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Hydrogels have emerged as three-dimensional biomaterials with
potential biomedical applications in numerous fields including drug
delivery and tissue engineering. They have particularly garnered great
interest from researchers due to their excellent biocompatibility, ability
to encapsulate, protect, and deliver bioactive therapeutics, capacity for
sustained release, and their ability to act as implantable scaffolds and
support tissue regeneration.

This special issue, consisting of eight papers, addresses some of the
greatest challenges in hydrogel technology and showcases its cap-
abilities, focusing on the applications of hydrogels in bone regeneration
[1] [2], stem cell therapy [3], hemostasis [4], stroke [5], cancer
treatments [6] [7], and biological activities in general [8].

Bai et al. outline the advantages and challenges of existing hydrogel-
based bone regeneration technologies as well as design prerequisites for
future prospects [1]. One such hydrogel system for bone repair based on
multilayered composite nanoparticles was designed with various sti-
muli-responsive layers, biofunctional surfaces, and adjusted gelation
times. This system allowed for controlled release of rhBMP-2 from
periosteum-mimetic structures and in vivo formation of bone tissue [2].

Due to their resemblance to soft biological tissues, hydrogels are
well-suited for cell encapsulation and delivery. Deepthi et al. produced
fibrin hydrogels composed of alginate nanobeads by manipulating the
injectability of these hydrogels as well as their in situ gelation ability.
Results showed that the hydrogels were able to completely fill the de-
fect areas and successfully encapsulated mesenchymal stem cells.
Additionally, the mechanical strength of the hydrogels was comparable
to that of soft tissue elasticity and thus advantageous for application in
soft tissue reconstruction [3].

Hydrogels can also be used to induce blood clots. Meena et al. de-
veloped a cryogel-based approach that can potentially induce hemos-
tasis. The authors synthesized nontoxic chitosan-dextran cryogels re-
inforced with locust bean gum that demonstrated hemostatic potential
to stop severe blood loss in traumatic injuries, thus offering a novel
solution to overcoming the limitations of current hemostatic technol-
ogies [4].

Meanwhile, thrombolysis therapy is an important treatment for

stroke. Teng et al. has shown that the controlled release of the anti-
clotting factor urokinase from hollow nanogels enhances its thrombo-
lysis efficiency as well as prolongs its circulation duration [5]. Ad-
ditionally, nanogels can efficiently preserve urokinase in the blood-
brain barrier without increasing the risk of hemorrhagic transformation
and therefore can be used as an alternative treatment for acute ischemic
stroke [5].

Hydrogel-based approaches can also be utilized for the treatment of
cancers. For instance, polypeptide hydrogels for localized co-delivery of
DOX/IL-2/IFN-ɣ have been developed and hold promise for the treat-
ment of melanoma [6]. Lv et al. reported that this local hydrogel de-
livery system achieved superior antitumor efficacy and displayed good
biodegradability and biocompatibility. In another study, intrinsically
photoluminescent, highly photostable Doxorubicin-loaded nanogels
were prepared and utilized to pinpoint the cytoplasmic regions of the
prostate cancer cells and induce apoptosis in those cells [7].

Finally, to improve the bioactivity of hydrogels, Dorsey, et al. stu-
died hydrogel photochemistry kinetics, examining the photochemical
reactions and parameters (e.g. photoinitiators and UV exposure times)
affecting the fabrication of photocrosslinkable hydrogels and their re-
lationship to undesired protein damage and cell death [8]. The authors
also investigated the effects of varying these parameters on the en-
capsulation efficiency, bioactivity, and stiffness of the hydrogels.

We would like to extend our appreciation to the authors who con-
tributed to this special issue.
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