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A B S T R A C T   

Background: Rheumatoid arthritis is a systemic inflammatory autoimmune disease that severely 
impacts physical and mental health. Autophagy is a cellular process involving the degradation of 
cellular components in lysosomes. However, from a bioinformatics perspective, autophagy- 
related genes have not been comprehensively elucidated in rheumatoid arthritis. 
Methods: In this study, we performed differential analysis of autophagy-related genes in rheu
matoid arthritis patients using the GSE93272 dataset from the Gene Expression Omnibus data
base. Marker genes were screened by least absolute shrinkage and selection operator. Based on 
marker genes, we used unsupervised cluster analysis to elaborate different autophagy clusters, 
and further identified modules strongly associated with rheumatoid arthritis by weighted gene co- 
expression network analysis. In addition, we constructed four machine learning models, random 
forest model, support vector machine model, generalized linear model and extreme gradient 
boosting based on marker genes, and based on the optimal machine learning model, a nomogram 
model was constructed for distinguishing between normal individuals and rheumatoid arthritis 
patients. Finally, five external independent rheumatoid arthritis datasets were used for the 
validation of our results. 
Results: The results showed that autophagy-related genes had significant expression differences 
between normal individuals and osteoarthritis patients. Through least absolute shrinkage and 
selection operator screening, we identified 31 marker genes and found that they exhibited sig
nificant synergistic or antagonistic effects in rheumatoid arthritis, and immune cell infiltration 
analysis revealed significant changes in immune cell abundance. Subsequently, we elaborated 
different autophagy clusters (cluster 1 and cluster 2) using unsupervised cluster analysis. Next, 
further by weighted gene co-expression network analysis, we identified a brown module strongly 
associated with rheumatoid arthritis. In addition, we constructed a nomogram model for five 
marker genes (CDKN2A, TP53, ATG16L2, FKBP1A, and GABARAPL1) based on a generalized 
linear model (area under the curve = 1.000), and the predictive efficiency and accuracy of this 
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nomogram model were demonstrated in the calibration curves, the decision curves and the five 
external independent datasets were validated. 
Conclusion: This study identified marker autophagy-related genes in rheumatoid arthritis and 
analyzed their impact on the disease, providing new perspectives for understanding the role of 
autophagy-related genes in rheumatoid arthritis and providing new directions for its individu
alized treatment.   

1. Introduction 

Rheumatoid arthritis (RA) is a common autoimmune disease that adversely affects both physical and mental health. It arises from a 
combination of genetic, epigenetic, and environmental factors [1]. RA patients’ immune systems exhibit abnormal cellular and hu
moral responses, leading to autoantibodies production, including Rheumatoid Factor (RF) and Anti-Mutated Citrullinated Protein 
Antibodies (AMPAs). Additionally, T cells and B cells’ abnormal activation contributes to synovitis formation [2]. 

RA’s clinical and histological manifestations are diverse. Synovitis results in joint swelling, pain, and cartilage and bone 
destruction, impairing patients’ daily functions [3]. Synovial hyperplasia, a typical RA characteristic, is a significant factor in pannus 
formation. The extent of synovial hyperplasia correlates with cartilage erosion severity, and osteoclasts activation leads to bone 
destruction. In RA synovium, synovial cells secrete numerous matrix-degrading enzymes, such as collagenases, matrix metal
loproteinases, and gelatinases. RA can potentially harm various organ systems, such as the cardiovascular system, kidneys, lungs, and 
nervous system, not just the joints [4,5]. Therefore, early diagnosis and management are vital to prevent RA-induced joint damage. 
Research indicates that severe permanent joint damage can occur within the first 2 years of RA onset, making optimal RA management 
within the first 3–6 months crucial. Early diagnosis can prevent severe joint damage and improve patient prognosis [6,7]. Modern 
medicine offers improved management and long-term prognosis for RA patients through a wide range of drugs and personalized 
treatment plans. 

Autophagy, a cellular process involving cellular components degradation in lysosomes, is categorized into macroautophagy, 
chaperone-mediated autophagy (CMA), and microautophagy [8]. Macroautophagy degrades substances within autophagosomes and is 
vital for maintaining cellular homeostasis. CMA selectively degrades proteins, affecting cellular metabolism, while micro-autophagy 
non-selectively degrades cytoplasmic cargo. Autophagy disruption can lead to cellular imbalance and contribute to disease devel
opment [9]. Recent research has indicated a strong correlation between autophagy and RA. Inhibiting persistently activated autophagy 
can reduce synovial inflammation and osteoclastogenesis and prevent structural damage in RA mice [10]. Studies have indicated the 
involvement of PINK1/Parkin-mediated mitochondrial autophagy in the excessive growth of RA-FLS caused by H2O2, suggesting that 
PINK1/Parkin-mediated mitochondrial autophagy could potentially serve as a crucial mechanism for treating RA. H2O2-induced 
oxidative stress leads to mitochondrial dysfunction in RA-FLS. This is characterized by a decreased mitochondrial membrane po
tential and elevated levels of mitochondrial and intracellular reactive oxygen species (ROS). The disruption of mitophagy results in 
abnormal cell proliferation and anti-apoptotic behavior. The study highlighted the critical role of the PINK1/Parkin pathway in 
maintaining mitochondrial quality control under stress conditions. Oxidative stress downregulates PINK1 and Parkin, while N-ace
tylcysteine (NAC) treatment can counteract oxidative stress, indicating that protecting this pathway is crucial for preventing excessive 
growth of RA-FLS [11]. Recent research has also demonstrated that Wenhua Juanbi Recipe (WJR) inhibits autophagy, apoptosis, and 
proliferation through the miRNA-146a-mediated PI3K/AKT/mTOR pathway, having a therapeutic impact in a rat model [12]. 
However, the potential regulatory mechanism of cellular autophagy in RA based on bioinformatics has not been fully elucidated. 
Therefore, further clarification of the molecular characteristics of Autophagy Related Genes (ARGs) may explain the complex 
pathogenesis of RA and provide new ideas and targets for personalized RA treatment. 

In this study, we conducted a systematic bioinformatics study on normal individuals and RA patients for the first time, exploring 
their differences in ARGs expression and immune characteristics. We performed Consensus Clustering analysis on 232 RA patients 
based on the expression profiles of 31 significantly differentially expressed characteristic ARGs, dividing them into two autophagy- 
related clusters, and further studied the differences in immune cells between these two clusters. We also conducted Gene Set Varia
tion Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) on several clusters. After that, we identified Differentially Expressed 
Genes (DEGs) based on clusters using Weighted Gene Co-Expression Network Analysis (WGCNA), which also indicated linked 
biological functions and pathway enrichment based on these DEGs. We once more separated the 232 RA patients into two clusters 
based on characteristic DEGs using the Least Absolute Shrinkage and Selection Operator (LASSO). To show the association between the 
two clusters, we calculated the score of each RA patients based on the expression profiles of 31 characteristic ARGs using the Principal 
Component Analysis (PCA) algorithm and plotted the difference box plot. Finally, we also established a nomogram model by 
comparing multiple machine learning algorithms and validated the performance of this model through decision curve analysis (DCA), 
calibration curves, and 5 external datasets. Therefore, based on autophagy, we provide new insights into the immune characteristics, 
clustering, and risk prediction of RA from a bioinformatics perspective. 
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2. Methods 

2.1. Dataset acquisition and selection of characteristic differential genes 

We obtained six datasets, GSE93272 [13], GSE17755 [14], GSE56649 [15], GSE68689, GSE77298 [16], and GSE71370 [17], from 
the Gene Expression Omnibus (GEO) database [18]. The GSE93272 dataset (GPL 570 platform) included 43 normal individuals and 
232 RA patients for further analysis. The other five datasets were used for validation. ARGs totaling 232 were retrieved from the 
Human Autophagy Database (http://www.autophagy.lu/index.html). We normalized the original gene expression profile of the 
GSE93272 dataset using the "limma" package in R 4.2.2 [19], extracted the expression levels of the 232 ARGs in each sample, and 
conducted differential analysis with a standard of p-value less than 0.05. We used the LASSO to screen out differentially expressed 
characteristic ARGs and performed correlation analysis of characteristic ARGs using the "corrplot" package in R 4.2.2 [20]. The flow 
chart of this study was shown in Fig. 1. 

2.2. Immune cell infiltration analysis 

To assess the relative abundance of 22 different types of immune cells in each sample of the gene expression data, we employed the 
CIBERSORT method and the LM 22 characteristic matrix [21]. Then, we analyzed the correlation between immune cells and char
acteristic ARGs using the Spearman correlation coefficient. Correlations were considered significant if the p-value <0.05. We visu
alized the results using the "corrplot" package in R 4.2.2. 

2.3. Consensus Clustering and Immune Cell Infiltration Analysis of Different Clusters in Rheumatoid Arthritis Patients 

The 232 RA patients were divided into distinct ARGs clusters using the k-means method with 1000 iterations using the "Con
sensusClusterPlus" package in R 4.2.2 [22]. We selected the maximum subtype number k (k = 9) and thoroughly assessed the ideal 
number of clusters using the consistency matrix and Cumulative Distribution Function (CDF) curve. Then, we used the PCA al
gorithm to validate the reliability of the optimal clustering. Finally, using the CIBERSORT method, we conducted immune cell 
infiltration analyses on several clusters. 

Fig. 1. Flowchart of this study.  
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2.4. Gene Set Enrichment Analysis and Gene Set Variation Analysis 

We used GSEA and GSVA to analyze gene expression data. In order to evaluate associated pathways and biological mechanisms 
based on various ARGs cluster gene expression profiles, we obtained the GSEA program (version 3.0) from the GSEA website [23] as 
well as the “c2.cp.kegg.v7.4.symbols.gmt” and “c5.go.symbols.gmt” sub-sets from the MSigDB website [24]. We ran 1000 repetitions 
of resampling with a minimum gene set of 5 and a maximum gene set of 5000. Statistical significance was defined as P-values ≤0.05 
and FDR <0.25. In GSVA analysis, to clarify the variations in enriched gene sets between various ARGs clusters, we used the "GSVA" 
package in R 4.2.2 for GSVA enrichment analysis [25]. Specifically, we first used the gene expression profile, the method of David A 
Barbie [26], and predefined gene sets to evaluate the enrichment scores of different gene sets, set the minimum gene set to 5, the 
maximum gene set to 5000, calculated the enrichment score of each sample in each gene set, and finally obtained the enrichment score 
matrix. By evaluating the GSVA scores between different ARGs clusters, we used the "limma" in R 4.2.2 to find biological activities and 
pathways that were differentially expressed. GSVA is a non-parametric, unsupervised method for estimating pathway and biological 
process activity changes in expression datasets, suitable for analyzing gene expression data to estimate pathway or gene set activity 
across different samples or conditions. Within ARG cluster analysis, GSVA aids in identifying the activity changes of biological pro
cesses in each cluster. Particularly when ARG clusters represent different biological states or conditions, GSVA can reveal the biological 
pathways that distinguish these clusters. Utilizing the “limma” package for statistical analysis can enhance such analyses; it identifies 
significant differences through robust statistical methods, which is crucial for deciphering pathogenesis, identifying biological 
markers, or exploring therapeutic targets. 

2.5. Weighted gene Co-expression network analysis 

We utilized the WGCNA method to reveal gene interactions and functionally related gene sets through the construction of gene co- 
expression networks and modular analysis [27]. We chose the top 25 % of the genes with the highest variance for WGCNA analysis in 
order to improve the biological relevance, computational feasibility, and interpretive clarity of the analysis, thereby increasing the 
likelihood of meaningful and actionable in-depth analyses of the biological systems under study. We created a topological overlap 
matrix (TOM) using the weighted adjacency matrix to select the optimal soft threshold. Using the hierarchical clustering tree and the 
TOM dissimilarity measure (1-TOM), we produced modules with the minimum module size set to 100. Each module received a random 
color that represented the genes that make it up. Module significance (MS) was used to assess the relationship between the module and 
RA. Gene significance (GS) was used to represent the association of genes with clinical phenotypes. In this study, we set GS as 0.5. 
Through these steps, we were able to accurately identify gene co-expression modules and explore their association with disease. 

2.6. Construction and Consensus Clustering Analysis of the Least Absolute Shrinkage and Selection Operator Model 

We used the LASSO algorithm to process the most significant gene module in the WGCNA analysis to identify characteristic genes in 
the module. Then, based on these characteristic genes, we again used the "ConsensusClusterPlus" package in R 4.2.2 for consensus 
clustering analysis, dividing the 232 RA patients into different gene clusters through the execution of the k-means algorithm with 1000 
iterations. The maximum cluster number k (k = 9) was chosen, and the consistency matrix and cumulative distribution function (CDF) 
curve were used to thoroughly examine the ideal number of clusters. Next, we used the PCA algorithm to quantify the two clustering 
modes and calculated the ARGs-score of each sample based on the expression level of characteristic ARGs in each sample. Finally, we 
used "limma" package of R 4.2.2 and "ggpubr" to visualize the results [28]. 

2.7. Construction and selection of four machine learning models 

We utilized the "caret" [29], "xgboost" [30], "kernlab" [31], "randomForest" [32], and "ggplot2" [33] packages in R 4.2.2 to 
construct four machine learning models based on the characteristic ARGs, and visualized them. These four machine learning models 
were the Extreme Gradient Boosting (XGB), the Generalized Linear Model (GLM), the Support Vector Machine (SVM), and the Random 
Forest (RF) model. RF is an ensemble learning method based on decision trees, which makes predictions by randomly selecting 
characteristics and using a voting mechanism. SVM classifies or regresses in the characteristic space by finding the optimal hyperplane, 
suitable for both linear and non-linear problems. GLM is based on the linear model, modeling and predicting relationships through 
appropriate link functions and error distributions. XGB builds multiple weak learners iteratively and weights them based on the errors 
of the previous round to improve the accuracy of predictions. These four machine learning models have wide applications in bioin
formatics research. Using characteristic ARGs, we built machine learning models in our studies. A training set (70 %, N = 162) and a 
validation set (30 %, N = 70) were created from a total of 232 RA patients. Then, we evaluated them through 10-fold cross-validation. 
The residual distribution, the significance of the characteristic genes, and the Receiver Operating Characteristic (ROC) curve of the 
four machine learning models were all visualized using the "DALEX" [34] and "pROC" [35] packages in R 4.2.2. Finally, we selected the 
top five significant variables (characteristic ARGs) as the most crucial predictor genes associated with RA after determining the most 
effective machine learning model. 

2.8. Development of the nomogram model 

We used the "rms" package [36] in R 4.2.2 to develop a nomogram model based on the most powerful machine learning model to 
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determine the probability that RA would occur. The "total score" is the total of all predictor scores, with each predictor having a 
corresponding score. In order to assess the nomogram model’s capability for prediction, we used calibration curves and DCA. 

3. Validation with external independent datasets 

We applied five external datasets GSE17755 (GPL 1291 platform, Con: 45, RA: 112), GSE56649 (GPL 570 platform, Con: 9, RA: 13), 
GSE68689 (GPL 20171 platform, Con: 5, RA: 16), GSE77298 (GPL 570 platform, Con: 7, RA: 16), and GSE71370 dataset (GPL 16268 
platform, Con: 8, RA: 18) to validate the predictive model’s ability to distinguish RA patients from normal individuals. Subsequently, 
we visualized the ROC curves of these five validation datasets using the "pROC" package in R 4.2.2. 

4. Results 

4.1. Differential analysis of autophagy-related genes 

In our initial analysis, we examined the expression profiles of 232 ARGs in RA patients and normal individuals using the GSE93272 
dataset. We found significant differential expression in 142 ARGs (Fig. 2A). Using a LASSO model, we identified 31 characteristic 
ARGs, with 13 upregulated and 18 downregulated genes (Fig. 2B and C). In the RA patients, genes such as CDKN2A, FKBP1A, 
GABARAPL1, APOL1, ATG5, BAX, CASP4, FAS, PIK3C3, RAB24, SAR1A, TNFSF10, and ULK2 showed increased expression compared 
to the normal individuals. Conversely, genes like TP53, ATG16L2, ARSA, BAG3, CANX, EDEM1, EIF4G1, ERBB2, GAA, GNB2L1, 
HSPA5, IKBKB, IL24, ITGA6, MAP2K7, MAPK3, SPNS1, and TMEM74 were downregulated in the RA patients (Fig. 2D and E). To 
understand the role of these ARGs in RA progression, we performed a correlation analysis. FKBP1A displayed a significant negative 
connection with TP53 and a substantial positive correlation with RAB24. Similarly, ATG5 and GABARAPL1 had a negative correlation 
whereas MAP2K7 and GABARAPL1 had a positive correlation. We found significant correlations among CDKN2A, FKBP1A, 
GABARAPL1, TP53, ATG16L2, and other ARGs (Fig. 2F). 

Fig. 2. Differential analysis and filtering of autophagy-related genes (ARGs). (A) Heatmap of 142 ARGs. (B) Coefficient diagram of Least Absolute 
Shrinkage and Selection Operator (LASSO). (C) Parameter plot of LASSO. (D) Heat map of 31 characteristic ARGs. (E) Boxplot of 31 characteristic 
ARGs. (F) Correlation analysis of 31 characteristic ARGs. 
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4.2. Analysis of immune cell infiltration 

We then analyzed the proportions of 22 types of immune cell infiltration in the RA patients and normal individuals using the 
CIBERSORT algorithm. Significant differences were observed in B cells naive, T cells regulatory (Tregs), T cells CD8, T cells CD4 naïve, 
B cells memory, T cells gamma delta, NK cells resting, Macrophages M2, Dendritic cells resting, and Mast cells resting between the two 
groups, indicating possible changes in the immune system as a cause of RA (Fig. 3A). Moreover, NK cells resting, Macrophages M0, 
Neutrophils, B cells naive, and T cells CD4 naive showed significant correlations with most of the ARGs (Fig. 3B), suggesting these 
ARGs could be crucial in regulating immune infiltration in RA patients. 

4.3. Consensus clustering of rheumatoid arthritis patients and immune cell infiltration analysis 

To understand the expression patterns related to the ARGs in RA, we performed consensus clustering on 232 RA patients based on 
the expression profiles of the 31 characteristic ARGs. When k = 2, the clusters were the most stable (Fig. 4A), and the CDF curve ranged 
between 0.2 and 0.6, the smallest range of shared index (Fig. 4B and C). We grouped the 232 RA patients into two clusters: cluster 1 (n 
= 111) and cluster 2 (n = 121). In cluster 2, TP53 was significantly upregulated, while FKBP1A, CDKN2A, and GABARAPL1 were 
downregulated compared to cluster 1. Between the two clusters, the majority of ARGs revealed significant changes (Fig. 4D and E). 

Fig. 3. Analysis of immune infiltration in normal individuals and rheumatoid arthritis patients. (A) Differences in immunity between normal in
dividuals and rheumatoid arthritis patients. (B) Correlation analysis of 31 characteristic ARGs and immune cells. 
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PCA indicated significant differences between these two clusters (Fig. 4F). Additionally, immune infiltration studies showed that the 
immunological microenvironment between the two clusters had significantly changed (Fig. 5A). While plasma cells, monocytes, 
macrophages M0, and neutrophils were more prevalent in cluster 1, cluster 2 contained greater numbers of B cells naive, B cells 
memory, T cells CD4 naive, T cells CD4 memory resting, and NK cells resting (Fig. 5B). 

4.4. Gene Set Enrichment Analysis and Gene Set Variation Analysis 

To delve deeper into the functional differences associated with the DEGs in the two autophagy-related clusters, we conducted GSEA 
and GSVA. In cluster 1, GSEA showed a substantial increase of the tertiary, specialized, and secretory granule membranes (Fig. 6A). 
Pathway enrichment analysis highlighted the enhancement of immune-related signaling pathways such as Toll-like receptor signaling 
pathway, Fc gamma R-mediated phagocytosis, and complement and coagulation cascades in cluster 1, suggesting its primary 
involvement in immune response pathways (Fig. 6B). In cluster 2, GSEA showed a substantial decrease of the tertiary, specialized, and 
secretory granule membranes (Fig. 6C). Pathway enrichment analysis highlighted the decreased in immune-related signaling pathways 
such as Toll-like receptor signaling pathway, Fc gamma R-mediated phagocytosis, and complement and coagulation cascades in cluster 
2. These results were in contrast to Cluster 1 (Fig. 6D). GSVA results associated cluster 2 with negative regulation of tumor necrosis 
factor-mediated signaling pathway, interleukin 1 receptor binding, cellular response to oxidized low-density lipoprotein particle 

Fig. 4. Consensus clustering analysis. (A) Consensus clustering matrix when k = 2. (B) Representative cumulative distribution function (CDF) 
curves. (C) CDF delta area curves. (D) Heatmap of 31 characteristic ARGs in cluster 1 and cluster 2. (E) Boxplots of 31 characteristic ARGs in cluster 
1 and cluster 2. (F) Principal Component Analysis of cluster 1 and cluster 2. 
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stimulus, immune response, and response to macrophage colony-stimulating factor. Cluster 1 showed significant correlations with 
integral component of lysosomal membrane and transcription elongation factor activity, among others (Fig. 6E). Pathway enrichment 
analysis by GSVA revealed significant enhancement of Fc epsilon RI signaling pathway, SNARE interactions in vesicular transport, Fc 
gamma R-mediated phagocytosis, RIG-I-like receptor signaling pathway, and other signaling pathways in cluster 2, while Nucleotide 
excision repair pathways and Aminoacyl-tRNA biosynthesis were significantly enhanced in cluster 1 (Fig. 6F). These findings suggest 
that both clusters are closely associated with different immune pathways. 

4.5. Weighted gene Co-expression network analysis 

In order to locate significant gene modules linked to RA, we used the WGCNA algorithm. In the GSE93272 dataset, we measured the 
variation of gene expression and chose the top 25 % of the most variable genes for further study. We discovered co-expression gene 
modules by setting the threshold to 9 and the scale-free R^2 to 0.9 (Fig. 7A). We generated 11 unique co-expression gene modules using 
the dynamic cutting method, which we depicted by different colors on a heatmap of the TOM (Fig. 7B–D). We then analyzed the co- 
expression similarity and adjacency of module-clinical characteristics using these genes from the 11 color modules. The brown module, 
which included 646 genes, exhibited the strongest correlation with RA (Fig. 7E). A positive correlation was also observed between the 
module-related genes and brown module (Fig. 7F). 

Fig. 5. Immune cell infiltration analysis of cluster 1 and cluster 2. (A) Histogram of immune cells of cluster1 and cluster2. (B) Boxplots of immune 
cells from cluster 1 and cluster 2. 
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Fig. 6. Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). (A) GSEA functional enrichment analysis in cluster 1. (B) 
GSEA pathway enrichment analysis in cluster 1. (C) GSEA functional enrichment analysis in cluster 2. (D) GSEA pathway enrichment analysis in 
cluster 2. (E) Functional enrichment analysis of GSVA. (F) Pathway enrichment analysis of GSVA. 
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Fig. 7. Co-expression network of differentially expressed genes between the two clusters. (A) The selection of soft threshold power. (B) Cluster tree 
dendrogram of co-expression modules. Different colors represent distinct co-expression modules. (C) Representative of clustering of module 
eigengenes. (D) Representative heatmap of the correlations among 11 modules. (E) Correlation analysis between module and clinical status. Each 
row represents a module; each column represents a clinical status. (F) Scatter plot between module membership in brown module and the gene 
significance for cluster 2. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4.6. Construction of Least Absolute Shrinkage and Selection Operator Model and Consensus Clustering Analysis 

To explore the relationship between ARGs clusters (Cluster 1 and Cluster 2) and WGCNA, we used the 646 genes from the brown 
module to construct a LASSO model. This model helped us select 38 characteristic genes from the brown module (Fig. 8A and B). We 
then performed consensus clustering analysis on 232 RA patients based on the expression profiles of these 38 characteristic genes. 
When the value of k was set to 2 (k = 2), the number of clusters remained the most steady (Fig. 8C), while the CDF curve fluctuated 
within the shared index’s lowest range of 0.2–0.6 (Fig. 8D and E). We divided the 232 RA patients into two clusters based on these 38 
characteristic genes: Gene cluster A (A = 142) and Gene cluster B (B = 90). Using a PCA technique, we determined the ARGs-score for 
each sample based on the expression levels of the characteristic ARGs. In comparison to cluster 2 or gene cluster B, cluster 1 or gene 
cluster A had higher scores (Fig. 8F and G). Cluster 1 primarily corresponded to gene cluster A, exhibiting high ARGs-score, while 
cluster 2 mainly corresponded to gene cluster B, exhibiting low ARGs-score. 

4.7. Construction and selection of four machine learning models 

Based on the expression profiles of the 31 characteristic ARGs, we constructed XGB, SVM, GLM and RF machine learning models to 
find characteristic ARGs with high diagnostic value. The GLM model exhibited the lowest residual values (Fig. 9A and B). We computed 
the ROC curve based on 10-fold cross-validation to assess the discriminatory performance of the four machine learning algorithms in 
the test set. Among the models (GLM, AUC = 1.000; XGB, AUC = 0.948; SVM, AUC = 0.998; RF, AUC = 0.967) (Fig. 9C), the GLM 
model had the largest area under the curve (AUC). Based on root mean square error, the importance of each variable’s attributes was 
ranked (Fig. 9D). The GLM model was found to best distinguish RA patients. The top five most important variables (CDKN2A, TP53, 
ATG16L2, FKBP1A, and GABARAPL1) selected by the GLM model were used to construct the nomogram model. 

4.8. Construction and validation of nomogram model 

We constructed a column chart based on the five ARGs (CDKN2A, TP53, ATG16L2, FKBP1A, and GABARAPL1) to evaluate the 
predictive efficiency of the GLM model (Fig. 10A). To evaluate the nomogram model’s capability for prediction, calibration curves and 
DCA were employed. The calibration curve demonstrated that there were few discrepancies between the real and predicted risks of RA 
(Fig. 10B), and DCA results suggested that our nomogram had excellent accuracy and would be useful for clinical patients (Fig. 10C). 
We validated the nomogram prediction model using five external datasets: GSE17755, GSE56649, GSE68689, GSE77298, and 

Fig. 8. The brown module characterizes differentially expressed genes (DEGs) filtering and consensus clustering analysis. (A) Coefficient diagram of 
LASSO for brown module DEGs. (B) Parametric diagram of LASSO for brown module DEGs. (C) Consensus clustering matrix when k = 2. (D) 
Representative CDF curves. (E) CDF delta area curves. (F) Differences in ARGs-score between cluster 1 and cluster 2. (G) Differences in ARGs-score 
between gene cluster A and gene cluster B. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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GSE71370. The ROC curves showed AUC values of 0.911 for GSE17755 (Fig. 11A), 0.915 for GSE56649 (Figs. 11B), 0.850 for 
GSE68689 (Figs. 11C), 0.893 for GSE77298 (Figs. 11D), and 0.910 for GSE71370 (Fig. 11E). The nomogram prediction model based on 
the five ARGs exhibited AUC values greater than 0.850 in all five external independent datasets, indicating excellent performance. 

5. Discussion 

RA is a systemic inflammatory autoimmune disease that affects not only the joints but also the heart, blood vessels, kidneys, lungs, 
and nervous system, impacting both physical and mental health. Early diagnosis and management are crucial to prevent joint damage 
caused by RA [37,38]. However, current RA treatments lack sufficient efficacy, underscoring the need for more suitable clusters to 
guide personalized RA therapy. Numerous studies have identified autophagy as a crucial factor in RA, but the role of autophagy in RA 
from a bioinformatics perspective remains underexplored [39]. Therefore, our study aims to elucidate the specific role of ARGs in RA 
clusters and the immune microenvironment. Further research on ARGs may reveal the complex pathogenesis of RA and provide new 
directions for treatment. 

In our study, we conducted a comprehensive analysis of ARGs expression profiles in normal individuals and RA patients. We found 
significantly higher abnormal expression of ARGs in RA patients, suggesting the potential role of ARGs in RA onset. We used the LASSO 
to select characteristic ARGs and calculated the correlation between these ARGs to understand their association with RA. Some 
characteristic ARGs exhibited significant synergistic or antagonistic effects. Our subsequent analysis of immune cell infiltration 
revealed notable differences in immune cell abundance between normal individuals and RA patients. Furthermore, we used consensus 

Fig. 9. Construction and evaluation of GLM, SVM, RF and XGB machine models. (A) Boxplots showed the residuals of each machine learning model. 
Red dot represented the root mean square of residuals. (B) Cumulative residual distribution of each machine learning model. (C) Receiver Operating 
Characteristic (ROC) analysis of four machine learning models based on 10-fold cross-validation in the testing cohort. (D) The important features in 
GLM, SVM, RF and XGB machine models. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 
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clustering analysis based on the expression profiles of characteristic ARGs in RA patients to illustrate different autophagy regulation 
patterns. We identified two distinct ARGs clusters (Cluster 1 and Cluster 2) with significantly different levels of immune infiltration. 
Through the WGCNA algorithm, we identified a brown module containing 646 genes strongly associated with RA. Using the LASSO 
model and consensus clustering algorithm, we selected 38 characteristic genes from the brown module and classified the 232 RA 
patients into two clusters (Gene cluster A and B), which showed significant differences in ARGs expression. 

With reduced error rates and more dependable outcomes when compared to univariate analysis, various machine learning models 
have been used more frequently in recent years to predict the incidence of various diseases. In our study, we compared four machine 
learning models based on 31 characteristic ARGs (XGB, SVM, GLM, and RF). The GLM model exhibited the best diagnostic capability 
for RA with the highest AUC (AUC = 1.000). Finally, we constructed a nomogram model using five characteristic ARGs (CDKN2A, 
TP53, ATG16L2, FKBP1A, and GABARAPL1), which demonstrated excellent predictive efficiency and accuracy. This model was 
validated in five external independent datasets (GSE17755, GSE56649, GSE68689, GSE77298, and GSE71370) with AUC values 
greater than 0.850. 

Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) is a protein-encoding gene that can induce cell cycle arrest in the G1 and G2 
phases, acting as a tumor suppressor [40,41]. Recent studies have linked the CDKN2A gene with poor prognosis in a variety of cancers 
such as pancreatic cancer, meningioma, and melanoma. CDKN2A encodes the P16 gene, which is involved in a series of cellular 
pathways, including promoting tumor cell proliferation, inhibiting tumor cell apoptosis, inducing tumor stromal angiogenesis, and 
reducing cancer cell sensitivity to chemotherapy [42–44]. By closely interacting with CDK4 and CDK6, which inhibits their capacity to 
bind with cyclin D and phosphorylate the retinoblastoma protein, CDKN2A functions as a negative regulator of normal cell growth 
[45]. Furthermore, CDKN2A plays a crucial role in controlling cell proliferation by inhibiting the activity of CDK4 and CDK6, which are 
essential for cell cycle progression. Regarding immune cells, this regulatory mechanism can influence the proliferation rates of 
lymphocytes or other types of immune cells, particularly under conditions of immune activation or during immune responses. Ab
errations in CDKN2A expression or function could lead to dysregulation of immune cell proliferation, thereby impacting immune 

Fig. 10. Construction of the nomogram model. (A) Construction of a nomogram. (B and C) Construction of calibration curve (B) and DCA (C) for 
assessing the predictive efficiency of the nomogram model. 
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responses [46]. While the primary role of CDKN2A is to inhibit the cell cycle, it also impacts cell survival and apoptosis. For instance, 
one of the proteins encoded by the CDKN2A locus, p16INK4a, can initiate cellular senescence, a stable form of cell cycle arrest that is 
associated with the promotion of apoptosis under certain conditions. In immune cells, dysregulation of this pathway could affect cell 
survival, potentially leading to premature death of immune cells [47]. 

Tumor protein P53 (TP53), a protein-encoding gene, serves as a tumor suppressor in various cancer types. Depending on the 
physiological conditions and cell type, it can either cause growth arrest or apoptosis [48,49]. Specifically, P53 inhibits Epi
thelial-Mesenchymal Transition (EMT) transcription factors, such as Zeb1, Snail1, and Twist2, by activating miR-200 and miR-34. 
This action suppresses the self-renewal of Cancer Stem Cells (CSCs) [50]. Additionally, research indicates that autophagy can enhance 
the stemness of lung CSCs by degrading ubiquitinated P53, highlighting autophagy’s dual role in promoting and inhibiting tumor 
development in lung cancer [51]. High-grade diffuse intrinsic pontine gliomas and non-brainstem gliomas frequently have mutations 
in genes like TP53. These mutations affect the control of the cell cycle, histone modification or chromatin remodeling, and the receptor 
tyrosine kinase-RAS-PI3K signaling pathway [52]. In cancer, TP53 mutations lead to multiple changes. For instance, PDGF 
receptor-mediated autonomous TP53 protein signaling promotes pancreatic cancer metastasis. It can also increase genetic instability, 
thereby promoting cancer development [53]. Different mutant forms of TP53 protein can regulate the Ras signaling pathway in various 
ways, inducing the expression of cancer-related genes [54]. Furthermore, TP53 loss can promote the invasion of multiple myeloma 
cells by upregulating miR19a/CXCR5 [55]. Studies have shown that TP53 plays a key role in regulating cell proliferation. In immune 
cells, TP53 helps maintain appropriate proliferation rates, preventing excessive cell division to avert autoimmune or other immune 
response imbalances. By inducing cell cycle arrest under conditions of stress or DNA damage, TP53 ensures that only healthy, intact 
immune cells are able to proliferate [56]. 

Autophagy Related 16 Like 2 (ATG16L2) is another protein-encoding gene. It can be regulated by microRNA Mir885-3p, which 
binds to ATG16L2, inhibiting its translation, reducing ATG16L2 levels, and inducing autophagy [57,58]. Research showed that 
ATG16L2 participates in autophagy by forming a complex with ATG5, contributing to autophagosome formation and the degradation 
and recycling of cellular components [59]. Moreover, studies have found that ATG16L2 expression is lower in non-small cell lung 
cancer, and functional genetic variations in ATG16L2 may affect its mRNA expression level. The expression level of ATG16L2 is also 
associated with resistance to platinum-based chemotherapy, suggesting that ATG16L2 may serve as a biomarker or potential thera
peutic target for tumor cell resistance to platinum-based drugs [60]. 

A member of the immunophilin family, FKBP Prolyl Isomerase 1A (FKBP1A) encodes a protein that is involved in basic cellular 
activities such as protein folding and transport as well as immunological modulation [61]. Studies have found that upregulated 
FKBP1A can inhibit the growth of glioblastoma through the apoptosis pathway [62]. Recently, it has also been shown that FKBP1A 
overexpression can rescue the enhancement of sensitivity to paclitaxel in paclitaxel-resistant Prostate Adenocarcinoma (PCa) cells 

Fig. 11. External independent dataset validation. (A) Area under the ROC (AUC) of GSE17755 (AUC = 0.911). (B) AUC of GSE56649 (AUC =
0.915). (C) AUC of GSE68689 (AUC = 0.850). (D) AUC of GSE77298 (AUC = 0.893). (E) AUC of GSE71370 (AUC = 0.910). 
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mediated by miR-195-5p [63]. According to a mechanism investigation, SNHG15 was found in the cytoplasm of PCa cells and 
functioned as a molecular sponge for miR-338-3p. Additionally, miR-338-3p has FKBP1A as a target. Therefore, the LncRNA SNHG15 
controls the miR-338-3p/FKBP1A axis, acting as an oncogene in prostate cancer [64]. 

The development of autophagosomal vesicles is aided by GABA Type A Receptor Associated Protein Like 1 (GABARAPL1) [65]. 
Studies have found that low expression of GABARAPL1 leads to an increased proliferation rate in the lung adenocarcinoma cell line 
A549. By interacting with SMAD2/3 proteins, GABARAPL1 can block the EMT signaling pathway that is activated by transforming 
growth factor-beta (TGF-B)/tumor necrosis factor-alpha (TNF-A). GABARAPL1 regulates autophagy to degrade SMAD and GABAR
APL1 proteins, further inhibiting the EMT signaling pathway [66]. Furthermore, knockdown of GABARAPL1 inhibits the growth of 
androgen receptor (AR)-positive prostate cancer cells LNCaP and CWR22rv1, as well as reduces the transcriptional activity and nuclear 
translocation of AR/Androgen Receptor Variants (ARV). This suggests that GABARAPL1 inhibits the growth of testosterone 
receptor-positive prostate cancer by reducing the transcriptional activity and nuclear translocation of AR/ARVN [67]. Recent research 
has also revealed the important role of GABARAPL1 in breast cancer, controlling cell proliferation, invasion, and resistance to cell 
death by regulating autophagy pathways, maintaining mitochondrial homeostasis, and modulating cellular metabolic programs. Loss 
of GABARAPL1 leads to disrupted autophagy pathways, abnormal mitochondrial function, cellular metabolic dysregulation, and 
tumor cell deterioration [68]. While there are no extensive records of the direct impact of GABARAPL1 on immune cell migration, its 
role in autophagy may be indirectly related to this process. Autophagy can regulate the turnover of cellular components and provide 
substrates for energy production, which could affect the dynamics of the actin cytoskeleton and cell adhesion, both crucial for cell 
migration. Thus, GABARAPL1, through its role in autophagy, may influence the cellular energy and cytoskeletal rearrangements 
necessary for immune cell migration [69]. Studies have shown that GABARAPL1, by modulating the autophagic response, may 
indirectly influence the threshold for immune cell apoptosis. For instance, the enhancement of autophagic activity mediated by 
GABARAPL1 can promote cell survival under stress, thereby reducing the propensity for cell apoptosis [70,71]. Although these five 
characteristic ARGs are closely related to the occurrence and development of various diseases, their role in the mechanism of RA has 
not been extensively studied. 

5.1. Limitations 

Despite the excellent diagnostic predictive ability for RA patients shown by the nomogram model we constructed based on the five 
characteristic ARGs, there are limitations to this study. Firstly, all RA patients used in this study were obtained from public databases. 
Therefore, we plan to expand the recruitment of clinical patients in the future to further validate the clinical application value of our 
nomogram model in diagnosing RA patients. In addition, comprehensive functional experiments are essential to gain a deeper un
derstanding of the complex roles of the five characteristic ARGs in the pathogenesis of RA. 

6. Conclusion 

In this study, we conducted an extensive analysis of ARG expression profiles in both normal individuals and RA patients. Our 
research showed that RA patients had considerably higher levels of aberrant ARGs expression than normal individuals did. Using the 
LASSO algorithm, we selected characteristic ARGs and identified significant synergistic or antagonistic effects in RA. We also un
covered significant changes in immune cell infiltration and elucidated different autophagy regulation patterns through consensus 
clustering analysis. Furthermore, we constructed an optimal machine learning model, GLM, based on 31 characteristic ARGs. In 
addition, we developed a nomogram model based on five characteristic ARGs (CDKN2A, TP53, ATG16L2, FKBP1A, and GABARAPL1). 
The predictive efficiency and accuracy of this model were validated in five external independent datasets, with AUC values exceeding 
0.850. This study provides a fresh perspective on the role of ARGs in RA and offers new directions for personalized RA treatment. We 
anticipate that this ARGs-based model will offer valuable insights for further RA research and assist clinicians in formulating more 
personalized and precise treatment strategies. 
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