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Abstract: The restoration of genetic code by editing mutated genes is a potential method for the
treatment of genetic diseases/disorders. Genetic disorders are caused by the point mutations of
thymine (T) to cytidine (C) or guanosine (G) to adenine (A), for which gene editing (editing of mutated
genes) is a promising therapeutic technique. In C-to-Uridine (U) RNA editing, it converts the base
C-to-U in RNA molecules and leads to nonsynonymous changes when occurring in coding regions;
however, for G-to-A mutations, A-to-I editing occurs. Editing of C-to-U is not as physiologically
common as that of A-to-I editing. Although hundreds to thousands of coding sites have been found
to be C-to-U edited or editable in humans, the biological significance of this phenomenon remains
elusive. In this review, we have tried to provide detailed information on physiological and artificial
approaches for C-to-U RNA editing.
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1. Introduction

RNA editing is a biological process or tool for repairing or altering RNA in a mitochondrion-
encoded mRNA of a kinetoplastid trypanosome. RNA editing was first introduced to
describe a process that occurs in trypanosomes and involves the insertion and deletion of
uridine monophosphate (UMP) inside nascent transcripts after transcription [1]. Since the
discovery of the post-transcriptional sequence, the number of techniques associated with
the term RNA editing has grown. The insertion and deletion of nucleotides other than UMP,
base deamination, and the co-transcriptional insertion of non-template nucleotides are now
referred to as RNA editing. RNA editing has been observed in mRNAs, tRNAs, and rRNAs,
in mitochondrial and chloroplast encoded RNAs, as well as in nuclear encoded RNAs [1].
Examples of RNA editing have been found in many Metazoa, unicellular eukaryotes, such
as trypanosomes, and plants. RNA editing has been observed in prokaryotes on a small
scale although some researchers have made detailed study on the tRNA editing in E. coli [2].

RNA editing tools are basically categorized into two types depending on their re-
sponse mechanisms. For example, insertion/deletion RNA editing, involves the insertion
or deletion of targeted nucleotides with the aim of changing the codon sequence of the
targeted mRNA [1]. However, this RNA editing can be done in another way as well,
where it turns/alters one encoded nucleotide into a new nucleotide via base alteration or
modification without modifying the overall length of the RNA. As a result, the codon se-
quence is ultimately changed; this is particularly used for the treatment of single nucleotide
mutations. In this review, we have tried to focus on the C-to-U editing at RNA level in
case of the transcriptomic editing. Thanks to different tools particularly Next generation
sequencing (NGS) and Bioinformatics methods, which have developed greatly in the last
two decades, it has been possible to detect thousands and thousands of RNA editing events
in both plants and mammals [3,4].
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2. RNA Editing

RNA editing as a therapeutic approach was first conceptualized and utilized as a
therapy in 1995. The main purpose of this method is to restore RNA sequences in order to
treat genetic diseases caused by point mutations. Advanced research has enhanced and
established this technology, which is now known as artificial site-directed RNA editing for
restoring RNA. This unique therapeutic approach has the potential to be utilized to cure
diseases, such as numerous neurological maladies in humans, by restoring the mutated A
or C in mRNA without changing or affecting the genome sequence of the mRNA target [5].
A-to-I and C-to-U editing are two types of substitutional RNA editing in mammals. Due to
the higher potential of recoding point mutations, many studies have focused on changing
as well as imitating RNA editing. RNA editing of C-to-U is commonly found among
flowering plants and mainly occurs within mitochondrial protein regions with highly
conserved amino acid sequences [6].

3. C-to-U RNA Editing

RNA editing in C-to-U is a process or therapeutic approach that converts a single or
multiple C-to-U nucleotides in transcript sequences. C-to-U RNA editing can generate start
or stop codons that can change the encoded amino acids depending on preferences towards
the splice site [7]. The C-to-U type of RNA editing was originally illustrated in vertebrates
for apolipoprotein B (apoB) encoding mRNA. Deamination through hydrolysis at the C4
site of cytidine (C) was later found to be involved in apoB editing [8,9]. The presence of both
cis-acting elements (tripartite regulatory sequences) and trans-acting elements around the
altered cytidine is required for this conversion or editing (the editosome is a multiprotein
complex that contains a catalytic cytidine deaminase and many auxiliary proteins) [5].
Editing of C-to-U at the RNA level has been found in higher family plants, particularly in
the mitochondria and chloroplasts [10].

4. Artificial C-to-U RNA Editing

Both C-to-U and A-to-I conversions are included in enzymatic site-directed RNA
editing. Recently, artificial site-directed RNA editing of A-to-I has been successfully carried
out in vitro and in cells as well as in vivo [4,10]. However, few reports of artificial site-
directed C-to-U RNA editing have been published recently. The RNA editing machinery
relies on two critical components: complementary RNA sequences that can precisely bind to
specified sequences (guide RNA) and deamination-editing enzyme/editors. Furthermore,
non-enzymatic site-directed C-to-U editing, which does not have the same constraints as
site-directed enzymatic RNA editing, was recently identified and has generated a lot of
interest in this field of research. In this review, we have focused on C-to-U RNA editing
with special emphasis on the enzymatic approach [10].

5. Enzymes (Editors) for Artificial C-to-U RNA Editing

The artificial or enzymatic approach of deamination from C-to-U is mainly depen-
dent on the enzymes from the apolipoprotein B mRNA editing catalytic polypeptide-like
(APOBEC) family proteins. Eleven genes code for members of the APOBEC family that
have been discovered to date (APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C,
APOBEC3D, APOBEC3F, APOBEC3G, APOBEC3H, APOBEC4, and AICDA/AID). They
all have a zinc-dependent deaminase domain (ZDD) [11,12]. Among all of these APOBEC
subfamily proteins only APOBEC-1, 3A, 3 B, and 3G (Figure 1) have been proven to mediate
the C-to-U RNA editing [13–16]. APOBEC-1 was the first member of the APOBEC family
to be discovered and researched, and its significance in apolipoprotein B (ApoB) mRNA
editing has been well documented.



Genes 2022, 13, 1636 3 of 16Genes 2022, 13, x FOR PEER REVIEW 3 of 16 
 

 

 

Figure 1. APOBEC family proteins for C to U editing. 

For the enzymatic approach, the MS2 system along with the APOBEC family protein 

enzyme has been a very promising technique for the therapeutic RNA editing technique. 

C-to-U editing (Figure 2) using the MS2 system (MS2 stem loop along with MS2 coat 

protein) and APOBEC1 has been previously performed by Bhakta et al. [17] by convert-

ing BFP (Blue Fluorescence Protein having a single mutated T-to-C) to GFP (Green Flu-

orescence Protein- which is restored after the editing from C-to-U) (Figure 3). 

 

Figure 2. RNA editing (A to I and C to U) [18]. 

Figure 1. APOBEC family proteins for C to U editing.

For the enzymatic approach, the MS2 system along with the APOBEC family protein
enzyme has been a very promising technique for the therapeutic RNA editing technique.
C-to-U editing (Figure 2) using the MS2 system (MS2 stem loop along with MS2 coat
protein) and APOBEC1 has been previously performed by Bhakta et al. [17] by converting
BFP (Blue Fluorescence Protein having a single mutated T-to-C) to GFP (Green Fluorescence
Protein- which is restored after the editing from C-to-U) (Figure 3).
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Only vertebrates have APOBECs, and this type of RNA editing is the second most
common after ADAR (Adenosine Deaminase acting on RNA) editing. Unlike ADARs, the
APOBEC family of proteins, including the Alu (Arthrobacter luteus) sequence, primarily
affects non-coding and intronic sequences [19,20]. Surprisingly, the APOBEC family of
proteins are not just for RNA editing. They were first introduced as tools for the editing
of single-stranded DNA (ssDNA) and genomic DNA (gDNA), respectively. As a result,
APOBEC-mediated DNA editing has received more attention and is better understood
than APOBEC-mediated RNA editing. The efficiency of genome/DNA editing cannot be
compared to RNA editing, however, because the deamination of C in DNA results in U;
APOBEC-mediated DNA editing can result in the degradation of viral DNA, resulting in
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a reduction of virus replication or multiplication. Moreover, uracil-rich viral DNA can
trigger DNA damage and stress–response pathways, causing natural killer (NK) cells to
up-regulate activating ligands (NKG2D ligands) and destroy infected cells [16].

Genes 2022, 13, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 3. Enzymatic C to U RNA editing by APOBEC 1 deaminase. 

Only vertebrates have APOBECs, and this type of RNA editing is the second most 

common after ADAR (Adenosine Deaminase acting on RNA) editing. Unlike ADARs, the 

APOBEC family of proteins, including the Alu (Arthrobacter luteus) sequence, primarily 

affects non-coding and intronic sequences [19,20]. Surprisingly, the APOBEC family of 

proteins are not just for RNA editing. They were first introduced as tools for the editing 

of single-stranded DNA (ssDNA) and genomic DNA (gDNA), respectively. As a result, 

APOBEC-mediated DNA editing has received more attention and is better understood 

than APOBEC-mediated RNA editing. The efficiency of genome/DNA editing cannot be 

compared to RNA editing, however, because the deamination of C in DNA results in U; 

APOBEC-mediated DNA editing can result in the degradation of viral DNA, resulting in 

a reduction of virus replication or multiplication. Moreover, uracil-rich viral DNA can 

trigger DNA damage and stress–response pathways, causing natural killer (NK) cells to 

up-regulate activating ligands (NKG2D ligands) and destroy infected cells [16]. 

The APOBEC family of proteins plays a vital role in the introduction of mutations in 

cancerous tissues [21–25]. These mutations are primarily caused by genome/DNA editing 

or abnormal APOBEC enzyme production. DNA editing mediated by APOBECs for 

C-to-U editing has been thoroughly characterized by Knisbacher et al. [24], although it is 

not the basic topic of this current review. DNA editing aids in the natural mechanisms of 

the body. However, DNA or genome editing is essential for a good and efficient adaptive 

immune response. Somatic hypermutation is the most commonly known example, oc-

curring in sequences encoding hypervariable portions of immunoglobulins, which result 

in the formation of high-affinity antibodies [20]. 

ApoB-100, the full-length form of ApoB protein, is expressed in hepatic cells 

(hepatocytes) in the liver. APOBEC-1 RNA editing, on the other hand, causes an early 

stop codon in ApoB mRNA in the small intestine, resulting in the premature termination 

of translation. Consequently, another isoform of ApoB-48 was created. The full-length 

form (ApoB-100) carries cholesterol in the bloodstream, whereas the shortened form 

(ApoB-48) transports triglycerides [26]. 

There are seven APOBEC-3 paralogs in the human genome (APOBEC-3A, 3 B, 3C, 

3D, 3F, 3G, and 3H). Although all of these paralogs bind to RNA [27], only three of them 

have shown RNA editing activity (APOBEC-3A, APOBEC-3B, and APOBEC-3G). These 

roles have an impact on the immune system. Under hypoxic conditions and IFN activa-

tion, they were found to be expressed in macrophages, monocytes, and NK cells [28–31]. 

Furthermore, they are expressed in human natural Tregs in response to CD3/CD28 stim-

ulation, especially APOBEC-3G, 3D, and 3H [31]. Single gene encoded APOBEC-3 was 

identified for the first time as the Friend leukemia virus resistance (Fvr) gene [32] in mice. 

Mouse APOBEC3 is most similar to human APOBEC3G and contributes to viral re-

sistance by mutating viral DNA. In recent times the CRISPR-Cas9-APOBEC editing sys-

tem has had a significant impact on DNA editing, but off-target effects are a major con-

cern in this case [32]. 

Figure 3. Enzymatic C to U RNA editing by APOBEC 1 deaminase.

The APOBEC family of proteins plays a vital role in the introduction of mutations in
cancerous tissues [21–25]. These mutations are primarily caused by genome/DNA editing
or abnormal APOBEC enzyme production. DNA editing mediated by APOBECs for C-to-U
editing has been thoroughly characterized by Knisbacher et al. [24], although it is not the
basic topic of this current review. DNA editing aids in the natural mechanisms of the
body. However, DNA or genome editing is essential for a good and efficient adaptive im-
mune response. Somatic hypermutation is the most commonly known example, occurring
in sequences encoding hypervariable portions of immunoglobulins, which result in the
formation of high-affinity antibodies [20].

ApoB-100, the full-length form of ApoB protein, is expressed in hepatic cells (hep-
atocytes) in the liver. APOBEC-1 RNA editing, on the other hand, causes an early stop
codon in ApoB mRNA in the small intestine, resulting in the premature termination of
translation. Consequently, another isoform of ApoB-48 was created. The full-length form
(ApoB-100) carries cholesterol in the bloodstream, whereas the shortened form (ApoB-48)
transports triglycerides [26].

There are seven APOBEC-3 paralogs in the human genome (APOBEC-3A, 3 B, 3C, 3D,
3F, 3G, and 3H). Although all of these paralogs bind to RNA [27], only three of them have
shown RNA editing activity (APOBEC-3A, APOBEC-3B, and APOBEC-3G). These roles
have an impact on the immune system. Under hypoxic conditions and IFN activation, they
were found to be expressed in macrophages, monocytes, and NK cells [28–31]. Furthermore,
they are expressed in human natural Tregs in response to CD3/CD28 stimulation, especially
APOBEC-3G, 3D, and 3H [31]. Single gene encoded APOBEC-3 was identified for the first
time as the Friend leukemia virus resistance (Fvr) gene [32] in mice. Mouse APOBEC3 is
most similar to human APOBEC3G and contributes to viral resistance by mutating viral
DNA. In recent times the CRISPR-Cas9-APOBEC editing system has had a significant
impact on DNA editing, but off-target effects are a major concern in this case [32].

6. C-to-U RNA Editing in Mammals

The restoration of genetic code from A-to-I and C-to-U are the two most common
RNA editing processes in mammalian cells [33,34]. Deamination has been reported to
occur from A-to-I in hundreds of thousands of places, with the most common occurring in
intronic and non-coding regions, notably with Alu sequence repeated targets [35,36]. A-to-I
RNA editing in coding domains is frequently incorporated with brain proteins that can
recode [31]. However, C-to-U editing is less commonly found in humans than is A-to-I [37].
The pre-mRNA of apolipoprotein B (apoB) is predominantly located in intestinal cells, and
currently approved targets in mRNA are among the physiologically minimum recognized
C-to-U RNA editing targets. In an earlier investigation, previously unknown 32 APOBEC1
(apoB editing catalytic subunit 1) editing sites were identified in the 3′-untranslated regions
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(3′-UTRs) of diverse mRNA transcripts [38]. Furthermore, in the AU-rich parts of the
3′-UTRs, 56 novel modifying sites were identified, among which 54 were intestinal mRNAs,
within which 22 unique editing points were discovered in mRNAs of the liver [39]. In
macrophages derived from bone marrow, 410 C-to-U RNA editing events were found,
among which 97% of C-to-U events were found to occur in 3′-UTRs [40]. Moreover, C-to-U
RNA editing events of apoB pre-mRNA occur in the nucleus [41,42]. At the C6666U editing
site, the conversion from glutamine (CAA) to a stop codon (UAA) occurs at the in-frame
translational site. The ApoB48 protein is produced by C6666U-edited apoB RNA, whereas
ApoB100 protein is produced by C6666-unedited apoB RNA [41].

In the C6802U editing site, the threonine codon (ACA) is changed to an isoleucine
(AUA). Because the C6802U editing event occurs concurrently with the C6666U editing
event, C6802U is not expressed in the truncated ApoB48 protein but in the mRNA [39].
The RNA editing of C-to-U is necessary for the stoichiometric modulation of trans-acting
components within the macromolecular enzyme complex (editosome), which is responsible
for targeted deamination. These cis-acting elements, in combination with trans-acting
factors, are required for C-to-U RNA editing in vitro. They are made up of 50 nucleotides
modifying the edited cytidine that contains a regulatory tripartite motif, which contains an
11-nt motif (UGAUCAGUAUA) located in a sequence (the mooring sequence) downstream
of the edited base [43–47]. To generate a stable secondary structure that increases specificity,
the 3′ mooring sequence is combined with a 5′ efficiency sequence [45,46].

The editosome of C-to-U editing consists of a minimum of three protein components:
ApoB1 and two essential cofactors, ApoB1-complementary factor (ACF) and RNA binding
motif 47 (RBM47) [47,48]. The cytidine deaminases (RNA-specific) APOBEC family includes
APOBEC1. Like the cytidine deaminase family-derived members, APOBEC1 possesses a
zinc-dependent deaminase domain that is essential for the deamination of C [49,50]. In the
catalytic domain of APOBEC1, specific amino acids are bound to AU-rich areas in apoB
pre-mRNA, producing homodimers. In vitro, this interaction is inadequate for mRNA
association, which needs to be used as a cofactor of ACF, a potential RNA-binding protein
(RBP). In vitro experiments revealed that this cofactor has a high affinity for the mooring
sequence and forms a minimal editosome with APOBEC1 [51]. Elav/HelN1/HuR is a
protein that consists of an RNA-recognition motif (RRM) of single-stranded RNA, repeated
several times. The N- and C-terminal areas bordering many RRMs are required for the
interaction of ACF with the APOBEC1 enzyme [52].

While ACF knockout animals may die during early pregnancy, ACF+/mutant mice
show a higher editing efficiency, contradicting the idea that cofactors are essential for
editosome editability in vitro. Despite the abundance of scientific evidence for cofactors
and C-to-U APOBEC-derived deaminase editing in vitro, there is no strong proof that
cofactors are essential for C to-U RNA editing in vivo. As a result, the function of cofactors
(ACF) in vivo remains unclear [51]. C-to-U RNA editing in vivo requires an extra cofactor,
which has recently been discovered as RBM47 [51]. In the holoenzyme of the editosome,
RBM47 interacts with APOBEC1 and ACF, and works with APOBEC1 to edit transcripts
of ApoB. However, the consequences of the ACF-RBM47 interaction in vivo are not yet
fully known. In vitro, RBM47 can also play the role of ACF cofactors in the RNA editing
of the C-to-U enzyme complex. The C-to-U RNA editing of apoB and four other C-to-U
RNA editing targets (Sult1d1—sulfotransfer RBM47) is an editosome component that is
essential for C-to-U RNA editing [53]. A novel enzyme for C-to-U RNA editing has been
identified as APOBEC3A (A3A) (Figure 4), DYW, a structurally related member of the
cytidine deaminase family, which is expressed mostly in myeloid cells such as macrophages
and monocytes [54,55].
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Figure 4. RNA-binding protein RBM47 is required for normal Cytidine to Uridine RNA editing in
mammals and is sufficient for the C to U RNA editinf activity of APOBEC demainase domain [52].

7. C-to-U RNA Editing in Plants

RNA editing alters the predicted nucleotide sequence in RNA molecules, resulting in
a divergence from the genomic sequence of mRNA information for a protein. RNA editing
converts C-to-U in the chloroplasts and mitochondria of flowering plants, and converts
U-to-C in ferns and mosses. Specific proteins address almost 500 sites of editing in the
mitochondria and only 40 sites in plastids of plants with flowering ability, whose genes
are increased in plant species with organellar RNA editing [56]. RNA editing randomly
restores 400 C-to-U in the mitochondrial mRNA of flowering plants [57].

Although there are significant distinguishing characteristics between mammals and
plants C-to-U RNA editing, it may be technically possible to replace the mammalian
APOBEC1 enzyme in human therapy applications by combining elements of RNA editing
apparatus of plants with guide RNA (a complementary sequence of mRNA that binds with
the targeted sequence). However, since C-to-U editing occurs automatically (endogenous
property) in plants, the enzymes responsible for the editing/editors can be replaced in
plants [58]. The development of this method will be useful in a variety of C-to-U editing
situations. As a result, C-to-U editing in plants is represented as an expected correlation,
not only parallel to the mammalian process.

In plants, C-to-U and U-to-C are the two commonly found types of RNA editing
events. Among them, C-to-U RNA editing is more commonly and precisely found than
U-to-C. The RNA editing events of C-to-U occur in both the plastids and mitochondria
of plants [58–62].

Higher plant plastids have circular genomes that are 120–130 kb in size, with an
expectation of 20–30 cytidines to be converted or altered to uridines, implying a 0.02%
editing frequency in the plastid genome [63]. Because there are fewer start codons or
stop codons in plastid mRNAs, C-to-U editing allows functional proteins to be generated
by the addition of start or stop codons and altering amino acid sequences [64–66]. The
circular genomes of both organelles encode photosynthesis and respiration genes, respec-
tively. Plastid mRNAs undergo C-to-U RNA editing, but not others, such as transfer RNA
(tRNA) or ribosomal RNA (rRNA). Plant mitochondria have a higher editing efficiency
of C-to-U RNA editing than plastids; for example, the Arabidopsis thaliana (A. thaliana)
mitochondrial genome is approximately 367 kb in size, among which only 30 kb genes are
encoded by the respiratory chain complex [67]. However, only 441 C-to-U RNA editing
sites were found in mitochondrial ORFs [68]. Unlike plant plastids, mitochondrial C-to-U
RNA editing occurs both in mRNA and tRNA, except for rRNA. C-to-U RNA editing
is more commonly found in mitochondrial coding sequences than in introns and other
UTRs. By restoring and fixing ORFs, these processes aid in gene expression in the mito-
chondria of plants. Without RNA editing of C-to-U, it would not be possible to produce
several respiratory chain proteins. As a result, functionally active mitochondria could
not be built in plant cells. Furthermore, by restoring crucial base-pairings, C-to-U RNA
editing functionalities in tRNAs of mitochondria are required to restore the folding and
processing of tRNA precursors [69,70]. In plants, C-to-U RNA editing requires a variety
of editing techniques and approaches. Furthermore, to enhance the specificity of C-to-U
editing, nearby cis-elements are required for editing sites. Unlike mammalian cis-elements,



Genes 2022, 13, 1636 7 of 16

several studies have discovered that the majority of recognizing cis-acting elements are
found in plants in the editing sites, with the 3′ upstream region contributing only a few
percent to C-to-U RNA editing efficiency [71–75]. In most cases, cis-elements containing a
20-nucleotide upstream sequence and a 10-nucleotide downstream sequence are sufficient
for RNA editing [76]. When some transacting components are bound to cis-components at
the 5′ upstream region, the downstream cytidine is recognized and targeted as an editing
site. The RNA editing machinery subsequently moves down towards the editing site,
where it is artificially restored to change specific C-to-U.

Numerous pentatrico peptide repeat (PPR) motif proteins have been discovered as a
part of the trans-acting components required for RNA editing (C-to-U) in both chloroplasts
and mitochondria. These PPR motif proteins are the factors responsible for recognizing
the site-specificity of cytidines that directly bind to cis-components. PPR motif proteins
degenerate 35 repeats of amino acids, numbered from two to thirty [77–79]. Based on
the PPR motif structure, the PPR family of proteins can be divided into two subfamilies,
P and PLS [80]. In A. thaliana, there are approximately 450 members of the PPR family,
with roughly 250P and 200PLS subfamily members, respectively [79]. PPR motifs are
simple in the P subfamily. However, PLS has a triplet of PPR-like motifs, long (L) and
short (S), as well as canonical PPR motifs (P). The PLS subfamily can be further divided
into E/E+ (Extended) and DYW (Aspartate-tyrosine-tryptophan) classes based on their
unique C-terminal domains [80,81] (Figure 5). PLS subfamily members are responsible
for trans-acting RNA editing in plants, while P subfamily members are responsible for
the process of RNA maturation. The PPR motif is made up of two anti-parallel helices
that interact to form a helix-turn-helix motif, which is subsequently connected to a super-
helix with a particular central groove by a series of helix-turn-helix motifs. In the central
groove, the PPR motif binds to a nucleotide, governing the binding of proteins to specific
cis-acting components on the target specific RNA [77,82]. In Arabidopsis, there are almost
650 events of C-to-U RNA editing into the two organelles. Approximately 200 members
of the PLS subfamily recognize these sites, and more than two sites can be identified by
a single trans-acting factor on average. A minimum of three cis-acting sites in plastids
and six points in mitochondria are recognized by CRR22 (chlororespiratory reduction 22)
and SOL2, respectively [81,83,84]. RIP or MORFs (RNA-editing factor-interacting protein,
also known as multiple site organellar RNA editing factors) [85–88] and ORRMs (organelle
RNA recognition motif factors) have recently been identified as accessory proteins that
can cause RNA editing [86,89]. The MORF/RIP family contains 10 A. thaliana members.
MORF2/RIP2, MORF9/RIP9, and MORF8/RIP1 have all been found in plastids, with
MORF8/RIP1 in mitochondria. The other members of the family are thought to exert their
activity in the mitochondria, and RIP10 is encoded by a pseudo-gene. MORF proteins
help PPR and other proteins to form spatial connections in an ordered manner, which is
necessary for C-to-U RNA editing. MORF proteins may also play a role in the site-specificity
of the editing enzyme to the targeted C, which could be linked to their ability to bind metal
ions, such as cobalt [85]. ORRM proteins have yet to be discovered, although they may
work in a similar way to MORF factors. ORRMs have RRM in the C-terminal region. The
ORRM family consists of four essential members, such as ORRM1, which works as a plastid
editing factor, whereas ORRM2, ORRM3, and ORRM4 work as mitochondrial RNA editing
factors [89,90]. C-to-U substitution editing is thought to act similarly to apoB mRNA editing
in plastids and mitochondria, and an APOBEC-1-like cytidine deaminase enzyme may
be involved. At least eight cytidine deaminases have been identified in A. thaliana. The
cytidine deaminase 1 (At-CDA-1) protein from A. thaliana has been discovered; however,
it does not show any RNA editing capacity [91]. These findings indicate that a nuclear-
encoded protein that has yet to be identified is exported to these organelles, and the
components of RNA editing in plant mechanisms remain unknown. RNA editing is
mostly found in the seedlings and leaves of A. thaliana. In 12-day-old seedlings and the
leaves of 21-day-old seedlings, substantial U-to-C and A-to-I (G) RNA editing events have
recently been described [92]. Furthermore, U-to-C conversion was found to be the most
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common RNA editing event in mature mRNA untranslated regions (UTRs) of mature
mRNA, followed by uridine to guanine (U-to-G) editing [93]. Moreover, a previous study
using RNA sequencing of 12- and 20-day old A. thaliana seedlings identified specific U-to-C
RNA editing events [92,94], prompting us to investigate the implication of the genes in
RNA editing events of U-to-C in A. thaliana.
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At the positions of translation of nuclear transcripts, AT1G29930.1 and AT1G52400.1,
the RNA editing events of C-to-U and U-to-C are both seen in A. thaliana [96]. Because
of the deamination of C-to-U and amination of U-to-C, reactions are also visualized at
neighboring locations. Although amination occurs more frequently than deamination, the
reaction of deamination operates as the amino group donor for the amination reaction [96].
Despite this, the authors were unable to identify similar editing events in the RNA-seq data.
As a result, in plants, the amino group donor of U-to-C amination is unknown. However, in
the cDNA of AT3G47965, a small T was superposed with C, slightly upstream of the edited
T, indicating a putative donor of the amino group. Previously, the parallel analysis of RNA
ends (PARE) and massive parallel signature sequencing (MPSS) data was used to study
editing sites in nuclear transcripts for mRNA. Although it was discovered that the nuclear
genes may contain all 12 RNA editing patterns, the number of editing sites may vary in
different patterns. According to these findings, RNA editing is an important RNA-based
regulatory technique for nuclear genes, as well as mitochondrial and chloroplast genes.
However, a comprehensive concept of RNA editing in nuclear protein-coding transcripts in
plants is yet to be achieved [96,97]. However, the DYW domain was recently isolated from
A. thaliana (unpublished) and utilized in conjunction with the MS2 system to restore the
genetic code from mutated C-to-edited/restored U (BFP to GFP) by following the principle
proposed by Bhakta et al., 2020, which had previously been employed for A-to-I editing
with MS2-ADAR1 editase [98–100].

8. Human Diseases Related to C-to-U Editing

While it is evident that C-to-U RNA editing occurs frequently, because APOBEC1
expression in humans is thought to be tissue-specific, a majority of the illness must be
assigned to RNA editors of A3, which have yet to be studied fully. Despite the fact that
all the members of the AID or APOBEC family of proteins were originally classified as
DNA mutators or RNA editors, structural data (all active sites appear to be nearly identi-
cal; reviewed in [101]) and cell biology observations have yet to clarify the classification
(APOBEC1 has the functionality of a robust DNA editor) [102,103]. There are different
diseases caused by the T to C mutations in humans (Table 1) which could be treated with
the enzymatic approaches.
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Table 1. Diseases caused by T to C mutations.

No. Disease State Gene Symbol Base Change Amino Acid Codon

1 ADA deficiency ADA CTG-CCG Leu-Pro 107

2 APRT Deficiency ART ATG-ACG Met-Thr 136

3 Amyloid prealbumin PALB GTG-GCG Val-Ala 30

4 Antithrombin III def. AT3 TTC-TCC Phe-Ser 402

5 Antitrypsin ∝ 1 def. PI CTC-CCG Leu-Pro 41

6 Antitrypsin ∝1 def. PI CTC-GCG Val-Ala 213

7 Elliptocytosis SPTA CTC-CCG Leu-Pro 207

8 Epidermolysis bull KRT14 CTG-CCG Leu-Pro 384

9 G6PD Deficiency G6PD CTG-CCG Leu-pro 968

10 Galactosaemia GALT CTG-CCG Leu-Pro 195

11 Gangliosidosis GM1 GLB1 ATC-ACC Ile-Thr 51

12 HPRT deficiency HPRT ATT-ACT Ile-Thr 182

13 Haemolytic anaemia PGK CTG-CCG Leu-Pro 88

14 Haemophilia A F8 TTC-TCC Phe-Ser 293

15 Haemophilia A F8 TTG-TCG Leu-Ser 2166

16 Insulin Resistance INSR CTG-CCG Leu-Pro 233

17 Laron dwarfism GHR TTT-TCT Phe-Ser 96

18 Leukocyte adhes. Def. LFA1 CTA-CCA Leu-Pro 149

19 Lipoprt. lipase def. LPL ATT-ACT Ile-Thr 194

20 MCAD deficiency MCAD ATA-ACA Ile-thr 375

21 Methaemoglobin DIA1 CTG-CCG Leu-Pro 148

22 Neurofibromatos is (1) NF1 CTC-CCG Leu-Pro

23 OTC deficiency OTC CTA-CCA Leu-Pro 45

24 OTC deficiency OTC CTT-CCT Leu Pro 111

25 Phenylketonuria PAH TTG-TCG Leu-Ser 48

26 Phenylketonuria PAH TTG-TCG Leu-Ser 255

27 Phenylketonuria PAH CTG-CCG Leu-Pro 311

28 Pompe disease GAA ATG-ACG Met-Thr 318

29 Retinitis pigmentosa RDS CTG-CCG Leu-Pro 185

30 Ster.18-hydrox. Def. CYP18 GTG-GCG Val-Ala 386

31 Thalassaemia ∝ HBA2 ATG-ACG Met-Thr −1

32 Thalassaemia ∝ HBA2 CTG-CCG Leu-Pro 125

33 Thalassaemia ∝ HBB CTG-CCG Leu-Pro 110

34 Thalassaemia ∝ HBD CTG-CCG Leu-Pro 141

It has been kept in mind that when considering the impact of RNA editing in certain
illnesses, most of the deaminases may be used for both DNA and RNA editing. Although
APOBEC1 is now thought to be expressed in the outer part of the human digestive system,
surprisingly, all the genetic illnesses associated with it have recently been found in the
human brain. GlyR modification is linked to the onset of temporal lobe epilepsy (TLE) [102].
In the hippocampus part of the brain with pharmaco-resistant TLE, GlyR editing was found
to be higher [104].
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The terminals of presynaptic regions of hippocampal neurons contain RNA-edited
GlyRs, and even slight modifications in editing can cause malfunction [105,106]. APOBEC1
may also modify GlyR mRNA in vitro, which was discovered at the same time. There are
two genetic variations in APOBEC1: 80M and 80I. Recent bioinformatics studies have found
that they have been linked to GlyR editing levels [107]. Patients with intractable TLE (iTLE)
were also tested for dimorphism of APOBEC1, which revealed that the patients with the 80I
variant had simple or complex seizures, while those with 80M had neurodegenerative and
generalized seizure action [107]. However, the 80M polymorphism in human APOBEC1
has previously been shown to have no considerable impact on APOBEC-mediated RNA
editing in the small intestine [108]. The A3 family, as well as entities of disease in which
APOBEC1 and A3 are applied, must be investigated in the same way. In the nervous
system, alternative splicing can occur at the transcript encoding tryptophan hydroxylase
2 (TPH2a) from editing of C-to-U. Exon 3b undergoes C-to-U editing, which results in a
mutation (Q129X substitution) and a shorter protein. Editing at this position significantly
decreases in suicide-prone and schizophrenia patients (by 50% and 30%, respectively) [109].
Mutations in APOBEC1 cofactors have also been linked to this disease. RBM47 mutations
have been associated with the growth of breast cancer, specifically an increase in the fitness
of select cancer clones and a higher metastatic potential [110]. RBM47 expression has also
been linked to a better prognosis in individuals with lung, breast, and gastrointestinal
cancer growth, indicating a tumor-suppressive effect [111]. Although these studies did not
delve into mRNA editing, RBM47 is known to bind to approximately 2500 transcripts. It is
crucial to determine whether, in some transcripts, the loss of RNA editing function can be
caused by the loss of the editing co-factor and, finally, can be linked to disease progression.
Some RBM47-bound RNA targets [112] have also been identified as targets for APOBEC1-
mediated RNA editing or APOBEC1-mediated RNA interactors, such as microglobulin-2
(B2m) and interleukin-8 (IL8) [113]. In A3 RNA editors, these polymorphisms may affect
the progression of human disease by affecting immune responses or RNA editing levels or
targets. Patients with systemic lupus erythematosus (SLE) have high levels of circulating
type I interferon and increased expression of interferon-stimulated genes, including various
A3s [114,115]. SLE patients have also been found to have higher levels of A-to-I (through
adenosine deaminases) and C-to-U RNA editing [116]. Amino acid recoding and the
creation of MHC class I epitopes can both contribute to the progression of illness as a result
of this elevated amount of editing [111]. The editing of A3A and A3RNA G appears to be
more careful than that of their DNA [117], which has a more specific sequence signature.

RNA editing was more likely to be observed in stem-loop structures with target C
included in the stem loop, wherein the levels of RNA editing are proportional to the
stability of the stem loop structure [112]. However, DNA editing mediated by A3A
and A3G appeared to be non-specific, with dinucleotide [T/C]C as the preferred tar-
get only. The rs172378 C1q synonymous SNP, which has been linked to nephritis in SLE
patients [116–119], has increased C-to-U editing, most likely by altering the RNA secondary
structure and stabilizing a stem-loop [120]. This type of SNP affects the way the A3s target
RNA. While it is unknown whether this mutation causes SLE directly, it is possible that,
similar to other RNA editing events, it influences transcript fate and, as a result, protein
output, contributing to the disease. Similarly, additional SNPs, including synonymous
ones, can alter protein diversity by causing changes in RNA editing. This type of SNP
affects the way the A3s target RNA. While it is unknown whether this mutation causes SLE
directly, it is possible that, like other RNA editing events, it influences transcript fate and, as
a result, protein output, contributing to the disease. Similarly, additional SNPs, including
synonymous ones, can alter protein diversity by causing changes in RNA editing.

9. Future Perspectives of RNA Editing in Diagnosis and Treatment

According to the findings presented in this review, RNA editing levels, as well as the ex-
pression of A and C deaminases and specifically altered genes (tumor suppressors and onco-
genes), could be important predictors of cancer pathogenesis and progression [121–123].
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Non-regulated patterns of ADAR and APOBEC expression in tumorous and healthy tissues
revealed a promising clinical strategy for an improved means of cancer detection and ther-
apy [124–126]. Genes that have been altered in a particular way play a vital role in tumor
pathophysiology [127–129]. Non-synonymous events of RNA editing and expression levels,
which have major applications in drug sensitivity, such as tamoxifen resistance in ER2+
breast malignancies [130,131], also represent a barrier to therapeutic choices. Furthermore,
these processes provide new targets for therapeutic approaches. ADAR inhibitors are a
novel and effective therapy for ADAR-overexpressing malignancies, such as breast and
lung cancers [132]. Moreover, due to the recent functionality of APOBEC inhibitors in
cancer, they are still in the early stages of development, which is of great interest in this
field [133]. RNA editing, as well as its regulation and application, offers many possibilities.
In addition to traditional deaminase inhibitors for regulating expression, molecular meth-
ods, such as antisense oligonucleotides, are potent and selective inhibitors of RNA editing
on targeted RNAs [134]. An artificial guide mediated RNA editing approach [18,135–139]
is a technique that can be utilized for the treatment of hypo-edited diseases such as prostate
and brain tumors, as well as disease-promoting genetic changes.

10. Conclusions

Although initial evidence on RNA editing events in humans was first published in
the late 1980s, in respect of hepatocytes of the liver (C-to-U editing in ApoB mRNA was
published in 1987), this topic has only recently received further attention. The role of
RNA editing in the initiation, progression, and metastasis of cancer has been extensively
researched in a range of cancer types, with a growing body of evidence pointing in that di-
rection. However, many concerns remain unanswered, and the importance of RNA editing
processes in cancer and other human diseases remains unclear. Furthermore, substantial
RNA editing in transcripts encoding cancer-related proteins increases the likelihood of
neoantigen formation. More research into RNA editing could lead to advancements in
cancer immunotherapy and/or targeted anti-cancer drugs, as lymphocytes can swiftly
recognize such neoantigens.
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