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Background
Genome assembly aims to reconstruct genomes from sequencing reads, and thus 
plays important roles in various downstream studies, including identification of genes 
and genome structure variations. Most of the existing assembly methods first organize 
sequencing reads into a graph, say de Bruijn graph or overlap graph, and then attempt 
to find a path in the graph to restore the original genome sequence [1]. However, the 
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genome repeats longer than sequencing reads always create ambiguities in path find-
ing, making assembly approaches yield only separate paths (called contigs) rather than 
the complete genomes [2]. The longer reads by third generation sequencing [3, 4], and 
long-distance linking information by pair-end, mate-pair, or mapping technologies, will 
definitely help genome assembly methods to resolve the ambiguities incurred by repeats 
[5]. The study [6] provides an elaborated review on the methodological progresses and 
perspectives in the integration of short-range and long-range information for improving 
assembly contiguity.

Among the technologies that provide long-distance information across repeats, opti-
cal mapping has its unique advantage in measuring long genome fragments. For exam-
ple, the BioNano Saphyr platform can measure genome fragment up to 2 megabases 
[7]. Unlike genome sequencing technologies, optical maps record locations of specific 
enzyme recognition sites, say GCT​CTT​C and GAA​GAG​C for enzyme BspQI, along a 
genome. By identifying these sites from contigs, we can easily align contigs onto opti-
cal maps, and then order them into scaffolds [8]. However, the short contigs that con-
tain insufficient enzyme recognition sites usually cannot be reliably aligned onto optical 
maps, thus creating a variety of gaps in scaffolds and making them far from complete 
genomes. Filling these gaps with nucleotide sequence will considerably improve the 
completeness of genome assembly.

A great variety of approaches have been proposed for filling gaps directly using 
sequencing reads, including SOAPdenovo [9], GapFiller [10], GMCloser [11], PBJelly 
[12] and LR_Gapcloser [13]. These approaches, however, are infeasible for filling gaps 
of the scaffolds obtained via optical maps since these gaps are often much longer than 
sequencing reads. To fill these large gaps, Nagarajan et al. proposed to use contig paths 
in assembly graph instead of the short sequencing reads [14]. Here, assembly graphs 
refer to the product of assembling sequencing reads using graph theory, which contains 
contigs as nodes and connections among them as edges.

Recent progresses to improve assembly contiguity also include Bionano solve pipe-
line, BiSCoT [15], and Novo&Stitch [16]. Briefly speaking, Bionano solve pipeline uses a 
module called “Hybrid Scaffold”, which sets the identified gaps with N-base rather than 
filling them using genome sequence. BiSCoT aims to resolve the N’s gap between con-
tigs inserted by Bionano scaffolding through merging two contings that share a genomic 
region. Novo&Stitch proposes a novel method that uses optical maps for accurate 
assembly reconciliation.

To fill gaps, we can choose a contig path that connect two boundary contigs of a gap, 
and then uses the corresponding nucleotide sequences. Thus, the successful gap-filling 
relies on two steps: (1) searching contig paths in assembly graph, and (2) evaluating the 
consistency between contig paths and optical map of the gaps of interest [17–19]. The 
two steps, i.e., searching and evaluating contigs paths, can be combined in various ways. 
For example, OMACC [17] employs the “searching followed by evaluation” strategy. Spe-
cifically, for the two boundary contigs of a gap, OMACC first searches assembly graph 
for all possible contig paths to connect them. Next, OMACC evaluates each possible 
contig path in terms of the difference between path length and gap size and selects the 
best path to fill the gap. By rescaling optical maps and estimating the number of repeat 
copies within gaps, OMACC achieved better accuracy than the previous studies [14, 17].
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In contrast to OMACC, AGORA employs the “searching by evaluation” strategy [18]. 
That is, AGORA uses a modified depth-first search (DFS) to identify the most likely 
contig path. At each search step, AGORA selects an edge to extend the current sub-
path according to several heuristics, say the decreasing order of edges, the consistency 
between this edge’s in silico map to the experimental optical maps. AGORA uses the 
first found contig path to fill a gap. These heuristics could greatly improve searching effi-
ciency; however, they might also lead to potential errors in genome reconstruction.

In summary, the “searching followed by evaluation” strategy has high accuracy but 
low efficiency, whereas the “searching by evaluation” strategy has high efficiency but low 
accuracy. Thus, the tradeoff between accuracy and efficiency remains a challenging task.

In this study, we propose an accurate and efficient approach to gap filling. Unlike the 
existing “searching by evaluation” methods heavily relying on heuristics, our approach 
uses a stochastic model to calculate the similarity between optical maps and con-
tig paths. Using the calculated similarity to guide path-finding, our approach achieves 
higher accuracy than the existing approaches using heuristics. In addition, unlike the 
“searching followed by evaluation” methods, our approach maintains only a small set 
of highly probable sub-paths and prunes the unlikely ones, thus significantly improving 
efficiency.

We evaluated nanoGapFiller on simulated optical maps of 12 species and real opti-
cal maps of 3 species. On the simulated data sets, nanoGapFiller fills the gaps with high 
accuracy in minutes. Moreover, nanoGapFiller always fills more gaps than OMACC. On 
real data sets, OMACC cannot fill any gap, while nanoGapFiller successfully fills all of 
the identified gaps. We also showed that our pruning strategy could significantly reduce 
running time without sacrificing accuracy. Thus, nanoGapFiller should benefit various 
downstream genomic studies by improving the completeness of genome reconstruction 
with aid of optical maps.

Results
Experiment setting and evaluation criteria

We evaluated accuracy and efficiency of nanoGapFiller on simulated optical maps of 12 
species and real optical maps of 3 species. The real optical maps were acquired using 
BioNano Iris platform: For E. coli, P. putida and S. coelicolor, the number of optical maps 
are 8644, 15000 and 17422 respectively, and the coverage are 336, 435 and 354 respec-
tively. The simulated optical maps were generated using an in-house simulator to extract 
enzyme recognition sites from reference genomes. We also applied another simulator 
OMsim [20] that adopts different error model from our in-house simulator.

The gaps of scaffolds were identified as follows: Using the reference genome of a 
species, we first generated simulated next-generation sequence (NGS) reads using 
read simulator ART [21], and then assembled these reads into assembly graph using 
genome assembler SPAdes [22]. Each simulated datasets has read length of 150, cov-
erage of 50. Next, we aligned contigs onto optical maps, and further ordered the 
contigs into scaffolds according to the alignments. Finally, the unaligned parts of scaf-
folds were identified as gaps. To make thorough evaluation, we adopted two types of 
alignment methods: (1) SOMA2 used by OMACC [23], and (2) refAligner used by 
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BioNano Solve package. Compared with SOMA2, refAligner generally reports fewer 
alignments with higher precision, and thus generates longer and more accurate gaps.

We assessed the quality of gap filling through calculating two levels of similarity 
between gap filling results and the corresponding regions in reference sequences: 

(1)	 Contig path similarity (CPS): the number of contigs shared by the filled gaps and 
the real contig paths in reference genomes.

(2)	 Nucleotide sequence similarity (NSS): we further calculated the base-level similarity 
NSS = 2× Lc/(Lr + Lf ) , where Lf  and Lr denote the length of gap filling results 
and corresponding reference sequence, respectively, and Lc denotes the longest 
common string between them.

In the study, we compared nanoGapFiller with the state-of-the-art software OMACC. 
We did not perform comparison with AGORA since it is now out of maintenance.

Evaluating accuracy of gap filling

Table 1 shows the accuracy of gap filling results on the E. coli genome. As shown in 
this table, nanoGapFiller successfully filled all of these 23 gaps with NSS over 99%. In 
contrast, OMACC could only fill 11 out of the 23 gaps and failed to fill the long gaps 
with over 15 contigs. Even for these 11 gaps, OMACC’s quality is not always high. For 
example, for the gap 252216r-252238, its reference sequence consists of 7 contigs of 
226 nt; however, OMACC filled this gap with 31 contigs of 1546 nt, which has con-
siderably low similarity with the reference sequence (NSS: 25.51% ). On the other 11 
species, the gap filling results again suggest the superiority of nanoGapFiller in terms 
of accuracy and coverage (Additional file 1: Tables 1–11 and Additional file 1: Fig. 1). 
As shown in Additional file 1: Tables 14, 15, and 16, nanoGapFiller also shows better 
performance than Novo&Stitch.

As a concrete example, we showed in Fig. 1 the filling process of the gap 781738-
781976r of S. coelicolor. There are two contig paths connecting the beginning site 
and ending site of the gap: one path contains the contig 777124 while the other path 
contains its reverse complement 777124r. OMACC explores the distance between 
the beginning site and ending site only, and thus cannot identify which path matches 
better with the corresponding optical map. In contrast, nanoGapFiller utilizes the 
enzyme recognition sites in the intermediate contigs 777124 and 781726r. Specifi-
cally, both 777124 and its reverse complement 777124r contain two sites; however, 
the locations of these sites differ greatly in the two contigs. nanoGapFiller exploited 
this difference and thus correctly identified the contig path that fills the gap.

We further investigated the accuracy of nanoGapFiller on real optical maps of three 
species (Table 2, Additional file 1: Tables 12, 13). As shown in Table 2, only 9 gaps were 
identified when using SOMA2 as alignment method on E. coli species, which is less than 
those identified on the simulated optical maps. OMACC successfully filled 5 out of 9 
gaps but failed at the other 4 gaps with over 15 contigs. In contrast, nanoGapFiller filled 
all of these 9 gaps with considerably high accuracy (NSS over 96%). Venn graphs suggest 
the superiority of nanoGapFiller in terms of coverage on these 3 species (Fig. 2).
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When using refAligner to align contigs onto optical maps, only 4, 2, and 1 gaps 
were identified for E. coli, S. coelicolor, and P. putida species, respectively (Table 3). 
The longest gap has 875Knt. OMACC failed at all of these 7 gaps. In contrast, with 
only one exception (252312r-252486r), nanoGapFiller successfully filled all gaps with 
nucleotide sequence highly similar to the reference genome (NSS over 99%). We also 
evaluate nanoGapFiller using OMBlast [24] as alignment tool. As shown in Additional 
file  1: Table  18, a total of 23 gaps are identified. Despite that these gaps are differ-
ent from the gaps when using SOMA2 as alignment tool (Additional file 1: Table 17), 
nanoGapFiller can still successfully fill these gaps with significant gap filling perfor-
mance (NSS over 97%).

Fig. 1  A case study of gap filling using OMACC and nanoGapFiller. For the the gap 781738-781976r of S. 
coelicolor, there are two contig paths connecting the beginning site and ending site: one path contains 
the contig 777124 while the other path contains its reverse complement 777124r. OMACC explores the 
distance between the beginning site and ending site only, and thus cannot identify which path matches 
better with the corresponding optical map. In contrast, nanoGapFiller utilizes the enzyme recognition sites in 
the intermediate contig 777124 and 781726r and thus correctly identified the contig path that fills the gap 
(shown in red)

Table 2  Filling the gaps identified using real optical maps of E. coli genome

Alignment method: SOMA2. Here, the symbol ‘–’ represents the failure of OMACC​

Gap Reference 
sequence

OMACC​ nanoGapFiller

#contigs #bases #contigs #bases CPS NSS (%) #contigs #bases CPS NSS (%)

252486r–252036r 3 954 3 954 3 100 3 954 3 100

252408–252228r 4 11 4 11 4 100 4 11 4 100

252526r–252538 6 1256 6 1256 6 100 6 1256 6 100

252032–252526r 11 1127 11 1127 11 100 11 1127 11 100

252538–252408 14 20,922 14 20,922 14 100 14 20,922 14 100

252312r–252300r 15 5127 – – – – 15 5127 13 99.06

252290r–251900r 21 18,454 – – – – 31 19,755 20 96.59

252252r–252466r 26 13,442 – – – – 37 13,877 21 97.69

252036r–252032 26 36,757 – – – – 38 37,430 19 99.08

Fig. 2  Venn graphs of the gaps filled by nanoGapFiller and OMACC for a E. coli, b P. putida, and c S. coelicolor. 
Here, the gaps are identified using real optical maps with alignment method SOMA2
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In addition to evaluating our approach on simulated optical maps generated by in-
house simulator, we also repeated the evaluation process on the optical maps gener-
ated using OMsim that adopts a different error model. As shown in Additional file  1: 
Table  19, a total of 8 gaps were identified and for 7 out of the 8 gaps, nanoGapFiller 
achieves accurate gap filling with NSS exceeding 97%. These results clearly demonstrate 
that even using simulators with different error models, nanoGapFiller can still reliably 
accomplish gap filling.

Hi-C scaffolding [25, 26] is a promising approach that bridge and order contigs 
through exploiting the contact frequencies between pairs of loci [27]. Here, we compare 
nanoGapFiller with 3D-DNA [28], a software for Hi-C scaffolding, using the Hi-C data 
downloaded from NCBI GEO (GSM2870416, GSM2870417) [29]. As shown Additional 
file 1: Table 20, 3D-DNA achieves largest contig, total length and N50 of 4375178 bp, 
4637496 bp and 4375178 bp, respectively, which is higher than that of nanoGapFiller 
(894614 bp, 4597570 bp and 785645 bp, respectively). However, 3D-DNA simply fills the 
gaps with N-bases rather than genome sequence. Thus, we further calculate NA50 where 
the contigs are replaced with the blocks that can be aligned to the reference. nanoGap-
Filler achieves an NA50 of 785645 bp, which is much higher than 3D-DNA (438708 bp).

Evaluating efficiency of gap filling

In this section, we analyzed the running time of nanoGapFiller. Theoretically, the proba-
bilistic search procedure takes O(m|E|) times, where m denotes the number of sites in 
gaps, and |E| denotes the number of edges in the site graph. As shown in Table 4, for 11 
out of 12 species, nanoGapFiller takes only minutes on an ordinary personal computer. 
For A. vari, the gaps contain 4,917,178 nt in total, and the site graph contains 135,667 
edges, thus leading to an expensive time cost (71,067.07 s).

One of the key points of our approach is pruning the unlikely sub-paths when the 
matching probability is below MinimalMatchingProbability. As shown in Table 5, 
nanoGapFiller uses 2123 s when no pruning is applied; in contrast, it takes only 88 s 
when setting MinimalMatchingProbability as 10−5 . On the other side, the gap fill-
ing results nearly never change at different settings of the pruning threshold Minimal-
MatchingProbability (Table 6). Together, these observations clearly suggest that our 
approach perfectly balances the accuracy and efficiency in gap filling.

Table 3  Filling the gaps identified using real optical maps of E. coli, S. coelicolor, and P. putida 
genomes

Alignment method: refAligner

Species Gap Reference sequence nanoGapFiller

#contigs #bases #contigs CPS NSS (%)

E. coli 252196–252226 17 51,810 20 17 99.66

E. coli 252486r–252526r 35 105,652 38 27 99.79

E. coli 252510r–252292r 93 600,523 107 86 99.84

E. coli 252312r–252486r 108 184,041 65 31 87.54

S. coelicolor 781738–781976r 9 88,470 9 9 100

S. coelicolor 781976r–781848r 18 66,018 18 18 100

P. putida 443944r–443818 95 875,288 96 83 99.88
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Improvement of completeness of genome scaffolds

Finally we examined the improvement of completeness of genome scaffolds with gaps 
filled. As shown in Table 7, before filling gaps, the contigs are relatively short for A. 
vari species (N50: 64,556 nt). After filling the gaps using OMACC, the scaffold N50 
increased to 78,980 nt. In contrast, after filling gaps using nanoGapFiller, the scaffold 

Table 4  Running time (in seconds) of nanoGapFiller for filling the gaps of 12 species

Here, the gaps are identified using simulated optical maps with alignment method SOMA2. CPU: AMD Opteron 6344; OS: 
Ubuntu 16.04; Python version: 3.6.7

Species #Contigs in 
assembly 
graph

#Sites in 
site graph

#Edges in 
site graph

#Filled gaps Total length 
of gaps (nt)

Running time (s)

S. ynec 250 774 1905 11 181,832 5.24

S. coelicolor 926 3,532 8160 17 478,321 25.95

S. agal 204 546 5554 16 463,622 8.04

P. syringae 1492 2176 51,343 25 732,210 371.05

P. putida 752 2190 15,759 9 2856,292 188.39

N. farcinica 388 924 2192 19 639,552 10.15

E. coli 734 1348 40,858 23 922,021 88.08

E. carotovora 622 1454 2636 19 586,169 9.42

C. hutchinsonii 596 990 5105 25 895,179 12.24

B. pseudomallei 390 2144 2662 8 175,737 3.83

B. japonicum 992 3524 26,014 29 1021,611 1721.27

A. vari 870 474 135,667 17 4917,178 71,067.07

Table 5  Running time (in seconds) of nanoGapFiller at different settings of pruning threshold 
MinimalMatchingProbability 

Here, the gaps are identified using both simulated and real optical maps of E. coli species. CPU: AMD Opteron 6344; OS: 
Ubuntu 16.04; Python version: 3.6.7

Dataset Alignment method MinimalMatchingProbability

0 (no pruning) 10
−8 10

−5 (default) 10
−2

Simulated optical maps SOMA2 2123 90 88 53

Real optical maps SOMA2 46 13 11 13

Real optical maps refAligner 5953 1620 1227 941

Table 6  The quality of filled gaps reported by nanoGapFiller at different settings of pruning 
threshold MinimalMatchingProbability 

Here the gaps are identified using real optical maps and alignment method refAligner. The quality is measured using base-
level similarity (NSS) between the filled gaps and the corresponding reference genome sequence

Species Gap MinimalMatchingProbability

0 (%) 10
−8 (%) 10

−5 (default) (%) 10
−2 (%)

E. coli 252312r–252486r 87.22 87.22 87.22 87.22

E. coli 252486r–252526r 99.68 99.68 99.68 99.68

E. coli 252510r–252292r 98.87 98.87 98.87 96.55

E.coli 252196–252226 99.66 99.66 99.66 99.66

S. coelicolor 781738–781976r 100.00 100.00 100.00 100.00

S. coelicolor 781976r–781848r 100.00 100.00 100.00 100.00

P. putida 443944r–443818 99.88 99.88 99.88 99.88
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N50 increased to 7,589,422 nt, which is remarkably longer than that was reported 
using OMACC. We could observe similar results on other 11 species and real data-
sets (Tables 8 and 9).

To acquire more detailed evaluations, we have further applied Quast [30] to calcu-
late multiple metrics of the assembly results (Additional file 1: Tables 14, 15, and 16).

Table 7  Genome completeness improvement after filling gaps using OMACC and nanoGapFiller on 
12 species

Here, the gaps are identified using simulated optical maps and alignment method SOMA2

Species Scaffold N50 (nt)

Before gap filling Filling using OMACC​ Filling using 
nanoGapFiller

A. vari 64,556 78,980 7,589,442

B. japonicum 143,477 290,961 1,830,875

B. pseudomallei 86,778 99,967 113,112

C. hutchinsonii 129,478 212,390 1,935,216

E. carotovora 71,290 100,730 680,365

E. coli 78,648 140,985 1,222,147

N. farcinica 176,628 846,096 5,627,295

P. putida 127,879 127,879 4,873,348

P. syringae 79,967 90,066 366,420

S. agal 71,533 1,399,536 2,406,989

S. coelicolor 108,454 120,270 213,619

S. ynec 175,767 300,280 1,774,968

Table 8  Genome completeness improvement after filling gaps using OMACC and nanoGapFiller on 
3 species

Here, the gaps are identified using real optical maps and alignment method SOMA2

Species Scaffold N50 (nt)

Before gap filling Filling using OMACC​ Filling using 
nanoGapFiller

E. coli 78,648 107,371 124,003

P. putida 127,879 154,105 154,105

S. coelicolor 108,454 108,454 108,454

Table 9  Genome completeness improvement after filling gaps using OMACC and nanoGapFiller on 
3 species

Here, the gaps are identified using real optical maps and alignment method refAligner

Species Scaffold N50 (nt)

Before gap filling Filling using OMACC​ Filling using 
nanoGapFiller

E. coli 78,648 78,648 133,054

P. putida 127,879 127,879 154,105

S. coelicolor 108,454 108,454 109,573
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Discussion
In this study, we present an efficient and effective approach for fill gaps of scaffolds 
with aid of optical maps. Using probabilistic search, our approach perfectly balances 
the accuracy and efficiency of gap filling. The performance of our approach has been 
clearly demonstrated by the results on a variety of species using both simulated and 
real optical maps.

For large genome, the current version of nanoGapFiller suffers from the limitation 
that it generates a large size site graph which poses high memory requirement. How 
to improve our approach to reduce memory requirement remains one of the future 
studies.

Conclusion
In conclusion, nanoGapFiller can effectively improve the contiguity of genome assem-
bly. We expect that our approach, with potential extensions, can greatly facilitate 
improving completeness of genome assembly.

Methods
Notations

In genome sequencing and assembly, a contig refers to a contiguous nucleotide 
sequence resulting from assembly of sequencing reads, whereas a scaffold refers to a 
series of contigs separated by gaps of estimated length.

Unlike genome sequence reads, an optical map records locations of specific enzyme 
recognition sites along a molecule of DNA. Specifically, for a molecule consisting of 
n recognition sites s1, s2, · · · , sn , optical maps count the number of nucleotide bases 
between si and si+1 for 1 ≤ i ≤ n− 1 , which is denoted as d(si, si+1) . For example, the 
molecule GCT​CTT​CAC​GCT​CTT​CAC​TGC​TCT​TC has three appearances of the enzyme 
recognition site GCT​CTT​C, and the corresponding optical map records the distance 
between these sites, i.e., d(s1, s2) = 9 , d(s2, s3) = 10 . In the study, we write a site 
sequence as sb · · · se , where the symbol ‘ · · · ’ represents the intermediate sites, and sb 
and se denotes the beginning and ending site of the sequence, respectively.

Most genome assembly approaches utilize graph theory to guide assembly and 
finally generate an assembly graph, which contains contigs as nodes and connections 
among them as edges. To accelerate searching optical maps against assembly graph, 
we transform assembly graph into site graph as follows: from the component con-
tigs of the assembly graph, we first identify all appearances of the enzyme recognition 
sites. Next, we use these sites as nodes, and connect the neighboring sites with edges. 
Here, we say two sites are neighbors if one site can be directly reached from another 
one by following a contig path in the assembly graph. Each edge in a site graph is 
associated with a distance to represent the number of nucleotide bases between the 
two corresponding sites (Fig. 3).
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Workflow of nanoGapFiller

nanoGapFiller takes experimental optical maps and genome assembly graph as input 
and generates scaffolds with gaps filled as output. As shown in Fig. 4, the workflow of 
nanoGapFiller mainly consists of the following three steps: 

(1)	 Scaffolding and locating gaps: Initially, nanoGapFiller aligns genome assembly con-
tigs onto optical maps. The aligned contigs are further connected into scaffolds 
according to their order in the alignment. Note that some regions of optical maps 
often fail to align with any contig, thus forming gaps in scaffolds. These gaps, repre-

Fig. 3  An example of the alignment between optical map and contig path. a An alignment corresponding 
to the generating of x1 · · · x5 from s1 · · · s5 , where < x1, s1 > , < x2, s2 > , < x4, s3 > and < x5, s5 > are 
matching sites, while s4 is a missing site and x3 is a false-positive site. b The formal description of the 
alignment, where the symbol ‘–’ represents an Insertion or Deletion 

Fig. 4  Overall pipeline of nanoGapFiller. Step 1. Initially, nanoGapFiller aligns genome assembly contigs 
onto optical maps. The aligned contigs are further connected into scaffolds according to their order in the 
alignment. Note that some regions of optical maps often fail to align with any contig, thus forming gaps in 
scaffolds. Here, we identified a gap with site sequence x3x4x5x6 . Step 2. To fill this gap, nanoGapFiller searches 
in assembly graph the contig path (shown in red) that matches best with the site sequence x3x4x5x6 . Step 3. 
nanoGapFiller fills the gap with the nucleotide sequence of the best-matching contig path c1c3c6c10
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sented as Ns rather than normal nucleotide bases A/C/T/G, might be thousands of 
bases long.

	 For each gap, we record three features, namely, beginning site, ending site, and the 
site sequence excerpted from the corresponding unaligned region of an optical 
map. Take the gap shown in Fig. 4 as an example, its beginning site and ending site 
are x3 and x6 , respectively, and its site sequence is x3x4x5x6.

(2)	 Finding the contig path matching best with gaps: To fill a gap of scaffolds, nanoGap-
Filler searches assembly graph for the contig path that matches best with the site 
sequence of the gap. For this aim, nanoGapFiller uses a stochastic model to meas-
ure the similarity between a site sequence and any possible contig path, and then 
uses the probabilistic search technique to efficiently identify the contig path with 
the highest similarity. The details of the stochastic model and the probabilistic 
search technique will be described in later subsections.

(3)	 Filling gaps of scaffolds: Finally, nanoGapFiller fills the gaps of scaffolds using the 
nucleic base sequence of the best-matching contig paths. For example, the gap 
shown in Fig. 4 is filled using the best-matching contig path c1c3c6c10 . After filling 
the gaps of scaffolds, the genome completeness will be greatly improved.

Measuring the similarity between an optical map and a contig path

Consider an optical map with site sequence x1 · · · xm and a contig path with site 
sequence s1 · · · sn . nanoGapFiller calculates the probability that the contig path generates 
the optical map (denoted as S(x1 · · · xm, s1 · · · sn) ), and then uses this probability as simi-
larity between them. The generating process of x1 · · · xm from s1 · · · sn is as follows: In an 
ideal optical mapping experiment, an enzyme recognition site si in the contig path will 
be observed and recorded as a certain site xj of the optical map, which is called matching 
between sites si and xj . However, it is often the case that some recognition sites are miss-
ing (called deletion) whereas some extra sites are recorded in optical maps purely due to 
false-positive signals (called insertion).

To formally describe the generating process of an optical map from a contig path, we 
define the alignment between their site sequences. For each alignment A of the sites 
sequences x1 · · · xm and s1 · · · sn , we use SA(x1 · · · xm, s1 · · · sn,A) to denote the possibility 
that the generating process corresponding to this alignment occurs.

Among all possible alignments between x1 · · · xm and s1 · · · sn , we identify the one 
with the highest score, and then use this score as the similarity between the two site 
sequences, i.e.,

where A denotes the set of all possible alignments of the two site sequences.
We calculate SA(x1 · · · xm, s1 · · · sn,A) as follows: we divide the two sequences at the 

matching sites of A, and thus acquire several matching fragment pairs. For example, the 
division at the matching sites < x2, s2 > and < s2, x4 > yields three matching fragment 
pairs (see Fig. 3). For each matching fragment pair p, we calculate three scoring items, 
including: 

S(x1 · · · xm, s1 · · · sn) = max
A∈A

SA(x1 · · · xm, s1 · · · sn,A),
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(1)	 Length difference item LD(p): In the ideal case, two matching fragments should 
have identical length. However, in an optical mapping experiment, the molecules 
are always stretched or compressed, leading to length difference of the matched 
fragments. To measure the length difference, we adopted the Laplace distribution 
as performed by Rmaps [31–33], i.e., 

 where d denotes the length difference of the two matching fragments in p, and µ 
and b denotes the mean and scale parameter of the distribution, respectively.

(2)	 Missing sites item M(p): We used the Geometry distribution [31–33] to model the 
number of missing sites m, i.e., 

 where q denotes the probability that an enzyme recognition site is detected by 
optical mapping.

(3)	 False-positive sites item FP(p): We used Poisson distribution to model the number 
of false-positive sites f, i.e., 

 where � represents the expected number of false positive sites.
In this study, the parameters were set according to the manually-
verified alignments of optical maps and contig paths of E. coli as 
q = 0.772, � = 1526000,µ = 293nt, b = 500nt.

Identifying the best‑matching contig path of a gap

Before describing our method to identify the contig path that best matches a given 
gap, we first present the formulation of this problem: Let x1 · · · xm be the site sequence 
of the gap of interest. Through locating gaps, we have identified from assembly graph 
two sites that match the beginning site x1 and the ending site xm , respectively. We 
denote these two identified sites as sb and se . Thus, the objective is to find the contig 
path with site sequence sb · · · se such that the score S(x1 · · · xm, sb · · · se) is maximized.

The basic idea of our method is probabilistic search together with search space 
pruning, which can be described as follows: Starting from the beginning site x1 , we 
iterate finding the best-matching sites for each site xi (1 ≤ i ≤ m) through executing 
the following three steps: 

(1)	 Calculating the probability of site matching: We use a set M[xi] to hold all match-
ing sites of xi . From the first i − 1 sites x1 · · · xi−1 , we calculate the belief that xi 
matches each site s ∈ M[xi] , denoted as Belief (xi = s) . Now we perform normali-
zation to transform the belief into probability Pr[xi = s].

LD(p) =
1

2b
exp

(

−
|d − µ|

b

)

,

M(p) = (1− q)M−1q,

FP(p) =
�
f e−�

f !
,
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(2)	 Pruning the unlikely matching pairs: To reduce the search space, we remove the 
unlikely matching sites, i.e., deleting the site s from M[xi] if Pr[xi = s] is less than 
a pre-defined threshold MinimalMatchingProbability. We will show experi-
mental results that when setting appropriate threshold, the search space could be 
significantly reduced with little influence on finding the correct paths.

Fig. 5  Searching site graph for the site sequence that best matches a gap. In this example, the gap has 
site sequence x1x2x3x4 with distance 8, 5, 3, respectively. Through locating gaps in Step 1, we have known 
that the beginning site x1 matches s1 , and the ending site x4 matches s7 . Thus, our objective is to find the 
path from s1 to s7 that best matches the gap x1x2x3x4 . a Initially, we set Pr[x1 = s1] = 1 as we have known 
x1 matches s1 . Next we propagated this probability to downstream site pairs and calculated the following 
matching beliefs for site x2 : Belief (x2 = s2) = Pr[x1 = s1]S(8, 8) , Belief (x2 = s3) = Pr[x1 = s1]S(8, 7) , 
and Belief (x2 = s5) = Pr[x1 = s1]S(8, 14) . After normalization, we obtained the site matching 
probabilities: Pr[x2 = x2] = 0.81 , Pr[x2 = x3] = 0.19 , and Pr[x2 = x5] = 0 . b  We propagated these 
probabilities further and obtained the following beliefs for site x3 Belief (x3 = s4) = Pr[x2 = s2]S(5, 5) , 
Belief (x3 = s5) = Pr[x2 = s3]S(5, 4) , and Belief (x3 = s7) = Pr[x2 = s5]S(5, 4) and then normalized them 
into probabilities. After normalization, we obtained the site matching probabilities: Pr[x3 = x4] = 0.95 , 
Pr[x3 = x5] = 0.05 , and Pr[x3 = x7] = 0 . c  For site x4 , we calculated its matching beliefs similarly. Note that 
there are two paths reaching site s7 , and thus we needed to calculate the maximum of the two paths as 
follows: Belief (x4 = s7) = max{Pr[x3 = s4]S(3, 3), Pr[x3 = s5]S(3, 4)} . After calculating Pr[x4 = s8] , we traced 
back and reported the best matching site path as s1s2s4s7
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(3)	 Propagating the matching probability to downstream site-pairs: For the left-over 
sites s ∈ M[xi] , we propagate their matching probability Pr[xi = s] to the down-
stream site pair < xj , s

′ > , where j ≤ i+ MaxInsertionSize and s′ is within at 
most MaxDeletionSites from s. For each pair < xj , s

′ > , we calculate its match-
ing belief according to Bayesian formula, which uses Pr[xi = s] as prior probability 
and the similarity S(xi · · · xj , s · · · s′) as conditional probability.

We iterate this matching site finding procedure until reaching the ending site xm . Finally, 
we traceback from xm to identify the path matching best with the site sequence of the 
gap. Figure 5 shows an example of this probabilistic search procedure. The pseudocode 
is presented as follows. 

Abbreviations
DFS: Depth-first search; NGS: Next-generation sequence; CPS: Contig path similarity; NSS: Nucleotide sequence similarity.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04448-2.

Additional file 1. The additional results on the performance of nanoGapFiller.

Acknowledgements
We greatly appreciate Xuan Li for providing experimental optical maps data and appreciate Wei Shen for his helps to 
performing Hi-C scaffolding and analysis.

https://doi.org/10.1186/s12859-021-04448-2


Page 16 of 17Huang et al. BMC Bioinformatics          (2021) 22:533 

Authors’ contributions
DB conceived the study. BH designed and implemented the nanoGapFiller, and performed the experiment. BH, GW, BW, 
FJ, YZ, ZS, SS and DB analyzed the experimental results. BH, GW, BW and DB established the mathematical framework. BH 
and DB wrote and revised the manuscript. All authors read and approved the manuscript.

Funding
We would like to thank the National Key Research and Development Program of China (2020YFA0907000), and the 
National Natural Science Foundation of China (31770775, 62072435) for providing financial supports for this study and 
publication charges. The funding bodies had no role in study design, data collection and analysis, decision to publish, or 
preparation of the manuscript.

Availability of data and materials
The genome reference analysed during the current study are available in the NCBI repository under access id: 
NC_005070.1, NC_004116.1, NC_007005.1, NC_006361.1, NC_004547.2, NC_008255.1, NC_006350.1, NC_004463.1, 
NC_007413.1, AL645882.2, NC_000913.2, AP013070.1. The Hi-C data are available in the NCBI GEO repository under 
access id: GSM2870416, GSM2870417. The optical map that support the findings of this study are available from Xuan Li 
but restrictions apply to the availability of these data, which were used under license for the current study, and so are not 
publicly available. Please contact Xuan Li (lixuan@sippe.ac.cn) if you need access these data. Source code of nanoGap-
Filler is freely available through https://​github.​com/​bigict/​nanoG​apFil​ler.

Declarations

Ethics approval and consent to participate
Not applicable. 

Consent for publication
Not applicable. 

Competing interests
The authors declare that they have no competing interests.

Author details
1 Key Lab of Intelligent Information Processing, Big‑Data Academy, Institute of Computing Technology, Chinese Academy 
of Sciences, Beijing 100190, China. 2 Institute of Biology, University of Chinese Academy of Sciences, Beijing 100049, 
China. 3 School of Computer Science, University of Washington, Seattle 98195, USA. 4 Department of Computer Sci-
ence and Engineering, University of California, San Diego, La Jolla 92093, USA. 5 Zhongke Big Data Academy, Zheng-
zhou 450046, Henan, China. 

Received: 24 May 2021   Accepted: 18 October 2021

References
	1.	 Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci. 

2001;98(17):9748–53. https://​doi.​org/​10.​1073/​pnas.​17128​5098.
	2.	 Nagarajan N, Pop M. Sequence assembly demystified. Nat Rev Genet. 2013;14(3):157.
	3.	 Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19(R2):227–40.
	4.	 Lee H, Gurtowski J, Yoo S, Nattestad M, Marcus S, Goodwin S, McCombie WR, Schatz M. Third-generation sequenc-

ing and the future of genomics. BioRxiv. 2016;048603.
	5.	 Parkhill J. In defense of complete genomes. Nat Biotechnol. 2000;18(5):493.
	6.	 Garg S. Computational methods for chromosome-scale haplotype reconstruction. Genome Biol. 2021;22(1):1–24.
	7.	 Malmberg M, Spangenberg G, Daetwyler H, Cogan N. Assessment of low-coverage nanopore long read sequencing 

for SNP genotyping in doubled haploid canola (Brassica napus L.). Sci Rep. 2019;9(1):8688.
	8.	 Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang Y-K. Ordered restriction maps of Saccharomyces cerevi-

siae chromosomes constructed by optical mapping. Science. 1993;262(5130):110–4.
	9.	 Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. SOAPdenovo2: an empirically improved 

memory-efficient short-read de novo assembler. GigaScience. 2012;1(1):18.
	10.	 Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13(6):56.
	11.	 Kosugi S, Hirakawa H, Tabata S. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of 

contig or long-read alignments. Bioinformatics. 2015;31(23):3733–41.
	12.	 English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, et al. Mind the gap: 

upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE. 2012;7(11):47768.
	13.	 Xu G-C, Xu T-J, Zhu R, Zhang Y, Li S-Q, Wang H-W, Li J-T. LR\_Gapcloser: a tiling path-based gap closer that uses long 

reads to complete genome assembly. GigaScience. 2018;8(1):157.
	14.	 Nagarajan N, Read TD, Pop M. Scaffolding and validation of bacterial genome assemblies using optical restriction 

maps. Bioinformatics. 2008;24(10):1229–35.
	15.	 Istace B, Belser C, Aury J-M. Biscot: improving large eukaryotic genome assemblies with optical maps. PeerJ. 

2020;8:10150.
	16.	 Pan W, Wanamaker SI, Ah-Fong AM, Judelson HS, Lonardi S. Novo&stitch: accurate reconciliation of genome assem-

blies via optical maps. Bioinformatics. 2018;34(13):43–51.

https://github.com/bigict/nanoGapFiller
https://doi.org/10.1073/pnas.171285098


Page 17 of 17Huang et al. BMC Bioinformatics          (2021) 22:533 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	17.	 Chen Y-M, Yu C-H, Hwang C-C, Liu T. OMACC: an optical-map-assisted contig connector for improving de novo 
genome assembly. BMC Syst Biol. 2013;7(6):7.

	18.	 Lin HC, Goldstein S, Mendelowitz L, Zhou S, Wetzel J, Schwartz DC, Pop M. AGORA: assembly guided by optical 
restriction alignment. BMC Bioinform. 2012;13(1):189.

	19.	 Mukherjee K, Alipanahi B, Kahveci T, Salmela L, Boucher C. Aligning optical maps to de Bruijn graphs. Bioinformatics. 
2018. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz069.

	20.	 Miclotte G, Plaisance S, Rombauts S, Van de Peer Y, Audenaert P, Fostier J. Omsim: a simulator for optical map data. 
Bioinformatics. 2017;33(17):2740–2.

	21.	 Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformatics. 
2011;28(4):593–4.

	22.	 Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, Prjibelsky A, Pyshkin A, Sirotkin A, Sirotkin Y, 
et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Annual international conference 
on research in computational molecular biology, 2013; pp. 158–170. Springer

	23.	 Kinnunen T, Nyrönen T, Lehtovuori P. SOMA2-open source framework for molecular modelling workflows. Chem 
Cent J. 2008;2(1):4.

	24.	 Leung AK-Y, Kwok T-P, Wan R, Xiao M, Kwok P-Y, Yip KY, Chan T-F. Omblast: alignment tool for optical mapping using a 
seed-and-extend approach. Bioinformatics. 2017;33(3):311–9.

	25.	 Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo 
genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31(12):1119–25.

	26.	 Marie-Nelly H, Marbouty M, Cournac A, Flot J-F, Liti G, Parodi DP, Syan S, Guillén N, Margeot A, Zimmer C, et al. High-
quality genome (re) assembly using chromosomal contact data. Nat Commun. 2014;5(1):1–10.

	27.	 Baudry L, Guiglielmoni N, Marie-Nelly H, Cormier A, Marbouty M, Avia K, Mie YL, Godfroy O, Sterck L, Cock JM, et al. 
instagraal: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder. Genome 
Biol. 2020;21(1):1–22.

	28.	 Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, 
et al. De novo assembly of the aedes aegypti genome using hi-c yields chromosome-length scaffolds. Science. 
2017;356(6333):92–5.

	29.	 Lioy VS, Cournac A, Marbouty M, Duigou S, Mozziconacci J, Espéli O, Boccard F, Koszul R. Multiscale structuring of 
the E. coli chromosome by nucleoid-associated and condensin proteins. Cell. 2018;172(4):771–83.

	30.	 Gurevich A, Saveliev V, Vyahhi N, Tesler G. Quast: quality assessment tool for genome assemblies. Bioinformatics. 
2013;29(8):1072–5.

	31.	 Li M, Mak AC, Lam ET, Kwok P-Y, Xiao M, Yip KY, Chan T-F, Yiu S-M. Towards a more accurate error model for BioNano 
optical maps. In: International symposium on bioinformatics research and applications, 2016; pp. 67–79. Springer

	32.	 Chen P, Jing X, Ren J, Cao H, Hao P, Li X. Modelling BioNano optical data and simulation study of genome map 
assembly. Bioinformatics. 2018;34(23):3966–74.

	33.	 Das SK, Austin MD, Akana MC, Deshpande P, Cao H, Xiao M. Single molecule linear analysis of DNA in nano-channel 
labeled with sequence specific fluorescent probes. Nucleic Acids Res. 2010;38(18):177.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btz069

	Filling gaps of genome scaffolds via probabilistic searching optical maps against assembly graph
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results
	Experiment setting and evaluation criteria
	Evaluating accuracy of gap filling
	Evaluating efficiency of gap filling
	Improvement of completeness of genome scaffolds

	Discussion
	Conclusion
	Methods
	Notations
	Workflow of nanoGapFiller
	Measuring the similarity between an optical map and a contig path
	Identifying the best-matching contig path of a gap

	Acknowledgements
	References


