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Introduction
Adverse experiences early in life are robustly associated with an 
elevated risk of developing psychiatric illnesses (Lupien et al., 
2009; Teicher et al., 2016). Positive experiences including high 
social and parental support and good family functioning and 
genetics can mitigate this risk, promoting resilience (Assary 
et al., 2018; Fritz et al., 2018). We are beginning to understand 
the biological mechanisms linking early life experiences with 
risk and resilience to later mental illness. Mounting evidence 
suggests the neuroimmune system plays a key role and may pro-
vide a feasible target for prevention and treatment of some psy-
chiatric disorders (Nusslock and Miller, 2016).

A role for immune function in psychiatric illness was discov-
ered over a century ago, in patients with syphilitic psychosis. In 
these patients, malaria inoculation induced a high fever, assisting 
the immune system in fighting syphilis and resolving psychiatric 
symptoms (Tsay, 2013). There are now many examples of corre-
lations between immune function (or dysfunction) and psychiat-
ric symptoms. Extreme accumulation of mast cells (effector cells 
of the immune system) in the body (mastocytosis) is correlated 
with anxiety and emotionality (Georgin-Lavialle et al., 2016). 
Interleukin-2 (IL-2) and interferon alpha (IFNα) are pro-inflam-
matory cytokines (signalling molecules of the immune system) 
which can treat hepatitis and boost immune function during can-
cer therapy. This treatment is associated with psychotic and 
manic symptoms, anxiety, depression and cognitive impairment 
(Dantzer et al., 2008; Felger et al., 2016). Administration of the 
pro-inflammatory cytokine IL-1β centrally or peripherally 

induces anhedonia, endocrine disruptions, anorexia and disturbed 
sleep. These effects are ameliorated by antidepressants and IL-1β 
receptor antagonists (Finck and Johnson, 1997; Koo and Duman, 
2009). Drugs which decrease pro-inflammatory cytokines such 
as non-steroidal anti-inflammatory drugs, antipsychotics and 
antidepressants can resolve psychiatric symptoms (Baumeister 
et al., 2016; Kohler et al., 2015).

We also find changes in the immune system in psychiatric 
patients. Alterations in peripheral expression of pro-inflamma-
tory cytokines are found in bipolar disorder (BPD), post-trau-
matic stress disorder (PTSD), major depression (MD) and 
schizophrenia, and are associated with suicide (Black and Miller, 
2015; Brietzke et al., 2009; Dowlati et al., 2010; Momtazmanesh 
et al., 2019; Passos et al., 2015). Microglia are resident mac-
rophage immune cells in the central nervous system (CNS) and 
are traditionally described as either inactive/resting (we now 
know they actively survey the local environment in this state) or 
activated (pro-inflammatory state). Microglia activation has been 
found in all psychiatric illnesses, although results vary (Mondelli 
et al., 2017). For example, a meta-analysis of 22 studies of 
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schizophrenic brains found increased microglial activation in 11 
studies, decrease in 3 and no change in 8 (Trepanier et al., 2016). 
Whether this activation is neurotoxic or neuroprotective in the 
context of psychiatric illness is currently unknown.

Genetic heterogeneity in the immune system also associates 
with psychiatric illness. Genetic analyses show that BPD, schizo-
phrenia and MD associate with several immune pathways (Zhao 
and Psychiatric Genomics Consortium, 2015). Allelic variation 
in numerous cytokines predicts depression and response to anti-
depressant treatment (Bauer and Teixeira, 2019; Baune et al., 
2010; Bufalino et al., 2013; Tadic et al., 2008). Complement is a 
system of plasma proteins that drives immune responses, and 
allelic variation in complement 4 (C4) alleles and complement 
regulators CUB and Sushi multiple domains (CSMD) 1 and 2 
associate with schizophrenia and response to treatment (Havik 
et al., 2011; Sekar et al., 2016). BPD, schizophrenia and MD 
associate with B-cells (adaptive arm of the immune response, 
produce antibodies) in genome-wide association studies, 
although investigations into peripheral B-cells in schizophrenia 
find no difference to controls (O’Dushlaine et al., 2015; Van 
Mierlo et al., 2019).

This extensive association between immune system and psy-
chiatric disorders/symptoms has led to the neuroimmune hypoth-
esis of psychiatric illness. This postulates that immune system 
dysfunction plays a role in the aetiology of psychiatric illnesses 
and could therefore provide opportunities for therapeutic inter-
vention. This hypothesis is supported by the crucial role the 
immune system plays in normal brain development and function. 
We will now review the role of the neuroimmune system in brain 

mechanisms associated with psychiatric disease (summarised in 
Figure 1) and discuss how environmental experiences during 
development can perturb or promote functioning, potentially 
generating vulnerability or resilience to psychiatric illness.

The neuroimmune system
The CNS contains a unique population of resident immune cells–
microglia. Microglia arise from primitive macrophages in the 
yolk sac, colonise neural tissue early in development and are con-
fined to the brain once the blood–brain barrier (BBB) is fully 
formed (Ginhoux and Garel, 2018). Microglia constitute 10% to 
15% of adult brain cells and 80% of brain immune cells (Li and 
Barres, 2018; Morimoto and Nakajima, 2019). Alongside their 
traditional role in actively detecting invading pathogens and 
necrotic cells, generating and maintaining inflammatory 
responses, microglia play a key role in CNS development and 
function (Nimmerjahn et al., 2005). Microglia use their processes 
to interact with presynaptic boutons and dendritic spines, survey-
ing several synapses simultaneously (Nimmerjahn et al., 2005). 
This allows them to regulate processes including synapse elimi-
nation, pruning of dendritic spines, neuronal apoptosis, neuro-
genesis and myelination, shaping neural circuitry in the 
developing and adult brain (Bohlen et al., 2019; Jung and Chung, 
2018; Pang et al., 2013; Paolicelli et al., 2011; Sato, 2015; 
Schafer et al., 2012; Shigemoto-Mogami et al., 2014; Tremblay 
and Majewska, 2011; Wakselman et al., 2008; Zhan et al., 2014). 
Microglia release a variety of signalling molecules that influence 
the CNS. Synaptic neurotransmission is regulated by adenosine 

Figure 1. The role of the neuroimmune system in brain mechanisms associated with psychiatric disease.
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triphosphate (ATP) which binds to P2Y1R located on astrocytes, 
enhancing excitatory postsynaptic currents, and tumour necrosis 
factor alpha (TNFα) and brain-derived neurotrophic factor 
(BDNF), which alter α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA 
receptor expression in neurons (Konefal and Stellwagen, 2017; 
Parkhurst et al., 2013; Stellwagen et al., 2005). Neuronal devel-
opment and synaptic function are modulated by microglial inter-
leukin-10 (IL-10), which binds to IL-10 receptors on neurons 
(Lim et al., 2013). The activity of microglia has functional rele-
vance for behaviours related to psychiatric illness: depleting 
microglia during development results in working memory defi-
cits and altered anxiety (Lenz and Nelson, 2018; Nelson and 
Lenz, 2017; VanRyzin et al., 2016).

Astrocytes have a neuroectodermal origin and are crucial regula-
tors of the immune response, brain development and function (Dong 
and Benveniste, 2001). They associate intimately with synapses, 
enwrapping up to 600 dendrites, contacting ~100,000 synapses. This 
places them in an ideal location to regulate synapse formation, func-
tion and elimination, neurotransmission and neuronal plasticity, and 
clearance of neurotransmitters (Chung et al., 2015; De Pitta et al., 
2016; Halassa et al., 2007; Um, 2017). Neurotransmitter receptors, 
transporters and cell-adhesion molecules on astrocytic processes 
mediate astrocyte–synapse communication (Chung et al., 2015). 
Astrocytes also promote microglia-dependent synaptic pruning 
through stimulating release of complement system components and 
direct release of IL-33, as well as engulfing synapses themselves 
(Bosworth and Allen, 2017; Chung et al., 2015; Pekny et al., 2007; 
Vainchtein et al., 2018). Astrocytes are vital for appropriate in vivo 
differentiation of neurons, and elimination of astrocyte precursors 
results in neurodegeneration and early postnatal death (Klapper 
et al., 2019; Reddy et al., 2003). Interestingly, in the rodent brain, the 
majority of excitatory synapse formations occur in postnatal weeks 
2 and 3: coinciding with maturation and differentiation of astrocytes 
(Chung et al., 2015).

Mast cells perform a wide variety of immune functions, from 
recognising pathogens, initiating and enhancing immune 
responses, to eliminating bacteria through release of antibacterial 
compounds (Krystel-Whittemore et al., 2016). Brain-resident 
mast cells exhibit bidirectional communication with neurons and 
glia, via release of prestored mediators including histamine, sero-
tonin, cytokines and growth factors (Silver and Curley, 2013). 
This regulates processes including glutamatergic neurotransmis-
sion, hippocampal neurogenesis, neuronal firing, learning and 
memory, anxiety, astrocyte–mast cell communication and micro-
glial activity (Kim et al., 2011; Nautiyal et al., 2008, 2012; 
Skaper et al., 2012). Mice lacking mast cells have impaired learn-
ing and memory, increased anxiety and abnormal neurogenesis, 
demonstrating a role for mast cells in normal brain function and 
behaviour (Nautiyal et al., 2008).

A range of signalling molecules traditionally identified for 
their roles in immune function are now known to regulate normal 
brain development and function. Cytokines (small protein signal-
ling molecules) are the primary source of signalling for the 
immune system and include interferons, interleukins, chemokines 
and tumour necrosis factor (TNF; Turner et al., 2014). All cells in 
the healthy adult brain secrete cytokines and express their recep-
tors, and cytokines play a role in neuronal development, synaptic 
function and normal behaviour (Cuneo and Autieri, 2009). 
During development, mice lacking the chemokine C-X-C motif 

chemokine ligand 12 (CXCL12) or its receptor C-X-C chemokine 
receptor type 4 (CXCR4) die during gestation, partly due to lack 
of neuronal migration (Levin and Godukhin, 2017; Ragozzino 
et al., 2002). Several studies have shown that chemokines regu-
late hippocampal plasticity (Williamson and Bilbo, 2013). 
CXCR4 modulates synaptic depression, C-X3-C motif ligand 1 
(CX3CL1, or fractalkine) alters postsynaptic currents via C-X3-C 
motif chemokine receptor 1 (CX3CR1) and synaptic activity is 
increased by C-X-C motif ligand 2 (CXCL2), C-C-motif chemokine 
ligand 2 (CCL2) and C-C-motif chemokine ligand 3 (CCL3) in 
vitro through a variety of mechanisms, including glutamatergic 
activity and NMDA signalling (Kuijpers et al., 2010; Lax et al., 
2002; Levin and Godukhin, 2017; Ragozzino et al., 2002, 2006; 
Zhou et al., 2011). Chemokines also play an important role in 
behaviour. Knockout of CX3CR1 in mice impairs learning and 
memory and LTP via increased IL-1β, and IL-1β has indepen-
dently been shown to regulate hippocampal-dependent behav-
iours, with physiological levels promoting and excessive levels 
impairing performance (Goshen et al., 2007; Rogers et al., 2011; 
Yirmiya et al., 2002). Several other studies show that interleukins 
are important mediators of hippocampal plasticity. Hippocampal 
infusion of IL-1β in vivo inhibits cell proliferation and controls 
neural transmission, altering hippocampal-dependent memory 
(Baartman et al., 2017; Goshen et al., 2007; Koo and Duman, 
2008; Yirmiya et al., 2002). In vitro, IL-1β inhibits hippocampal 
long-term potentiation (LTP) and synaptic strength and reduces 
calcium currents, as well as promoting gamma aminobutyric acid 
(GABA)a receptor–mediated inhibition of cerebella Purkinje 
cells (Bellinger et al., 1993; Yirmiya et al., 2002; Zhou et al., 
2006). Anti-inflammatory cytokines IL-4 and IL-10 can regulate 
the expression of IL-1β, controlling its inhibitory effects on LTP 
(Nolan et al., 2005). Other pro-inflammatory cytokines including 
IL-2, IL-6, IL-8, IL-18 and IFNα exert similar effects to IL-1β, 
inhibiting hippocampal LTP (Curran and O’Connor, 2001; 
Mendoza-Fernandez et al., 2000; Tancredi et al., 1990, 2000; 
Xiong et al., 2003). In particular, synaptic plasticity in the hip-
pocampus is inhibited in a dose-dependent manner by IL-6, and 
administration of anti-IL-6 antibody improves long-term mem-
ory (Balschun et al., 2004; Gruol, 2015; Tancredi et al., 2000). 
IL-6 also affects neuronal development, promoting the produc-
tion of adult-born neurons in the hippocampus and survival of 
catecholaminergic neurons, which increase dopamine release in 
the hippocampus (Bowen et al., 2011; Erta et al., 2012). Knockout 
models and direct administration demonstrate the importance of 
interleukins for psychiatrically relevant behaviour. IL-4 knock-
out increases depressive behaviour, IL-33 knockout affects sen-
sorimotor behaviour and neural circuitry and IL-1 receptor 
knockout in glutamatergic neurons rescues stress-induced 
impairments in social behaviour and working memory (DiSabato 
et al., 2020; Vainchtein et al., 2018; Wachholz et al., 2017). In 
addition, IL-2 infusion affects depressive-type behaviours 
(Karrenbauer et al., 2011). There is limited evidence that TNFα 
and interferons may also regulate neuronal processes and behav-
iour. Homeostatic plasticity in the CNS is regulated by TNFα 
(via TNFR1) through regulation of glutamate and GABA recep-
tor trafficking and neuronal connectivity, and social behaviour is 
affected by interferon γ (Filiano et al., 2016; Furukawa and 
Mattson, 1998; Konefal and Stellwagen, 2017). This suggests a 
complex, interdependent role for cytokines in neuronal develop-
ment, synaptic plasticity and behaviour.
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Cytokines also affect levels of neurotransmitters with con-
vincing links to psychiatric disorders. Dysregulation of and poly-
morphisms in monoamines including serotonin and dopamine are 
linked to depression, anxiety, schizophrenia and BPD, especially 
when combined with early life stress (ELS; Andrews et al., 2015; 
Conio et al., 2020; Songtachalert et al., 2018; Uher and McGuffin, 
2008). TNFα and IL-1β up-regulate neuronal serotonin trans-
porter activity, increasing serotonin uptake and decreasing the 
amount of available serotonin (Malynn et al., 2013; Tsao et al., 
2006; Zhu et al., 2006). Tryptophan is a serotonin precursor, but 
indoleamine 2,3-dioxygenase diverts tryptophan away from this 
pathway, converting it instead to kynurenine. This creates metab-
olites which regulate dopamine and glutamate (Campbell et al., 
2014). Several enzymes in the kynurenine pathway are under the 
control of cytokines (Campbell et al., 2014).

Complement proteins are another source of signalling in the 
immune system and are secreted by all CNS cells (Orsini et al., 
2014). Limited evidence links complement proteins to neuronal 
development and behaviour. Complement receptor 2 (CR2) ago-
nism inhibits neuronal proliferation, whereas antagonism of 
complement component 3a receptor (C3aR) promotes prolifera-
tion (Ducruet et al., 2012; Moriyama et al., 2011). Mice lacking 
C3aR are more anxious yet resilient to depressive behaviour, 
and those lacking complement 3 (C3) display enhanced fear 
(Crider et al., 2018; Westacott et al., 2020). The immune system 
clearly plays a crucial role in normal brain development, func-
tion and behaviour. Dysregulation by environmental experi-
ences early in life may therefore alter brain development and 
function, promoting risk or resilience to psychiatric illness later 
in life. In the next section, we will review the evidence for the 
effects of early life experiences on neuroimmune function (sum-
marised in Figure 2).

Early life experiences and 
neuroimmune function

Stress

Many psychological and physical experiences are perceived as 
stressful and provoke stress responses. Most are a regular part of 
life, and the stress response causes a range of normal behavioural 
and molecular alterations as the individual regains homeostasis. 
The hypothalamic–pituitary–adrenal (HPA) axis and sympa-
thetic–adrenal–medullary (SAM) axis are major mediators of the 
stress response. A fast response is produced by the SAM axis, 
involving epinephrine and norepinephrine; the HPA axis pro-
duces a slower acting response, using corticotrophin releasing 
hormone, arginine vasopressin, adrenocorticotropin hormone 
and glucocorticoids (Carrasco and de Kar, 2003; Ulrich-Lai and 
Herman, 2009). Prolonged or excessive stress can result in dys-
regulated stress responses: a core feature of several stress-related 
psychiatric illnesses (Cherian et al., 2019). Stress axes are intri-
cately linked with the immune system; therefore, excessive stress 
could permanently alter immune function. All cells of the 
immune system express receptors for stress hormones. 
Glucocorticoid stress hormones bind to receptors on immune 
cells in the brain, producing both anti- and pro-inflammatory 
effects (Duque and Munhoz, 2016; Frank et al., 2010; Glaser and 
Kiecolt-Glaser, 2005). The HPA axis is, in turn, stimulated by 
cytokines, especially IL-1α/β, IL-6 and TNFα, bolstering stress 

responses (Dunn, 2006). Stress–immune interactions rely on syn-
ergy between CNS and peripheral mechanisms, and there are 
several routes of communication between the two. Peripheral 
immune molecules affect CNS function by passive diffusion, 
active transport across the BBB or interaction with endothelial 
cells of the BBB (Banks, 2005; Daneman and Prat, 2015). Recent 
research demonstrates that the lymphatic drainage system of the 
brain (crucial for clearing waste from the CNS, regulating fluid 
balance and transporting lipids) allows peripheral immune mol-
ecules to enter the brain, and CNS-derived antigens to enter the 
periphery (Mastorakos and McGavern, 2019). The autonomic 
nerves of the gastrointestinal tract and gut flora are an often-over-
looked source of neurotransmitters, including acetylcholine, his-
tamine, GABA, BDNF and serotonin, a relationship which is 
mediated by gut inflammation and is essential in coordinating 
appropriate immunological and psychological responses (Bonaz 
et al., 2018; El Aidy et al., 2014; Foster and Neufeld, 2014).

Early life stress (ELS)

The immune system, CNS and brain are formed in utero, but 
development and maturation continue throughout the postnatal 
period and into adolescence (Brenhouse and Schwarz, 2016; 
Foulkes and Blakemore, 2018; Gilmore et al., 2018). A growing 
body of literature demonstrates that prolonged or intense stress 
during development can permanently alter brain development, 
and increase the incidence of psychiatric-related behaviours (e.g. 
anxiety and depression) and increase the risk for psychiatric ill-
ness. Several meta-analyses now demonstrate robust associations 
between stress at all developmental time points (in utero, perina-
tal, childhood and adolescence) and increased risk of psychiatric 
illness later in life (e.g. Green et al., 2010; Kessler et al., 2010; 
Knuesel et al., 2014; McLaughlin et al., 2012; Scola and Duong, 
2017). The underlying neurobiological mechanisms responsible 
for this phenomenon may vary depending on the exact timing of 
exposure, and which brain regions are most sensitive at that time 
point, and support for this notion is found in animal models. One 
potential mechanism is the neuroimmune system, and we will 
now review the neuroimmune effects of ELS.

Neuroimmune effects of ELS in humans

ELS in utero takes a variety of different forms, from maternal 
immune activation (MIA) to psychological stress. Maternal 
exposure to viral, parasitic and bacterial infection in pregnancy 
increases psychiatric illness, especially autism and schizophre-
nia, in offspring (Babulas et al., 2006; Blomstrom et al., 2016; 
Estes and McAllister, 2016; Guma et al., 2019; Tyebji et al., 
2019). This suggests pregnant women should take extra care dur-
ing outbreak situations, such as the current worldwide COVID-
19 pandemic (Cowan, 2020). Maternal autoimmune disorders 
produce similar increases in psychiatric illnesses, suggesting 
MIA is a key feature of this relationship (Chen et al., 2016; Estes 
and McAllister, 2016). It has been hypothesised that increased 
pro-inflammatory cytokines resulting from MIA cross the pla-
centa, activating foetal immune responses and affecting brain 
development (Scola and Duong, 2017). Psychological stress and 
mental illness during pregnancy also increase risk of psychiatric 
disorder in offspring, although some studies do not support this 
(Brannigan et al., 2020; Malaspina et al., 2008; Stein et al., 2014). 
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Abnormal circulating stress hormones and pro-inflammatory 
cytokines in stressed mothers may be a mechanism directly 
affecting the developing offspring, permanently programming 
the neuroimmune system and brain development (Cheng and 
Pickler, 2014; Corwin et al., 2013; Coussons-Read et al., 2007; 
Elenkov et al., 2005; O’Connor et al., 2014; Szpunar and Parry, 
2018). Support for this is found in the offspring of mothers who 
experienced psychosocial stress during pregnancy. Peripheral 
monocytes from their daughters produce increased IL-6 and 
IL-10, and an increase in T-helper cell cytokine production 
(Entringer et al., 2008). As there are several pathways of com-
munication between peripheral and central immune systems, this 
could have an impact on CNS development and function. To our 
knowledge, this is the only study in humans investigating the 
effects of maternal stress in utero on later immune function.

Stressful experiences in childhood and adolescence such as 
abuse, neglect, family difficulties, displacement and natural dis-
aster increase rates of mental disorders (Abel et al., 2014; Green 
et al., 2010; Kessler et al., 2010; McLaughlin et al., 2012; Van Os 
et al., 2010). Several studies show a correlation between child-
hood adversity (CA) and altered immune function in childhood 
and adulthood, where a pro-inflammatory phenotype is com-
monly observed. Peripheral markers such as IL-6 and TNFα, 
nuclear factor kappa-light-chain-enhancer of activated B-cells 
(NFκβ, regulates cytokine production), C-reactive protein (CRP, 
complement system activator), fibrinogen (involved in blood clot 
formation), E-selectin (controls inflammatory responses) and 
leukocytes are affected by CA (Carpenter et al., 2010; Danese 

et al., 2017; Danese and Lewis, 2007; Fagundes et al., 2013; 
Kuhlman et al., 2019; Pace et al., 2012). CA also affects immune 
function within the context of psychiatric illness. Patients with 
schizophrenia and a history of CA have higher levels of IL-6 and 
TNFα, and TNFα levels correlate with severity of trauma 
(Dennison et al., 2013). Increased IL-6 and CRP accompanied a 
transition to depression only in adolescents exposed to CA, and 
high IL-6 was predictive of depression 6 months later (Miller and 
Cole, 2012). It is now widely accepted that many psychiatric 
populations are heterogeneous, with different causal mechanisms 
underlying the same disorder and producing subtypes, and going 
forward, inflammatory phenotype may be a useful stratification 
when considering treatment options (Feczko et al., 2019).

Neuroimmune effects of ELS in animal 
models

Animal models provide greater support for the link between ELS 
and long-term neuroimmunological programming and allow 
deeper investigation of the underlying neurobiological mecha-
nisms without many of the confounds that plague human study 
(e.g. uncontrolled genetic and environmental factors, and inac-
cessibility of neural tissue). Prenatal stressors include MIA, stim-
ulation of maternal stress responses via physiological (injection 
of stress hormones) and psychological (e.g. bright lighting, 
restraint) methods and dietary manipulations. In the early postna-
tal period, stress is commonly induced through poor maternal 

Figure 2. Summary of main negative and positive early life experiences and their effects on the immune system.
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care, maternal separation, unstable housing and limited nesting 
and bedding. Following weaning, in the prepubertal and adoles-
cent stages, stressors include unstable housing (e.g. variable 
social groups, wet bedding and constant light), short- and long-
term physical/psychological stress (including foot shocks, ele-
vated platform, forced swim and restraint), social defeat and 
isolation. ELS throughout development causes anxiety and 
depressive-type behaviours, abnormal social functioning, altered 
HPA axis function, impaired memory and cognitive flexibility, 
abnormal sensorimotor gating and repetitive behaviour, pheno-
types reminiscent of anxiety, depression, schizophrenia and 
autism disorders (Bock et al., 2015; Green and McCormick, 
2013; Nishi et al., 2014; Romeo, 2017; Tractenberg et al., 2016; 
Van Bodegom et al., 2017). Structural changes are also observed 
in the brain, especially in the prefrontal cortex, amygdala and 
hippocampus (Eiland and Romeo, 2013; Estes and McAllister, 
2016). Importantly, exact effects may vary depending on precise 
time of exposure and nature of the stress (Gee and Casey, 2015).

A growing body of literature demonstrates that ELS has last-
ing implications for neuroimmune function in a range of animal 
models. Here, considerable study has been directed at the effects 
of prenatal and early postnatal stressors on cytokine expression. 
MIA and maternal separation alter the expression of cytokines 
peripherally and throughout the brain, during development and 
into adulthood (Bergdolt and Dunaevsky, 2019; Brenhouse et al., 
2018; Dimatelis et al., 2012; Ganguly and Brenhouse, 2015). The 
exact profile of cytokine alterations depends on timing of stress, 
region assessed and timing of assessment. Less research has been 
directed at post-weaning and adolescent phases, but peripheral 
and central cytokine expression is also affected by chronic unpre-
dictable stress and isolation rearing throughout adolescence, 
especially TNFα, IL-1β and IL-6 (Ko and Liu, 2015, 2016; 
Moller et al., 2013; Shortall et al., 2018; Wang et al., 2018b). 
Restraint and social defeat during adolescence enhance the 
expression of IL-1β and TNFα in the hippocampus after immune 
challenge, effects that are not mirrored in the periphery (Bekhbat 
et al., 2019; Pyter et al., 2013). This suggests peripheral measures 
are not always a suitable proxy for central changes, and both 
must be considered. Animal models provide a unique opportunity 
for such comparisons; unfortunately most studies do not take 
advantage of this. IL-1β and IL-10 are affected centrally in 
Japanese quail experiencing stress during adolescence (unpre-
dictable food availability), suggesting these effects are conserved 
across species (Walker et al., 2019).

Several studies have shown that microglia and astrocytes 
demonstrate long-term responses to ELS. Morphology, density 
and developmental trajectory are altered by perinatal stressors 
(high fat diet, diesel particles, maternal separation and MIA), 
producing a pro-inflammatory phenotype with long-term conse-
quences for microglial developmental programming and behav-
iours such as anxiety and spatial memory (Banqueri et al., 2019; 
Bilbo and Tsang, 2010; Bolton et al., 2017; Catale et al., 2020; 
Delpech et al., 2016; Edlow et al., 2019; Makinson et al., 2017; 
Matcovitch-Natan et al., 2016; Reus et al., 2019; Saavedra et al., 
2017). Number and activation of microglia are changed through-
out the brain as a result of unpredictable and social stress in ado-
lescence, concomitant with increased depressive-type behaviours 
(Rodriguez-Arias et al., 2018; Wang et al., 2018b).

T- and B-cells, natural killer cells (cytotoxic lymphocyte) and 
chemokine expression also respond to ELS. During gestation, 

malnutrition impairs T- and B-cell activity, and restraint, light 
and noise stress decrease peripheral immune function, with 
B-cells demonstrating lower proliferation and natural killer cells 
demonstrating lower effectiveness (Kay et al., 1998; Liaudat 
et al., 2012). Short-term stress in the post-weaning, pre-adoles-
cent phase reduces peritoneal macrophages and increases blood 
CCL2 and blood monocytes after peritoneal inflammation 
(Shtoots et al., 2018). The same stress increases hippocampal 
expression of FK506-binding protein 5 (FKBP5), an immunophi-
lin which helps regulate the HPA axis, providing a potential link 
between neuroimmune alterations and dysregulated HPA axis 
function (Brydges et al., 2020). In humans, FKBP5 polymor-
phisms interact with CA, promoting resilience or susceptibility to 
depression and PTSD (Wang et al., 2018a; Xie et al., 2010). 
These studies show that ELS can alter the neuroimmune system 
throughout development and into adulthood, contributing to 
abnormal brain function and behaviour, potentially increasing 
vulnerability to psychiatric illness. However, it is presently 
unclear to what extent the neuroinflammatory consequences of 
ELS are directly causal in the precipitation of psychiatric disor-
ders, and more research is urgently needed to address this. Studies 
utilising neuroimmune modulators as therapeutic agents follow-
ing ELS would shed light onto causality, as well as providing 
novel treatment avenues for stress-related psychiatric illnesses. A 
whole host of suitable compounds already exist, including those 
which modulate glia (e.g. minocycline, fluorocitrate, ibudilast, 
methionine sulfoximine and propentofylline; Romero-Sandoval 
and Horvath, 2008), complement system inhibitors (e.g. eculi-
zumab, soluble CR1, anti-factor B, OmCI and others; Carpanini 
et al., 2019) and cytokine inhibitors (e.g. etanercept, infliximab, 
adalimumab and ustekinumab; Schmidt et al., 2016).

Positive environmental experiences early in 
life and the neuroimmune system

Although less well studied than ELS, there is growing evidence 
that positive, enriching experiences early in life can enhance neu-
roimmune function and protect against the negative effects of 
ELS. In humans, interventions including mindfulness improve 
psychiatric symptomatology in those exposed to CA, and a 
secure caregiving environment protects against the negative 
effects of ELS (Brown et al., 2017; Fritz et al., 2018; McGoron 
et al., 2012; Ortiz and Sibinga, 2017; Sciaraffa et al., 2018). 
Whether these effects are mediated through neuroimmune func-
tion is presently unknown. However, evidence from adults indi-
cates enriching, positive experiences improve immune function. 
Mindfulness, cognitive–behavioural therapy, meditation, hypno-
sis and counselling reduce inflammation and promote immune 
performance in adults (Black and Slavich, 2016; Goldberg et al., 
2018; Schakel et al., 2019; Walsh et al., 2016). Therefore, 
research on the potential neuroimmunological benefits of enrich-
ing experiences early in life is warranted.

Animal models employ three main categories of positive 
environmental experiences: exercise, environmental enrichment 
(EE) and postnatal early stimulation (PES). Exercise ranges 
from swimming to treadmill regimes; EE provides animals with 
stimulating environments, including larger cages with toys, tun-
nels and large social groups, and promoting exploration and 
physical activity; and PES stimulates the mother to take greater 
care of her pups (e.g. increased licking and grooming) 
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by removing the pups briefly (few minutes) each day. These 
interventions improve abnormal behaviour and brain develop-
ment resulting from ELS, and there is growing evidence this 
may be partially mediated through the neuroimmune system 
(Harrison and Baune, 2014; Liu et al., 2013; Lopes et al., 2017). 
When given in adolescence, exercise reverses detrimental effects 
of maternal separation on immune function in the hippocampus 
and normalises depressive behaviour (Sadeghi et al., 2016). 
Adolescent exercise also rescues abnormal microglial activity 
and anxiety, sociability and repetitiveness resulting from MIA 
(Andoh et al., 2019; Sadeghi et al., 2016). EE throughout adoles-
cence prevents the effects of prenatal restraint stress on T-cells 
and cytokine expression in the brain and spleen, as well as rescu-
ing play and emotional behaviour (Laviola et al., 2004). TNFα 
and TNFα:IL-10 ratio are increased by maternal separation, and 
cognitive function is decreased: EE improves cognitive function 
and normalises cytokine expression (Do Prado et al., 2016). In 
contrast, EE could not rescue the effects of post-weaning, prepu-
bertal stress on monocyte number, but did normalise IL-10 
expression (Shtoots et al., 2018). PES rescues the detrimental 
effects of early life infection on memory, IL-1β and microglial 
activity in the hippocampus (Bilbo et al., 2007). Prenatal 
restraint decreases T-cell proliferation, neutrophils and IL-2; 
increases lymphocytes and leukocytes; and impacts HPA axis 
function: these effects are prevented by PES (Falcone et al., 
2017; Liaudat et al., 2012). One study found PES reduces anxi-
ety only in rodents expressing interferon regulatory factor-
2–binding protein-2 (IRF2BP2, a microglial anti-inflammatory 
transcriptional suppressor), suggesting microglial inflammation 
may play a role in anxiety (Hari et al., 2017). PES also enhances 
immune function per se, increasing T- and B-cell proliferation 
and central expression of the anti-inflammatory cytokine IL-10, 
while decreasing pro-inflammatory cytokines and reducing self-
administration of drugs (Lacagnina et al., 2017; Lown and 
Dukta, 1987; Schwarz et al., 2011).

These studies demonstrate that a range of positive experi-
ences early in life can have beneficial effects on the neuroim-
mune system and rescue detrimental effects of ELS. However, 
more research is needed.

Sex differences in neuroimmune 
function following ELS
Studies investigating the effects of negative and positive experi-
ences early in life generally focus on males. However, there are 
prominent sex differences in the prevalence of psychiatric ill-
nesses, with increased rates of PTSD, MD, affective disorders 
and anxiety in women (Kessler et al., 2005; Remes et al., 2016). 
Studies including males and females often do find striking sex 
differences. Prenatal stress increases IL-1β in the female mouse 
hippocampus, and IL-1β and TNFα in males (Diz-Chaves et al., 
2012, 2013). In contrast, a study with rats found that prenatal 
stress had no effect on female IL-1β, yet reduced expression in 
males (Mandyam et al., 2008). This highlights potential species 
differences, as well as effects of time of assessment. Early post-
natal and adolescent stress appears to have greater effects in 
males, with MIA increasing pro-inflammatory responses in the 
male but not female brain, maternal separation increasing periph-
eral and central cytokine expression only in males and adolescent 
stress increasing expression of IL-1β and TNFα in the male 

hippocampus only (Do Prado et al., 2016; Makinson et al., 2017; 
Pyter et al., 2013; Viviani et al., 2014).

Male and female microglia also respond in a divergent man-
ner to prenatal stress, as dexamethasone (synthetic stress hor-
mone) lengthens and increases microglial process in males, 
shortening and reducing them in females (Caetano et al., 2017). 
The proportion of active microglia are affected in the dentate 
gyrus of females and CA1 of males following prenatal restraint 
stress (Diz-Chaves et al., 2012, 2013). In addition, maternal sepa-
ration decreases microglia number in males but not females 
(Chocyk et al., 2011). Sex differences in neuroimmune responses 
to positive experience are also predicted: to our knowledge, there 
are no studies on this topic.

Conclusion
The immune system plays a key role in normal brain develop-
ment and function, and a wide range of environmental stimuli 
during development can permanently alter the functioning of 
the neuroimmune system. Stress early in life results in altered 
neuroimmune function, and this may underlie perturbed brain 
development and abnormal behaviour, potentially predisposing 
individuals to psychiatric illness. However, more research is 
urgently needed to establish causality. Conversely, positive 
experiences promote enhanced immune function and can rescue 
effects of ELS on neuroimmune function, brain development 
and behaviour, suggesting the neuroimmune system may be a 
viable target in the treatment of stress-related disorders. 
Research in this area is sparse (and virtually non-existent in 
humans), and future effort should be directed at determining the 
most beneficial positive environmental experiences for pre-
venting and treating the detrimental effects of ELS. In particu-
lar, little is known of optimal time points or necessary duration 
of intervention. As sex differences are often found in studies of 
ELS, greater effort should be directed at including both sexes in 
studies of long-term consequences of negative and positive 
early life experiences.
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