the utility of digital 
pathology image analysis within the field of neuroscience.

Within the drug development pipeline, pharmaceutical 
researchers utilize many of the same image analysis applications 
as their academic counterparts during the early phases of drug 
development. Downstream of discovery, digital image analysis 
can assist researchers and pathologist in preclinical testing and 
clinical trials [Table 1]. Some of the quantitative algorithms 
that emerge from drug development research may transition 
into the clinic as companion diagnostics, thus closing the 
circle of technology adoption. While there are only a handful 

Figure 5: Digital pathology image analysis in the pancreas and brain. (a) Islets 
stained with antibodies against insulin (red stain) and glucagon (brown 
stain) in digital slides. Analysis shown bottom left quantifies number of 
islets that are of islet (orange area in markup) and number of cells that 
are positive for insulin (red cell markup), glucagon (green cell markup), 
both (yellow cell markup), or neither marker (white cell markup). 
(b) Identification of beta‑amyloid plaques in brain sections. Slides are 
probed with antibodies against beta‑amyloid (purple) and vessel endothelial 
marker (brown). Digital image analysis shown bottom right quantifies 
density, diameter, and area of vessels (red markup) and plaques (green 
markup), and colocalized area (yellow markup)

a b

Figure 4: Digital pathology image analysis in spatial context reveal 
biomarker and cell heterogeneity. (a) The inset digital slide with 
DAB‑stained biomarker (brown) was analyzed. Cells identified in the 
analysis were plotted spatially as a dot plot and each cell “dot” color coded 
according to the optical density of DAB stain in that cell. Cells in “cooler” 
colors (blues and greens) have lower stain optical density compared to 
cells in “warmer” colors (yellow, orange, and red). (b) Tumor cells and 
immune cells (DAB‑positive) identified by image analysis were plotted 
spatially and analyzed to quantify immune cells within 30 µm of tumor 
cells (proximal immune cells). Tumor cells are colored blue, proximal 
immune cells are colored red, and nonproximal immune cells are green. 
The distance between tumor cells and proximal immune cells are recorded 
to create a histogram (inset, bottom right) and are connected by nearest 
neighbor lines in the dot plot

a b
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of complementary quantitative algorithms (e.g., HER2), there 
are no current examples where quantitative algorithms are 
required to interpret a companion biomarker. Nonetheless, 
promising findings in the area of immuno‑oncology described 
above suggest that this area of image analysis is poised for 
significant growth in the coming decade.

avaIlaBle tools: applIcatIon modules versus 
development envIronment

There are numerous tools available to the pathologist 
and researcher to facilitate the quantitative analysis of 
histology-based images. These tools can be integrated with a 
digital pathology image management platform or as a separate 
software platform. Image analysis platforms are available from 
both commercial vendors and open-source software providers 
or as a service from a contract research organization. These 
service providers may use commercial software or proprietary 
image analysis tools. In general, there are two different types of 
image analysis platform tools: prebuilt application modules or 
development/toolboxes that enable the user to build a custom 
image analysis pipeline or workflow.

Prebuilt application modules are image analysis algorithms 
designed to analyze a specific biomarker localization or 
tissue morphological phenotype. These modules are typically 
designed for ease of use with a minimum set of adjustable 
parameters, though they can get quite complex for advanced 
applications such as multiplex assays. One example of a 
relatively simple assay is for a single compartment (nuclear) 
biomarker such as Ki67, a tissue biomarker for cellular 

proliferation. A nuclear module may include only a few 
user‑adjustable parameters such as color selection (e.g., blue 
for hematoxylin and brown for DAB IHC stain), nuclear 
size (a priori information to help algorithm segment nuclei), 
and intensity threshold (to identify Ki67‑positive cells vs. 
Ki67‑negative cells). The user may also be able to configure 
which image analysis features are extracted (e.g., number of 
total cells, positive cells, nuclei area, and nuclei diameter). 
An example of a more complex image analysis module is an 
algorithm to measure multiple biomarkers in a single image, 
i.e., multiplex assays. These are becoming common, especially 
for immune phenotyping in tissue. This multiplex module 
would need more user-adjustable parameters to address the 
segmentation of each individual biomarker. In the case of 
a multiplex brightfield assay, the user would need to define 
each color (for example, blue for hematoxylin, brown for 
CD4, yellow for CD8, and cyan for FoxP3). The user would 
also need to select the localization of each biomarker (nuclear, 
cytoplasm, and membrane), thresholds, etc. One can see how 
the number of user‑configurable parameters quickly increases 
with these multiplex assays. Once configured, the settings 
can be saved, so that subsequent users can simply load the 
parameters for testing and running the assay on additional 
images. These two examples are for cellular localization of 
biomarkers, but there are numerous other examples of prebuilt 
image analysis modules such as measuring pancreatic islets, 
neurons, chromogenic or fluorescent ISH, microvessels, fat 
vacuoles, and many other applications.

A second approach for image analysis algorithms is the 
toolbox approach. The software includes a set of tools that are 
used to build a “script” to analyze each image. The tools are 
generally organized by different functions: color separation, 
preprocessing, object segmentation, postprocessing, and 
filtering. The user would develop the script to include the 
processing tools required for their specific application. For the 
Ki67 assay above, a script might include these steps:
1. Color separation of blue (hematoxylin) and brown (DAB) 

to create two image masks (nuclei only and Ki67 only)
2. Threshold probability map to identify nuclei or 

Ki67+ pixels and generate two image masks (nuclei only 
and Ki67 only)

3. Object segmentation algorithm, e.g., watershed algorithm, 
to segment individual objects from image mask (nuclei 
and Ki67+ cells)

4. Splitting algorithm to split touching nuclei
5. Threshold algorithm to distinguish negative and positive 

Ki67 nuclei
6. Postprocessing to remove any objects that are not real 

nuclei (e.g., based on size and shape)
7. Export appropriate image analysis features, e.g., number 

of total cells and positive cells.

Once a script is developed for a specific assay, the script can 
be used by other users, so novice users would not necessarily 
need to know the details of the tools to run the script on their 
set of images.

Table 1: Role of image analysis in different phases of 
drug development

Phase Image analysis role
Discovery 
phase

• Quantitative analysis of target and pathway inhibition 
biomarkers using xenografts and in vivo models: 
Understand how the drug target and pathway biomarkers 
are regulated by drug concentration and dosing regimen

• Measurement of target expression and specificity using 
TMAs and other high-throughput approaches

• Correlative analysis (e.g., efficacy) for identification of 
potential companion or complementary biomarkers based 
on animal models

Preclinical 
studies

• Animal models and safety assessment (non‑GLP): 
Quantification of hypertrophy, steatosis, fibrosis, and other 
readouts using traditional image analysis approaches

• Quantification of organ morphology using machine 
learning‑based tissue classification (e.g., islets in pancreas 
and glomeruli in kidney)

• Additional studies in different animal models to identify 
potential clinical biomarkers

Clinical 
trials

• Analysis of biomarkers used for patient stratification and 
prediction of therapeutic response

• Deep learning approaches to identify classifiers for 
patient stratification and prediction of therapeutic response

TMA: Tissue microarray , GLP: Good laboratory practice
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There are pros and cons to each approach. The module 
approach is user‑friendly and can often be configured by 
the novice in an interactive trial-by-error approach with a 
minimal amount of training. If an available module addresses 
a user’s specific biomarker application, they can typically 
install and run the image analysis the same day. The toolbox 
approach requires some expertise to understand what each 
function does, why you would use each function, and what 
order to apply each function. The toolbox approach requires 
more time for training, but can offer more flexibility in 
optimizing a script to a specific biomarker assay or tissue 
type. In either case, the approach depends on each user’s or 
group’s ability and needs, so it is recommended to spend 
time to understand tissue image analysis needs and evaluate 
multiple options to determine which solution is best for 
each situation.

How to decide between open‑source and commercial 
software
In the past decade, a vast array of digital pathology image 
analysis software has emerged. Software types differ based 
on area of application, ease of use, cost, and customer 
support, among other variables. Open‑source software 
provides a collaborative option for image analysis, whereas 
commercial software provides more personalized image 
analysis  choices. Each option presents certain advantages and 
disadvantages [Table 2]. Given the number of open-source and 
commercial software solutions, it is often difficult to choose 
which tool is appropriate for a given task.

Analytic software ranges from relatively inexpensive, 
toolbox‑like software for basic tissue color quantification 
to complex and costly model‑based applications for tissue 
recognition and quantification.[151] Although current pathology 
training involves progressive exposure to software, advanced 
computational skills are not universal. The ideal digital 
image analysis software should include easy installation, 
user‑friendly instructions and training, optimal speed and 
capacity, rapid and effective customer support, and an intuitive 
interface that is easy to use.[152] Important considerations 
for choosing digital pathology image analysis software are 
presented in Table 3.

Commercial software can be expensive and requires dedicated 
training. It offers extensive technical support, which helps 
streamline issues that inevitably arise from frequent use of 
the software.[151-154] An open-source software offers a more 
cost-effective option for individuals who wish to become 
familiar with digital analyzers and for those who have 
infrequent or educational use of image analysis. Ultimately, 
the successful implementation of digital pathology imaging 
software will depend on the desired application and other 
variables. Finally, for infrequent utilization of image analysis, 
service providers are also available, enabling the usage of 
this technology without having to invest into own digital 
workflows, etc.

Table 2: Pros and cons of open‑source versus 
commercial digital image analysis software

Open source Commercial
Cost Free Moderate to expensive
Technical 
support

Limited, provided by email 
and chat groups

Guaranteed support for 
customer issues

License No software license 
necessary, and installation 
and updates administered 
by user

Software license 
required; installation 
and updates 
administered or 
supported by vendor

Viability Life of software and 
new development at 
risk of open-source 
provider - potential 
short-term viability

Life of software and 
new development at 
risk of vendor - though 
typically longer-term 
viability

Fixing issues Rapid, collaborative response 
to troubleshoot malfunctions

Only vendor experts 
can troubleshoot 
malfunctions

Software 
application 
training

Limited hands‑on training, 
but online resources often 
exist

On-site and online 
training provided by 
vendor

Image file 
compatibility

May be compatible with a 
variety of image formats

May have limited 
compatibility

conclusIon

The combination of image analysis software and pathology 
expertise provides an opportunity to transform a traditionally 
qualitative assessment to a quantitative analysis of complex 
biomarker expression, patterns, and tissue phenotypes. 
Image analysis and machine learning algorithms can be used 
to automatically identify tissue compartments of interest, 
segment individual cells, or anatomical features and categorize 
these features based on biomarker expression levels and 
localization. The research scientist and pathologist will 
continue to be instrumental in both the use and operation of 
image analysis workflows, which will continue to evolve and 
transform both preclinical and clinical biomarker research.

aBout the dIgItal pathology assocIatIon

The DPA was founded in 2009 and is a nonprofit organization 
comprised of pathologists, scientists, technologists, and 
industry representatives dedicated to advancing the field of 
digital pathology. The organization’s mission is to facilitate 
education and awareness of digital pathology applications 
in health care and life sciences. The DPA’s committees 
and task forces are dedicated to enhancing the field. The 
association collaborates with the FDA on equipment approvals 
and addressing technology regulations. The members are 
encouraged to share best practices and promote the use of the 
technology among colleagues to demonstrate efficiencies and 
share knowledge and its ultimate benefits to patient care. For 
more information, visit https://digitalpathologyassociation.org.
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