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Abstract

Biological, ecological, social, and technological systems are complex structures with multi-

ple interacting parts, often represented by networks. Correlation matrices describing inter-

dependency of the variables in such structures provide key information for comparison and

classification of such systems. Classification based on correlation matrices could supple-

ment or improve classification based on variable values, since the former reveals similarities

in system structures, while the latter relies on the similarities in system states. Importantly,

this approach of clustering correlation matrices is different from clustering elements of the

correlation matrices, because our goal is to compare and cluster multiple networks–not the

nodes within the networks. A novel approach for clustering correlation matrices, named

“snakes-&-dragons,” is introduced and illustrated by examples from neuroscience, human

microbiome, and macroeconomics.

Introduction

Inherent in our human nature is the desire to group similar objects together to better under-

stand the world around us. It is easy to compare and group objects characterized by a single

(scalar) attribute. It becomes more complex when an object is characterized by a vector of mul-

tiple attributes, although numerous clustering methods already allow for useful classifications

of vectors [1]. A classification task becomes challenging with increasing complexity of the

object, for example, where the interaction of object parts and attributes constitutes important

characteristics of an object or a system. Indeed, some of the most engaging and challenging

unresolved questions in biological and social sciences center on the comparison of functions

and structures of complex systems. In this case, a system can be characterized by a matrix of

interdependencies between its parts and attributes. By collecting data on the attribute levels

over time or another dimension resulting in repeated measures, one can generate correlation

matrices that characterize attribute interdependence and reveal important structural features

of the system. In this paper, we aim to extend clustering methods to a task of comparing and

classifying objects characterized by correlation matrices.
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Existing methods for comparison of correlation matrices were developed mainly in evolu-

tionary biology and applied to genetic and phenotypic variance-covariance matrices. These

methods represent the differences between two matrices as one number—a similarity measure

or a pairwise distance calculated by random skewers (RS), T-, or S-statistics [2–5]. Briefly, the

existing methods to compare matrices are as follows: Cheverud [3] applied Pielou’s “random

skewers” (RS) technique [4], which multiplies target matrices by the same randomly-generated

vector (“skewer”) and averages results across numerous realizations of the vector to yield a

matrix distance measure. Roff et al [2] proposed the T-method that measures the distance

between matrices using a single summary statistic. More recently, Garcia proposed S-statistics,

which estimates matrix distance by comparing the variance explained by the eigenvectors of

each matrix [5]. These reductionist approaches have at least two limitations: (a) one number

cannot adequately represent multidimensional differences; and (b) pairwise distance admits

only hierarchical clustering, while other clustering methods use vectors representing multidi-

mensional attributes of the object and might better suit the problem.

Several other approaches or variations of the above methods have also been proposed, e.g.,

by Goodnight and Schwartz, Calsbeek and Goodnight, Phillips and Arnold, and Flury [6–10].

However, these methods are either only applicable to a specific field of study or make strict

assumptions that are not plausible in many settings. For these reasons, we focus on the dis-

tance measures from Roff et al’s T-method [2], Chevrud’s random skewers [3], and Garcia’s S-

statistics [5] for comparison in the current study.

The innovative solution proposed in our paper is to create a novel although intuitively sim-

ple theoretical concept called a “snake” vector (Fig 1A), formed by making a serpentine path

through the off-diagonal terms of the correlation matrix. The “snake” vector captures informa-

tion on interactions between attribute variables and thus represents the system structure.

Combining “snake” vectors with various other vectors representing the state of the system,

e.g., vector of attribute means and variances, and overall properties of the system, e.g. number

of hubs, connectedness, and small-worldness and the degree distribution [11] of the corre-

sponding network, yields a concatenated segmental structure. We term this more complex

object a “dragon” vector (Fig 1B) to designate that the analogous structure is more elaborate

than the “snake”. Dragon vectors reflect not only the structural properties, but also the state of

the system and allow classification based on multiple types of characterizations of complex sys-

tems. For instance, information on the initial (or average) state of the system can be described

as a vector of the initial (or average) values of its attributes (creating the “head of the dragon”),

while the snake formed from the correlation matrix of repeated measures will form the “tail of

the dragon”. More information on the details of the snakes-&-dragons approach is provided in

the Methods section. Importantly, the proposed approach allows the use of a legion of existing

methods developed for clustering of multidimensional vectors.

The proposed “snakes-&-dragons” approach is illustrated by several examples. First, we

clustered brain connectivity matrices derived from resting state functional magnetic resonance

imaging (fMRI) experiments [12]. Then we clustered correlation matrices describing co-

occurrence of the over 10,000 microorganisms in the microbiome of gut, palm, forehead, and

tongue regions of 52 students over seven weeks [13]; and finally we clustered the correlation

matrices of macroeconomic development indicators from over 200 economies collected by the

World Bank [14]. We clustered these correlation matrices using our proposed “snakes-&-drag-

ons” approach and compared results with those derived from clustering based on existing

measures of pairwise distances (random skewers, T- and S-statistics). We evaluated the quality

of clusters by using internal validation criteria comparing within-cluster variability with

between-cluster variability [15–17]. In the cases where the true cluster membership can be

hypothesized, e.g., from the demographic data (for instance young vs. old), or is known as in
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the case of the simulated data, we determined misclassification error rates [18], and compared

them using our and other approaches. Next, we examined the number of significantly different

variables across the clusters, testing all the variables used for clustering and other variables

such as demographics. This provides not only the proof of cluster distinctiveness but also the

information about the possible factors driving cluster membership. We believe that the high

values of cluster validation criteria together with the high percentage of significantly different

variables across the clusters could illustrate that identified clusters meet the concise definition

of clustering given by Liao [19] as: “identifying structure in an unlabeled data set by objectively

organizing data into homogeneous groups where the within-group-object dissimilarity is min-

imized and the between-group-object dissimilarity is maximized.”

Materials and methods

Data sets

First, we briefly describe data sets used to illustrate and validate our proposed snakes-&-drag-

ons approach to clustering correlation matrices.

Brain connectivity matrices from old and young healthy subjects. Brain connectivity

matrices arise from the observation that the blood oxygen level-dependent (BOLD) fMRI sig-

nal is correlated between spatially separated but functionally related brain regions [20–21].

Multiple fMRI studies of resting state brain activity showed that matrices of correlation coeffi-

cients of BOLD signal between brain regions (connectivity matrices) differ in health and dis-

ease, especially in mental disorders [21–22]. Several studies demonstrated changes in brain

connectivity matrices related to aging [23–24]. A pilot data set of brain connectivity matrices

Fig 1. Explanation of snakes-&-dragons approach. A-snake vector. B-dragon vector. See details in the Methods

section.

https://doi.org/10.1371/journal.pone.0223267.g001
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used in our study was created at Washington University in St. Louis. It includes connectivity

matrices from 20 healthy subjects older than 60 (#1- #20) and 17 subjects younger than 27

(#21- #37). The data set of older subjects was obtained with permission from the Washington

University Alzheimer’s Disease Research Center and served in their study as a control group

(Clinical Dementia Rating = 0 and CSF biomarker negative). The data set of younger subjects

is the same as used in [25–26] with mean age 23.1 years and range 18–27; all of them were

screened to exclude neurological impairment and use of psychotropic medications. Connectiv-

ity matrices with 36 functional areas were then calculated from the fMRI scans using the

Washington University pipeline described in [27]. Then the 37 connectivity matrices were

clustered by using our snake vector approach, without using any demographic information.

Brain connectivity matrices from the Brain Genomics Superstruct Project. The Brain

Genomics Superstruct Project Open Access Data Release (GSP) is a carefully vetted collection

of neuroimaging, behavior, cognitive, and personality data for 1,570 human participants (ages

18–35) [12]. GSP data include not only demographic data (age, handedness, sex) for all partici-

pants, but also anatomical information on the brain and its regions for each of participants.

The 169 brain areas were divided into 10 networks: visual foveal (VFN), visual peripheral

(VPN), dorsal attention (DAN), motor (MN), auditory (AN), cingulo-opercular (CON), ven-

tral attention (VAN), language (LN), fronto-parietal (FPN), and default mode (DMN) [26].

Connectivity matrices were calculated from the fMRI scans using the Washington University

pipeline [27] for the first 500 participants of the GSP cohort that had two BOLD fMRI runs

and cognitive behavioral data.

Microbiome data for healthy college-age adults. Flores et al collected longitudinal (10

weeks) data to analyze temporal dynamics of forehead, gut, palm, and tongue microbial com-

munities among 85 healthy college-age adults from three US universities [13]. A 49-question

demographic, lifestyle, and hygiene survey augmented the weekly sample collection. Based on

relative abundance of over 10,000 microbial species measured as operational taxonomic units

(OTUs) in each sample, investigators found high variability in the microbiome over time. In

our study, we aim to characterize the temporal changes in the microbiome by exploring corre-

lations between weekly samples of microbiomes within each individual. By clustering individ-

uals’ correlation matrices, we identified subgroups of students representing different patterns

of microbiome dynamics.

Macroeconomics development indicators from the World Bank. Since 1960, the World

Bank has collected 1,500 yearly macroeconomic development indicators from over 200 econo-

mies, including: 1) gross domestic product (GDP), 2) unemployment, 3) inflation, 4) net trade

in goods, 5) labor force participation, 6) foreign direct investment, and 7) gross domestic sav-

ings [14]. As a proof-of-concept example, we used the time series data on the seven indicators

to create 7-by-7 correlation matrices for each of the 200 economies and then clustered them by

using snake vectors.

Analytical methods

In this paper, we compare and cluster correlation matrices from the above four data sets by

using existing methods for matrix comparison and our novel “snakes-&-dragons” approach.

Existing methods to compare matrices: random skewers, T-statistic, S-statistic.

Approaches to compare and calculate distances between matrices were developed in evolution-

ary biology and might be unfamiliar to researchers outside of that field. Therefore, we briefly

describe three of the existing approaches used in this paper: random skewers (RS), T-statistic,

and S-statistics. The RS procedure samples from a uniform [–1, 1] distribution to form ran-

dom vectors [28]. Multiplying correlation matrices by these vectors yields response vectors. If
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the compared correlation matrices are similar, the responses to the same selection vector

should be similar as well. The correlation among response vectors is averaged over multiple

random vectors—100 replicates in our example—to estimate similarity between two objects.

Another method for comparing matrices is the T-statistic [2], describing dissimilarity between

two matrices as the sum of the absolute differences between corresponding matrix elements.

The third method is the so-called S-statistic [5]. Garcia introduced three S-statistics to repre-

sent the divergence between two correlation matrices, all based on the idea that if two covari-

ance matrices are similar, an eigenvector set resulting from principal component analysis

(PCA) of one matrix will explain a similar amount of variation in the other matrix. We consid-

ered the first, S1, which Garcia described as a general measure of differentiation, characterizing

the ability of eigenvectors from one sample to explain the variation in the other sample. By

contrast, S2 compares orientation of eigenvectors of the same ordinal position in the two sets

and S3 evaluates differences in shape of eigenvectors in the same ordinal position between the

two sets. We performed hierarchical clustering based on the resulting similarity matrices.

Creating “snakes-&-dragons”. We propose to extract details from correlation matrices

into a new object that we call a “snake” vector. The “snake” vector forms from a serpentine

path through the off-diagonal terms of a correlation matrix and captures information on inter-

actions of the variables, i.e., the system structure (Fig 1A). Many methods exist for clustering

of vectors, allowing for the choice of the optimal clustering method for a given data set or

problem. To augment and complement the information on the structure of the systems with

the information on the state of the systems, we additionally introduce the class of objects that

we call “dragon vectors” or “dragons”. Here we suggest four types of dragons. Dragon 1 inte-

grates state descriptors and structural descriptors by concatenating the snake vector with a vec-

tor of variable means and a vector of variable variances (Fig 2A). Dragon 2 (Fig 2B) integrates

structural descriptors with overall network property information. While the snake vector con-

tains individual correlations between system attributes or between nodes of a network to rep-

resent structural descriptors, measures of network integration can describe the system in a

different way. For example, average connectivity, number of nodes/hubs, average or shortest

path length, or number of first neighbors have previously been used to characterize networks

[11, 29–30]. These measures can be concatenated with the snake vector to form a dragon for

clustering. Dragon 3 (Fig 2C) is created by combining correlations along multiple dimensions

or locations. We used this approach in the analysis of the microbiome data set, which contains

measures of microbial OTUs at four sites on the human body at several time points in many

subjects. The correlation matrix for each body site yields a different snake vector. By

concatenating multiple snakes, all data descriptions can influence the clustering. Similarly,

Dragon 4 (Fig 2D) can be created by combining different types of data, e.g., correlation matri-

ces of clinical, transcriptomic, proteomic, and metabolomic variables derived from repeated

measures combined with the genomics data and baseline demographics and clinical data,

which would create the “head” of the “dragon”. While snake vectors can be clustered as they

are, since the elements of the correlation matrices are always in the range from -1 to 1, dragon

vectors require several refinements prior to processing. First, clustering algorithms often gravi-

tate toward elements of greater magnitude. We thus put all variables on a common scale to

ensure all variables can fairly influence the decision-making. When a data set has a natural

comparison group, e.g., with cases and controls, observations on cases can be centered and

scaled using the mean and standard deviation of the corresponding variable among controls.

In the absence of such a control group, as in this study, we center variables by each variable’s

mean and scale by the square root of its average variance. Additionally, cluster results should

not be affected by including variables reflecting redundant information. To mitigate that pros-

pect, we suggest performing PCA on the matrix of assembled dragon vectors and then
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clustering based on the principal components (PCs). We provide more detail on clustering of

the PCs of the dragon vectors in the Supplemental Material, where we compare three

approaches and illustrate the possible advantage of weighting PCs by the percentage of vari-

ance each of them explains.

Clustering methods. Many clustering methods exist, including k-means clustering, fuzzy

k-means clustering, hierarchical clustering, k-medoids, affinity propagation, and others [1].

Choosing among algorithms and choosing the number of clusters is often achieved using

internal validation statistics, such as Calinski, silhouette, or connectivity [15–16]. None of the

clustering methods is ideal in all settings, and the optimal choice depends on the underlying

data’s properties, which is not always recognized by the users of clustering algorithms. For

example, Dolnicar found that clustering studies typically do not match data conditions with

clustering methodology, but instead just use Ward’s hierarchical and k-means clustering [31].

Halkidi et al noted that many studies omit cluster validation, despite its importance and the

availability of tools for implementation [17]. They suggested that new clustering algorithm

development should include simulated data sets that mimic the properties of biological data to

allow for controlled study of an algorithm’s sensitivity. Our group recently compared three

clustering methods—hierarchical, k-means, and k-medoids—using simulated targeted proteo-

mics data [18]. We demonstrated that k-means had the lowest misclassification error for iden-

tifying biomarker signatures, but also that results varied with different correlations between

Fig 2. Four types of dragon vectors. A-Dragon 1, includes means and variances of the variables. B- Dragon 2, includes also overall network

property information. C- Dragon 3, combines correlations along multiple dimensions of the data matrix or multiple locations. D-Dragon 4 is

composed of several dragons presenting different types of clinical and omics data.

https://doi.org/10.1371/journal.pone.0223267.g002
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biomarker levels. The study illuminated the importance of the structure of the correlation

matrix of the variables in determining the optimal clustering method [18].

Clustering of snake vectors and dragon vectors in this study is performed using a resam-

pling-based consensus clustering method introduced by Monti et al [32]. As implemented in

our study, this method can be briefly described as follows. We performed 1,000 instances of

random samplings with replacement, each selecting a subset including 80% of N objects

(snake or dragon vectors under study). We then partitioned each of the subsets into clusters

using a k-means clustering algorithm (implemented as the MATLAB1 function kmeans;

MathWorks, Natick, MA) with k value scanned from 2 to 8. Then the N x N consensus matrix

was created representing the results of these 1,000 partitions. Each element of the matrix repre-

sented the proportion of times that the two objects were included in the same cluster, i.e., the

ratio of the number of times a given pair of objects were included in the same cluster to the

number of times both of the objects were selected in the random 80% subset. Therefore, each

element of the matrix can be interpreted as a probability that two objects belong to the same

cluster. Hierarchical clustering (using MATLAB1 function clustergram) was then performed

using elements of the consensus matrix as the distance measure between objects. Resulting

clusters (for each scanned value of k) were then examined by using Calinski’s “quality of clus-

tering” criterion, which compared the between-cluster differences with the within-cluster dif-

ferences and allowed determination of the optimal number of clusters [15].

For RS, T-, and S- statistics, hierarchical clustering was used since it is the only method that

can work with these measures of pairwise distances between objects (vectors, matrices). Hier-

archical clustering was used also to cluster snake vectors when comparing with hierarchical

clustering based on RS, T-, and S-statistics. Hierarchical clustering was performed using the

clustergram MATLAB function with the Ward distance option.

Comparison with Rasero’s approach to clustering of brain connectivity matrices.

There are some similarities between the consensus clustering approach to group brain connec-

tivity matrices developed by Rasero et al [33–34] and our snake-&-dragon approach, especially

at first glance: both approaches are used to cluster brain connectivity matrices (although our

method is illustrated by other applications as well) and in both approaches consensus cluster-

ing is involved. However, closer examination reveals important differences. First, consensus

clustering constitutes the necessary part of Rasero’s approach, while clustering of snake vectors

can be performed by any clustering method, including hierarchical and k-means (as shown in

the Results section). Consensus clustering just happens to work better than other tested meth-

ods, but is not necessary for the implementation of our snakes-&-dragons approach. Second,

our approaches use very different types of consensus clustering. We use resampling-based con-

sensus clustering introduced by Monti et al [32], where the essence of the method is in creation

of multiple (e.g., 1000) overlapping subsets by random resampling (with replacement) from

the cohort of individuals. Then, each subset of individuals is clustered, and finally, consensus

on the cluster membership is established based on the frequency of occurrence of the individu-

als in the same clusters. The advantage of resampling-based consensus clustering is that it

ensures the robustness of the clustering results to random fluctuations of the composition of

the cohort of individuals. In contrast, consensus clustering in Rasero’s approach does not

resample individuals. They “apply a clustering algorithm separately to the connectivity map of

each node” and then “the consensus strategy is exploited to combine the information arising

from the different nodes.” Therefore, at each clustering attempt they use only limited informa-

tion about the similarity in the connectivity patterns for the given element of the connectivity

matrix, while in our approach, information on the whole connectivity matrix (in the form of a

snake vector) is used at each clustering attempt. As formulated in the second paper by Rasero

et al [34]: “consensus strategy was used to combine the information about the data structure

Clustering of the structures with snakes-&-dragons approach
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arising from different features so as to summarize them in a single consensus matrix.” Since

similarities among individuals can differ dramatically across the features (two individuals can

be quite similar with regard to feature A and dissimilar with regard to feature B), the level of

consensus in the consensus matrices generated by this approach is quite low. See Fig 2, Rasero

et al 2017[33]: the fraction of partitions for which subjects i and j are assigned to the same

group is below 0.35. In contrast, the typical values of consensus in our approach of clustering

snake vectors is above 0.8. Low levels of consensus in Rasero’s approach could make clustering

decisions difficult. We believe that our approach has important advantages such as robustness

to the random fluctuations of the composition of the cohort and seamless integration of all fea-

tures in each clustering attempt. Future studies combining the two approaches might lead to

the enhancement of both methods.

Simulating correlation matrices with a controlled noise level. When working with real

data, one disadvantage is that the true cluster membership is not known, so it might be difficult

to evaluate the misclassification error rate. Thus, in order to evaluate clustering of connectivity

matrices using snake vectors, we created simulated data that had clear “labels” (e.g., older or

younger brain connectivity matrices). In this study, we selected two substantially different

brain connectivity matrices, #1 and #29, as representatives of old and young brains, respec-

tively (from the 37 healthy young and old subjects pilot data set described above). Based on

these two prototype matrices, we simulated two matrix classes by adding a controlled amount

of noise. Since correlation matrices need to satisfy certain conditions (i.e., being a positive-

semidefinite matrix), we cannot just add noise to each component of the matrix. Instead, we

used the procedure suggested by Schafer et al, which simulates noise by repeatedly sampling

from multivariate normal distributions with given standardized covariance matrices [35].

Briefly: we take the q x q brain connectivity matrix and use it as a covariance matrix to simulate

the multivariate normal distribution from which we sample n times to generate a q x n data

matrix. Then, we calculate the q x q correlation matrix from this data matrix. The higher the n
the closer the new correlation matrix to the original connectivity matrix will be. Decreasing n
may be viewed as adding noise, since the role of randomness is higher when the normal distri-

bution is sampled more sparsely. This procedure allows the amount of noise to vary by chang-

ing a q/n ratio, where q is the number of variables (here number of brain regions q = 36) and n
the number of times the multivariate normal distribution is sampled to create a data matrix

used to calculate the correlation matrix. Importantly, each time we randomly sample the mul-

tivariate normal distribution, we get a different q x n data matrix and the q x q correlation

matrix, even for the same value of n. Fig 3 shows single instances of simulated correlation

matrices when the q/n ratio is set to 0.1, 3, 6, 9, and 12 for brain connectivity matrix #1. The

similarity of the simulated matrices with the original prototypic connectivity matrix #1 is

clearly decreasing.

Fig 4A and 4B demonstrate how the instances of simulated correlation matrices differ from

each other for given values of n. As seen, the variability across the instances is higher the lower

the n. To test and compare the performance of the snake vector approach with the existing

measures of matrix dissimilarity, we simulated 20 such matrices for each value of the q/n ratio

for prototypic old and prototypic young brain connectivity matrices (#1 and #29) and con-

ducted clustering on the 40 simulated connectivity matrices for each q/n value. This enabled

us to compare the ability of the various clustering methods to correctly classify the correlation

matrices as young or old in the presence of an increased level of noise. To make better sense of

what q/n means in terms of added noise and variability of the simulated connectivity matrices,

we calculated the histograms of standard deviations of the elements of the simulated connec-

tivity matrices for various q/n values (shown in Fig 5A). Clearly, standard deviations are higher

for larger q/n values. Then, we defined the signal/noise ratio (SNR) describing difference

Clustering of the structures with snakes-&-dragons approach
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Fig 3. Simulating connectivity matrices with increased noise level. A-original matrix #1. B–simulated matrix with q/n = 0.1, n = 360; C–q/n = 3,

n = 12; D- q/n = 6, n = 6; E-q/n = 9, n = 4; F- q/n = 12, n = 3.

https://doi.org/10.1371/journal.pone.0223267.g003

Fig 4. Increased variability of simulated correlation matrices with increased q/n value. A-3 instances of correlation matrices generated from

the connectivity matrix #1 using q/n = 2, n = 18; B-3 instances of correlation matrices generated from the connectivity matrix #1 using q/n = 12,

n = 3. See how variability of the matrices is increased in B (q/n = 12) versus A (q/n = 2).

https://doi.org/10.1371/journal.pone.0223267.g004
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between two clusters of correlation matrices as follows:

SNR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i ð�ai � �biÞ
2

q

1

M1þM2

PM1

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1
ðai;m � �aiÞ

2
q

þ
PM2

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
1
ðbi;m � �biÞ

2
q� � ; ðEq 1Þ

where N is the length of snake vectors, �ai is the i-th element of the average snake vector for

cluster 1, �bi is the i-th element of the average snake vector for cluster 2, M1 is the number of

simulated matrices in cluster 1, M2 is the number of simulated matrices in cluster 2, ai,m is the

i-th element in the snake vector obtained from m-th simulated correlation matrix and bi,m is

the i-th element in the snake vector obtained from m-th simulated correlation matrix. Note

that the numerator in Eq 1 is the Euclidian distance between the centroids of the two clusters,

which is equal to the distance between the snake vectors of the prototypic connectivity matri-

ces, while the denominator is the measure of the average within cluster Euclidian distances.

Fig 5B demonstrates how SNR defined by (Eq 1) depends on the q/n value.

Statistical tests. The statistical tests for differences across clusters in this paper include

Chi-square tests (MATLAB1 function crosstab) for categorical data, analysis of variance

(ANOVA, MATLAB1 function anova1) for continuous data that follow a normal distribution,

and the Kruskal-Wallis test (MATLAB1 function kruskalwallis) for continuous data that do

Fig 5. Explanation of increased variability of the simulated matrices. A- histograms of standard deviations of the elements of the simulated

connectivity matrices for various q/n; B- signal to noise ratio vs. q/n.

https://doi.org/10.1371/journal.pone.0223267.g005

Clustering of the structures with snakes-&-dragons approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0223267 October 10, 2019 10 / 27

https://doi.org/10.1371/journal.pone.0223267.g005
https://doi.org/10.1371/journal.pone.0223267


not follow a normal distribution. We controlled for the false discovery rate from multiple

hypothesis testing using the Benjamini-Hochberg procedure (MATLAB1 function mafdr).

Results and discussion

Here we demonstrate the results of cluster analysis of the four data sets described above by

using the snakes-&-dragons approach. In clustering brain connectivity matrices from the 37

young and old healthy subjects pilot data set and the GSP data set, we provide not only the

results of clustering but also the comparison with existing methods of correlation matrix com-

parison (RS, T-, and S-statistics), and evaluation of the quality of clustering. The microbiome

example serves to illustrate the use of the dragon concept and demonstrates the Dragon 3 vec-

tor described above. The World Bank example demonstrates the broadness of the snakes-

&-dragons approach and its applicability outside of the biomedical field.

Brain connectivity matrices. Conventional measures vs. clustering of the

snakes

The pilot data set of brain connectivity matrices of young and old healthy subjects was first

used to examine the existing methods of matrix comparison. Pairwise distances between 37

brain connectivity matrices were determined by using RS, T-, and S-statistics. Then, hierarchi-

cal clustering was performed using the pairwise distances. The resulting dendrograms are pre-

sented in Fig 6; Fig 6A presents clustering based on RS, 6b on T-statistics, and 6c on S-

statistics, while Fig 6D presents the results of hierarchical clustering of snake vectors. Dendro-

grams differ for the above four approaches, although all of them define two large clusters.

Assuming that the true cluster membership is determined by the age of the participants, with

20 old participants and 17 young, we can calculate confusion matrices (Fig 6E–6H) as well as

the misclassification error rate (Table 1) for each of the dendrograms. Note that the misclassifi-

cation error is the lowest when the snake vector approach is used. Note that here we used hier-

archical clustering with RS, T-, and S- statistics, as well as with the snake vector approach to

allow for direct comparison. The reduced misclassification error here should be attributed to

the use of the snake vectors approach, which preserves more information on the geometrical

structure of the clusters in the multidimensional space and allows the usage of any clustering

method with appropriate distance measure.

Interestingly, the snake vector approach clustered three older brains (#10, 12, and 16) into

the younger brain group, while all 17 young brains were correctly clustered together (Fig 6D).

Notably, the use of random skewers also resulted in clustering of these three brains into the

younger group (Fig 6A), while the use of the T-statistic clustered brain #10 into the younger

group, and using the S-statistic clustered both brains #10 and #16 into the younger group. The

problem with clustering real data is that one never knows the true class membership. Given

the consensus between the four methods with regard to brain #10 and the consensus of three

methods with regard to brain #16, it is possible that these brains preserved the properties of

the young brains due to genetic or lifestyle factors despite their older age.

In order to further evaluate the quality of clustering with the snakes approach, we used the

simulated data created from the prototypical young (#29) and old (#1) brain connectivity

matrices, as described in the Methods section. Note that brains #29 and #1 are distinctly differ-

ent according to dendrograms from all four clustering methods (Fig 6). Since we know the

true cluster memberships for the simulated data, we can calculate misclassification error for

each clustering algorithm (Fig 7). Here in addition to using hierarchical clustering with RS, T-

and S-statistics, and with snake vectors, we examined the use of snake vectors with k-means

clustering and with resampling-based consensus clustering (as described in Methods section).
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Misclassification errors up to q/n = 4 (SNR�1.203 as defined by Eq 1) are all zero for all meth-

ods. For q/n> 6 (SNR<0.95), clustering correlation matrices using the snake vectors approach

outperforms the clustering using RS, T-, and S-statistics by having the lowest misclassification

error rates, regardless of whether the hierarchical, k-means, or consensus clustering method is

used. The best performance at q/n = 12 (SNR = 0.45) is demonstrated by consensus clustering

of snake vectors due to higher robustness to the added random noise.

Clustering of 500 brain connectivity matrices from the GSP project

Next, we applied our snake vectors approach to the clustering of 500 brain connectivity matri-

ces from the GSP project. To cluster snake vectors derived from the connectivity matrices we

Fig 6. Clustering of brain connectivity matrices from pilot data set of young vs. old healthy persons. A-dendrogram based on RS,

B-dendrogram based on T-statistics, C-dendrogram based on S-statistics, D-dendrogram based on snake vectors, E-H- confusion

matrices for the above four approaches. Note that in all four approaches we used a hierarchical clustering method to allow direct

comparison.

https://doi.org/10.1371/journal.pone.0223267.g006

Table 1. Misclassification error of four clustering approaches in the pilot data set of brain connectivity matrices of young and old healthy subjects.

Method Old Group Young Group Misclassification Error

True Demographics 20 17 –

Random Skewers + Hierarchical Clustering 14 23 16.22%

T-statistic + Hierarchical Clustering 21 16 13.51%

S-Statistic + Hierarchical Clustering 15 22 24.32%

“Snake” Vector + Hierarchical 17 20 8.10%

https://doi.org/10.1371/journal.pone.0223267.t001
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used the resampling-based consensus clustering method as described in the Methods section.

Fig 8A presents the heat map for the 500 x 500 consensus matrix. Each element of the matrix

provides the probability that two brain connectivity matrices belong to the same cluster. Con-

sensus clustering identified two distinct clusters with sample sizes N1 = 160 and N2 = 340. Use

of the Calinski criterion also confirmed the number of clusters as two (Fig 8B).

Fig 7. Misclassification error in clustering of simulated connectivity matrices. Comparison of hierarchical clustering results for RS, T- and S-

statistics, and snakes vectors, with k-means and resampling-based consensus clustering using snake vectors. Snake vectors based approaches

outperform RS, T- and S-statistics based ones. Red, blue, and green curves demonstrate that the main advantage is due to the use of snake

vectors, not due to the type of clustering algorithm used.

https://doi.org/10.1371/journal.pone.0223267.g007

Fig 8. Resampling-based consensus clustering of 500 brain connectivity matrices from GSP project. A- Consensus matrix. Two identified

clusters are presented as yellow squares (yellow color indicating the high probability of a pair of brains belonging to the same cluster). High

contrast in the on-diagonal and off-diagonal values of probability indicate two clusters. B- Checking the number of clusters with Calinski

criterion. Calinski criterion have a maximum at k = 2 indicating two clusters as well (both with snakes-&-dragons approach and with RS, T- and

S-statistics).

https://doi.org/10.1371/journal.pone.0223267.g008
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Table 2 presents some anatomical and demographic variables of interest describing GSP

participants but not used for clustering. Eight out of 81 such variables were significantly differ-

ent across the two clusters; two of the variables remained significantly different after the cor-

rection for multi-testing (FDR corrected p-values < 0.05) [36]. Ethnicity was significantly

different (FDR corrected p-value = 0.004) between the two clusters and sex was borderline sig-

nificant (FDR corrected p-value = 0.055 and uncorrected p-value = 0.006), with cluster 2 hav-

ing more white and female participants. Right vs. left handedness was not significant (p = 0.9).

Even more interesting is the comparison across the clusters of the variables that were used

for clustering, i.e., the elements of the connectivity matrices. Fig 9A presents the average con-

nectivity matrix for cluster 1 and Fig 9B for cluster 2. Fig 9C provides mean differences

between connectivity matrices averaged across brains in cluster 2 and brains in cluster 1, while

Fig 9D indicates by black dots which of the differences were significant (FDR corrected p-

value < 0.05). A total of 8395 (out of 14196) elements of the connectivity matrices were signifi-

cantly different even after the FDR correction for multi-testing [36]. Importantly, most of the

significantly different elements of the connectivity matrices were not randomly distributed;

they are rather concentrated within known brain subnetworks (defined in the Methods section

and Fig 9 caption). Average correlation within the default mode network is significantly and

substantially (over 26%) higher in cluster 2 than cluster 1, while the motor network is 26%

more highly correlated in cluster 1 than cluster 2. Multiple average correlations between the

known subnetworks were significantly different (FDR corrected p-value < 0.05) between clus-

ter 1 and 2 as well, as shown in Table 3, e.g., VFN and CON are almost 215% more correlated

in cluster 2 than in cluster 1. Importantly, the use of the snake vector approach allows identifi-

cation of these distinctly different clusters.

Using snakes-&-dragons for clustering of microbiomes of healthy college-

age adults

For the microbiome data described in [13] and briefly in the Methods section, we calculated

the correlations across OTU counts observed at seven time points (weeks) at four body sites

(gut, tongue, palm, and forehead) to explore the temporal changes in each subject’s micro-

biome. We created 7x7 correlation matrices for each person and each body site to represent

the similarities between the observed seven weeks in terms of the microbiome composition.

We then conducted a cluster analysis using these correlation matrices and our snake vectors

approach to identify subgroups of individuals sharing similar patterns of microbiome changes

over time. We used three approaches to compare the above correlation matrices: 1) we clus-

tered individuals by using data only from the gut and explored the correlation matrices for the

other three sites; 2) we clustered the individuals using data from the gut, tongue, palm, and

forehead separately; 3) we created dragon vectors by concatenating snake vectors for the gut,

tongue, palm, and forehead and then clustered these dragon vectors. Analyses were performed

on 52 students (out of 85 total) who provided samples from all four body sites for at least seven

consecutive weeks. Figs 10 and 11 present the correlation matrices averaged across the mem-

bers of the identified clusters. Note that students were clustered not by the composition of

their microbiome, but rather by the pattern of change of their microbiomes over time, i.e., the

dynamics of their microbiomes.

Fig 10 illustrates the first approach, where clustering is based on gut microbiome data,

which resulted in three clusters named Gut 1 (n = 9), Gut 2 (n = 16), and Gut 3 (n = 27). As

seen in Fig 10A, for students in cluster Gut 1, the gut microbiome was highly correlated during

weeks 2 through 5, while at weeks 1 and 6 their microbiomes were quite different from other

weeks. There seems to have been some abrupt changes in the gut microbiomes of these
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students during weeks 1 and 6. For students in cluster Gut 2, the gut microbiome was moder-

ately correlated across all 7 weeks and the level of correlation between the adjacent weeks was

slightly oscillating in time. Students in cluster Gut 3 had stable gut microbiomes that did not

change much over time. Comparison of the correlation matrices of tongue, palm, and forehead

microbiomes for the Gut 1, 2, and 3 clusters (Fig 10B–10D) demonstrates that forehead and

tongue microbiomes were relatively stable over time for all gut-based clusters, while the palm

microbiome was less correlated over time. This is not surprising since palm microbiome com-

munities are most affected by the environment in daily life.

In the second analysis, we clustered individuals based on the data from each of the four

sites separately. The correlation matrices for each site averaged across each cluster are shown

in Fig 11. We have identified three clusters in each of the four sites. Among these three clusters

for each site, we have one cluster that has generally large correlation across all the weeks and

one cluster that has relatively small correlation across all the weeks. We also have one or two

clusters for each site that has one or two weeks that are quite different from the others; it is

most pronounced in Gut 1, but is also present in Palm 1, Palm 2, Forehead 1, and Tongue 1.

These peculiar weeks vary from site to site, which demonstrates different dynamics of the tem-

poral evolution of microbial communities over the seven weeks.

Fig 12 provides Sankey diagrams for pairwise comparison of cluster membership across the

four body sites. Note that cluster membership was similar when clustering was based on gut

and tongue microbiomes—the most similar clusters being Gut 3 and Tongue 3.

In the third analysis, we clustered individuals using data from all four sites together. For

each individual, we concatenated snakes from each site (forehead, tongue, gut, and palm) to

form a “dragon” vector. We found three clusters: Body 1, 2, 3 (Fig 13A) with 12, 18, and 22

subjects in each cluster. For cluster Body 1, only the tongue microbiomes were highly corre-

lated over time. For cluster Body 2, both tongue and gut microbiomes were highly correlated,

while only the forehead microbiome was highly correlated over time for cluster Body 3. These

Table 2. Anatomical and demographic variables of interest describing GSP participants but not used for clustering.

Cluster 1 Cluster 2

(n = 160) (n = 340)

Variables p-value FDR corrected p

Age 21.113(±2.63) 21.335(±2.79) 0.304 0.607

Race/ethnicity <0.001 0.004

White not Hispanic 83 (51.9%) 233 (68.5%)

Other 77 (48.1%) 107 (31.5%)

Sex 0.006 0.055

Female 81 (50.6%) 216 (63.5%)

Male 79 (49.4%) 124 (36.5%)

Education 14.231(±1.73) 14.400(±1.72) 0.234 0.575

Handness 0.906 0.947

Right 145 (91.2%) 304 (89.9%)

Left 14 (8.8%) 34 (10.1%)

Right superior frontal thickness (mm) 2.768(±0.13) 2.798(±0.12) 0.005 0.047

Estimated total intracranial volume (cm3) 1558.487(±146.8) 1533.709(±140.0) 0.027 0.191

Right hemisphere average cortical thickness (mm) 2.499(±0.07) 2.514(±0.08) 0.027 0.191

Left hemisphere hippocampal volume (mm3) 4490.225(±428.8) 4420.709(±411.2) 0.028 0.191

Right hemisphere hippocampal volume (mm3) 4511.075(±446.0) 4441.971(±411.9) 0.037 0.231

Left inferiorparietal thickness (mm) 2.434(±0.12) 2.455(±0.11) 0.04 0.232

https://doi.org/10.1371/journal.pone.0223267.t002
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results suggest the existence of subtypes representing different dynamics of microbial commu-

nities throughout the body. Sankey diagrams (Fig 13B) demonstrate that the cluster Body 3 is

similar in membership to Forehead 2 and is driven by the high temporal stability of the fore-

head microbiome in this cluster. Cluster Body 2 is mostly formed by the members of the Ton-

gue 3 cluster with highly stable tongue microbiome, and cluster Body 1 includes members of

various site-specific clusters.

Table 4 provides overall microbiome, demographic, and behavioral data for each of the

clusters identified in the above analyses, allowing interpretation and providing possible rea-

sons for the similarities and differences in the patterns of microbiome dynamics. Note that the

actual microbiomes within the clusters could be quite different while the patterns of micro-

biome dynamics are similar. The top three rows of the table characterize the diversity of the

microbiome within the given site averaged across the members of each cluster. The total num-

ber of OTUs (which can serve as one of the measures of microbiome diversity) was calculated

by counting the OTUs that were observed in a sample from any week for each student and

then averaged across all the students in the given cluster and rounded to the closest integer.

Fig 9. Mean brain connectivity matrices for two clusters identified in GSP data. A- Mean connectivity matrix for cluster 1, B- Mean

connectivity matrix for cluster 2, C- Difference of mean connectivity matrices for cluster 2 and cluster 1, D- 8395 significantly different values of

connectivity observed in cluster 1 vs. cluster 2. The 169 brain areas were divided into 10 networks: visual foveal (VFN), visual peripheral (VPN),

dorsal attention (DAN), motor (MN), auditory (AN), cingulo-opercular (CON), ventral attention (VAN), language (LN), fronto-parietal (FPN),

and default mode (DMN) [26].

https://doi.org/10.1371/journal.pone.0223267.g009
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Each OTU was counted only once even if it was observed at multiple weeks. Another impor-

tant measure of diversity is the Shannon Index (SI), defined as SI ¼ �
PR

i¼1
ri ln ri; where ri is

the measure of relative abundance of the given OTU, i.e., the ratio of the abundance of the

given OTU to the abundance of all observed OTUs, and R is the total number of observed

OTUs for the given sample. The values of the SI for each student, site, and week from the sup-

plementary data of [13] were averaged across the weeks and across the members of the identi-

fied clusters. The SI characterizes the diversity of the microbiome by taking into account not

only the number of OTUs but their abundances as well [37]. Higher values of the index

describe diverse populations; lower values of the index describe populations dominated by a

single taxon (OTU). In the case of a single taxon, SI = 0, while in the case of all taxa (OTUs)

being represented equally SI = ln(R). In order to simplify the comparison of sites and students

with different numbers of OTUs, we also calculated the normalized SI equal to SI/ln(R), which

has the maximum possible value of one and minimum of zero.

As noted in [13], the highest diversity in terms of the number of OTUs and the highest SI

values were observed at the skin surfaces (palm and forehead) which are most exposed to con-

tacts with the environment. However, the highest values of SI and normalized SI of all skin

sites were observed for Palm 3 (SI = 6.10) and Forehead 3 (SI = 5.61), which demonstrated low

correlation of microbiomes across the 7 weeks. The microbiomes of the forehead-based clus-

ters were significantly affected by the use facial cosmetics (p-value 0.036), e.g., Forehead 2 is

characterized by the highest percentage (67%) of members using facial cosmetics daily, rela-

tively low value of SI = 4.08, and high value of normalized SI = 0.9, indicating nearly equal

representation of all OTUs.

Gut-based and tongue-based clusters demonstrated lower diversity in terms of lower num-

bers of OTUs, and lower SI and normalized SI values. The lowest values of the Shannon Index

were observed in Tongue 1 (SI = 3.42) and Gut 1 (SI = 4.69), which also demonstrated abrupt

changes in microbiomes at least twice in 7 weeks. The important role of the Shannon Index in

predicting stability of the microbiome was already discussed in [13]; here we confirm this

observation for the sites less exposed to environmental influences and identify clusters of par-

ticipants with lower gut and tongue microbiome stability, which also demonstrated lower

microbiome diversity. The explanation for lower diversity or stability of the microbiome in

Table 3. Significant differences in brain connectivity matrices are located mostly in the below subnetworks. Mean

Difference: c2−c1. Relative Difference: R = (c2−c1)/c1, where c1 and c2 are the values of connectivity (correlation coeffi-

cients) averaged across the subnetworks in cluster 1 and cluster 2.

Mean Difference Relative Difference

VFN-CON 0.0842 214.71%

VPN-CON 0.0552 183.38%

DAN-CON 0.103 104.02%

DAN-LN -0.0952 -90.19%

DAN-DMN -0.0836 -37.66%

MN -0.0715 -26.80%

MN-CON 0.1002 111.14%

MN-LN -0.0614 -296.64%

AN-CON 0.0829 47.57%

AN-LN -0.0744 -559.04%

CON-LN 0.0558 263.66%

CON-DMN -0.0866 -45.16%

DMN 0.0897 26.82%

https://doi.org/10.1371/journal.pone.0223267.t003
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these groups of students is not clear. It might be related to race and ethnicity since the less sta-

ble clusters Gut 1 and Tongue 1 have a higher proportion of non-Caucasians and non-Hispan-

ics (reported as race/ethnicity = other in Table 4). These clusters also have a higher proportion

of students from the University of Colorado, Boulder and may be hypothetically related to

some of them eating at the same places (e.g., school cafeterias). It is possible that the lower

diversity and stability is caused by the actual composition of the microbiomes and its evolution

over time, analysis of which would require construction of the covariance matrices (and

snakes-&-dragons) not across weeks, but across OTUs, which will be the focus of our next

paper. Nevertheless, having the ability to group individuals by microbiome variability instead

of microbiome composition may prove to be a powerful tool in identifying disease predilection

Fig 10. Correlation matrices reflecting microbiome dynamics at four body sites (gut, tongue, palm, and forehead) for three clusters of

students identified based on the gut microbiome data.

https://doi.org/10.1371/journal.pone.0223267.g010

Fig 11. Correlation matrices reflecting microbiome dynamics at four body sites (gut, tongue, palm, and forehead) for three clusters of

students identified based on the microbiome data for each of the body sites.

https://doi.org/10.1371/journal.pone.0223267.g011
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especially given the personalized nature of the human microbiome [38–39]. Future studies

could also leverage our tool using case-control studies of disease with known microbiome

components to determine if temporal groupings have health relevance.

Clustering snakes based on macroeconomics development indicators from

the World Bank

To demonstrate the use of the snake vectors approach outside of the biomedical field, we cre-

ated 7x7 correlation matrices for economies of 200 countries using annual data collected by

the World Bank. In particular, we looked at seven important macroeconomic indices: 1) gross

domestic product (GDP); 2) unemployment; 3) inflation; 4) net trade in goods; 5) labor force

participation; 6) foreign direct investment; and 7) gross domestic savings. Fig 14 illustrates the

results of clustering of these correlation matrices using our snake vectors approach. Each of

the presented matrices are the average of the correlation matrices of the above seven macro-

economic indices across the economies belonging to the given cluster. We also fit linear regres-

sion models to assess the amount of variability (R2) in 170 other development indicators that

could be explained by the eight cluster groups. Among those with highest R2 was annual GDP

growth, which had a significant (p<0.001) association with the eight cluster groups and there-

fore may help to elucidate the different mechanisms that can drive economic growth. For

example, cluster 6 had high positive correlations between GDP and unemployment, yet had

Fig 12. Pairwise comparison of cluster membership across four body sites.

https://doi.org/10.1371/journal.pone.0223267.g012
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the highest growth. Although initially unexpected, this result may inform novel strategies and

new macroeconomic models for economic growth in developing countries such as India,

Mongolia, and Egypt, all of which were in cluster 6. Thus, clustering on correlations between

macroeconomic indicators may identify novel subgroups representing different economic

structures.

Fig 13. Clustering based on dragon vectors describing microbiomes of four body sites. A-Mean dragon vectors for three clusters of

students identified by clustering the concatenated snake vectors for gut, tongue, palm, and forehead. B-Sankey diagrams comparing

cluster membership based on the dynamics of microbiomes at each site and all four sites’ microbiomes combined.

https://doi.org/10.1371/journal.pone.0223267.g013
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Table 4. Overall microbiome, demographic, and behavioral data for each of the identified clusters based on dynamics of a) gut microbiome, b)tongue microbiome,

c)palm microbiome, d)forehead microbiome, e) four sites microbiome.

Gut-based clusters

Variables Gut 1 (n = 9) Gut 2 (n = 16) Gut 3 (n = 27) p value Corrected p

Number of OTUs 969 1053 1042 0.2632 0.3948

Shannon Index 4.687 5.125 5.275 0.014 0.0652

Normalized Shannon Index 0.817 0.871 0.883 0.029 0.0652

Age 20.778 25.438 23.962 0.1416 0.2549

BMI 22.915 22.446 23.077 0.7402 0.7737

Gender 0.7468 0.7737

Female 6 (67%) 10 (63%) 14 (54%)

Male 3 (33%) 6 (37%) 12 (46%)

Race /Ethnicity 0.0148 0.0652

Caucasian 4 (44%) 14 (93%) 22 (81%)

Hispanic 1 (11%) 1 (7%) 3 (11%)

Other 4 (44%) 0 (0%) 2 (7%)

University 0.0251 0.0652

UCB 6 (67%) 6 (38%) 14 (52%)

NAU 0 (0%) 5 (31%) 12 (44%)

NCS 3 (33%) 5 (31%) 1 (4%)

Use of Facial Cosmetics 0.7737 0.7737

Never 4 (44%) 5 (31%) 9 (33%)

Rarely 0 (0%) 3 (19%) 4 (15%)

Occasionally 1 (11%) 1 (6%) 0 (0%)

Regularly 1 (11%) 1 (6%) 2 (7%)

Daily 3 (33%) 6 (38%) 12 (44%)

Tongue-based clusters

Variables Tongue 1 (n = 5) Tongue 2 (n = 10) Tongue 3 (n = 37) p value Corrected p

Number of OTUs 364 380 326 0.1945 0.3501

Shannon Index 3.424 4.002 4.156 0.0015 0.0135

Normalized Shannon Index 0.819 0.800 0.699 0.0033 0.0146

Age 21.000 23.000 24.459 0.3152 0.4301

BMI 25.878 23.613 22.231 0.1121 0.2522

Gender 0.9759 0.9759

Female 3 (60%) 5 (56%) 22 (59%)

Male 2 (40%) 4 (44%) 15 (41%)

Race /Ethnicity 0.3345 0.4301

Caucasian 3 (60%) 8 (80%) 29 (81%)

Hispanic 0 (0%) 1 (10%) 4 (11%)

Other 2 (40%) 1 (10%) 3 (8%)

University 0.0440 0.1320

UCB 5 (100%) 4 (40%) 17 (46%)

NAU 0 (0%) 2 (20%) 15 (41%)

NCS 0 (0%) 4 (40%) 5 (14%)

Use of Facial Cosmetics 0.8882 0.9759

Never 1 (20%) 4 (40%) 13 (35%)

Rarely 1 (20%) 2 (20%) 4 (11%)

Occasionally 0 (0%) 0 (0%) 2 (5%)

Regularly 1 (20%) 0 (0%) 3 (8%)

Daily 2 (40%) 4 (40%) 15 (41%)

Palm-based clusters

(Continued)
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Table 4. (Continued)

Variables Palm 1 (n = 10) Palm 2 (n = 17) Palm 3 (n = 25) p value Corrected p

Number of OTUs 1552 1648 2063 0.0656 0.1969

Shannon Index 5.449 5.533 6.099 0.0288 0.1801

Normalized Shannon Index 0.896 0.898 0.968 0.04 0.1801

Age 24.200 22.688 24.480 0.2662 0.4278

BMI 22.294 22.414 23.364 0.8090 0.8090

Gender 0.1114 0.2507

Female 7 (70%) 6 (37%) 17 (68%)

Male 3 (30%) 10 (63%) 8 (32%)

Race /Ethnicity 0.5395 0.6069

Caucasian 6 (60%) 15 (88%) 19 (79%)

Hispanic 2 (20%) 1 (6%) 2 (8%)

Other 2 (20%) 1 (6%) 3 (13%)

University 0.3488 0.4485

UCB 7 (70%) 8 (47%) 11 (44%)

NAU 1 (10%) 5 (29%) 11 (44%)

NCS 2 (20%) 4 (24%) 3 (12%)

Use of Facial Cosmetics 0.2852 0.4278

Never 3 (30%) 6 (35%) 9 (36%)

Rarely 2 (20%) 0 (0%) 5 (20%)

Occasionally 1 (10%) 1 (6%) 0 (0%)

Regularly 1 (10%) 0 (0%) 3 (12%)

Daily 3 (30%) 10 (59%) 8 (32%)

Forehead-based clusters

Variables Forehead 1 (n = 8) Forehead 2 (n = 21) Forehead 3 (n = 23) p value Corrected p

Number of OTUs 1772 1771 1465 0.0579 0.1042

Shannon Index 5.595 4.077 5.609 <0.0001 0.0001

Normalized Shannon Index 0.9022 0.8993 0.6704 <0.0001 <0.0001

Age 22.875 24.600 23.565 0.6866 0.7724

BMI 21.174 22.954 23.305 0.3887 0.4998

Gender 0.0048 0.0144

Female 8 (100%) 7 (35%) 15 (65%)

Male 0 13 (65%) 8 (35%)

Race /Ethnicity 0.1488 0.2233

Caucasian 4 (50%) 16 (80%) 20 (87%)

Hispanic 1 (12%) 2 (10%) 2 (9%)

Other 3 (38%) 2 (10%) 1 (4%)

University 0.9101 0.9101

UCB 5 (63%) 9 (43%) 12 (52%)

NAU 2 (25%) 8 (38%) 7 (30%)

NCS 1 (13%) 4 (19%) 4 (17%)

Use of Facial Cosmetics 0.0361 0.0811

Never 4 (50%) 5 (24%) 9 (39%)

Rarely 3 (38%) 1 (5%) 3 (13%)

Occasionally 0 (0%) 1 (5%) 1 (4%)

Regularly 1 (13%) 0 (0%) 3 (13%)

Daily 0 (0%) 14 (67%) 7 (30%)

Body (Four body sites-based clusters)

(Continued)
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Conclusions

We presented a novel method named “snakes-&-dragons” for comparing and subtyping of

complex systems through clustering of vectors derived from the correlation matrices of the

variables describing these systems. Using a real dataset and a simulated dataset on brain con-

nectivity matrices, we showed that the novel approach outperformed the existing methods for

comparison of correlation matrices (RS, T-, and S-statistics). In the analysis of brain connec-

tivity matrices from the GSP project, our approach allowed identification of two clusters with

distinctly different patterns of brain connectivity not explained by differences in demographic

variables. In the analysis of the microbiome of healthy students, it allowed identification of

clusters of students with distinctly different patterns of microbiome dynamics. It also allowed

formulation of the hypothesis that stability of gut and tongue microbiomes is affected by the

diversity of the microbiome (as described by the Shannon Index). The macroeconomic exam-

ple illustrated the possibility of using the snakes-&-dragons approach outside of the biomedical

field.

We have developed a clustering method capable of unsupervised classification of objects

based on their structures and interactions of their parts and attributes, therefore uncovering

new patterns/groupings based on previously unexplored characteristics of the systems. As for

limitations, we have not yet demonstrated all of the capabilities of the dragon vectors. For

instance, in the analysis of the microbiome data it would be meaningful to combine in a

dragon vector the snake vectors formed from the correlation matrices across the weeks and the

correlation matrices across the OTUs. In drug discovery, it would be informative to combine

correlation matrices formed from the multidimensional time series of transcriptomics and

Table 4. (Continued)

Variables Body 1 (n = 12) Body 2 (n = 18) Body 3 (n = 22) p value Corrected p

Number of OTUs 3551 3627 3221 0.0324 0.0728

Shannon Index 4.899 5.01 4.68 0.0017 0.0153

Normalized Shannon Index 0.602 0.612 0.581 0.0066 0.0207

Age 21.917 24.944 24.048 0.4636 0.5961

BMI 23.912 22.589 22.585 0.6881 0.7311

Gender 0.0069 0.0207

Female 10 (83%) 13 (72%) 7 (33%)

Male 2 (17%) 5 (28%) 14 (66%)

Race /Ethnicity 0.7311 0.7311

Caucasian 9 (75%) 13 (72%) 18 (86%)

Hispanic 1 (8%) 3 (17%) 1 (5%)

Other 2 (17%) 2 (11%) 2 (9%)

University 0.1639 0.2459

UCB 7 (58%) 9 (50%) 10 (45%)

NAU 1 (8%) 8 (44%) 8 (36%)

NCS 4 (33%) 1 (6%) 4 (18%)

Use of Facial Cosmetics Use 0.1145 0.2061

Never 5 (42%) 7 (39%) 6 (27%)

Rarely 2 (17%) 4 (22%) 1 (5%)

Occasionally 1 (8%) 0 (0%) 1 (5%)

Regularly 2 (17%) 2 (11%) 0 (0%)

Daily 2 (17%) 5 (28%) 14 (64%)

https://doi.org/10.1371/journal.pone.0223267.t004
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proteomics data collected at various time points after the perturbation of a cell culture with the

drugs of interest. We plan to explore these capabilities in our future research.

A reader of this paper may be inclined to ask, “Does it really matter how to form a snake

vector, or is it just about forming a vector that includes all the elements of the upper triangle of

the correlation matrix?” Our answer to this question evolved from “Not really” to “Yes and

No”, and eventually to “Well, yes”, and is worth explaining here. If there is no intrinsic order

of the variables upon which correlations are calculated, then the order in which correlation

matrices and snakes are formed does not matter; it is important, however, that the order of

variables should be the same in all correlation matrices under comparison and that the order

of correlation coefficients used in snake formation should be the same as well. Similarly, the

concatenation of multiple snakes or other data elements in the formation of dragons should be

consistent across objects. In case an intrinsic order of variables does exist, the situation is dif-

ferent. Take, for instance, the situation where different time points are compared as in our

microbiome example; in this case, the first “off-diagonal” of the matrix demonstrates the corre-

lations between measurements separated by one week, the second “off-diagonal” separated by

two weeks, etc. Creating snakes in any other way than the serpentine of “off-diagonals” would

violate this natural order. Imagine now the situation where the system has “memory” of lim-

ited duration (such as in a Markov process); in this case, the correlation matrix would look like

a ribbon of nonzero elements along the diagonal and several “off-diagonals” with zeros every-

where else, so the snake vectors representing such matrices could be truncated. Another case

of intrinsic order is physical distance. We believe that the snake vector approach could be use-

ful in analysis of Hi-C data [40–42], where the conformation of DNA in the chromosomes is

derived from the matrix of distances between the nucleotides or larger elements of genome. In

this case, the intrinsic variable is the distance from the beginning of the DNA chain. The peri-

odicity of the elements of the snake vectors constructed as an off-diagonal serpentine would be

informative of the DNA conformation. These matrices are huge, so the truncation of the snake

Fig 14. Correlation matrices of macroeconomic indices of eight identified clusters of economies.

https://doi.org/10.1371/journal.pone.0223267.g014
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vectors that represent them are computationally beneficial when possible. Even more interest-

ing is the situation where the intrinsic order is distance in 3D space, e.g., the distance from the

tumor or a lesion to the multiple locations in which biomarkers are measured. In this case, a

higher dimensional analog of a correlation matrix is required which should be described by

objects more complex than snakes-&-dragons, bringing to mind creatures like Zmey Gory-

nych from Russian folk tales–a dragon with 3 heads [43].
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