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Abstract: A new series of 5-alkylamido isophthalic acid (ISA) derivatives with varying single and
twin alkyl chain lengths were designed and synthesized as potential supramolecular organogelators.
5-alkylamido ISAs with linear or branched alkyl tail-groups of different lengths were effective gelators
for low polarity solvents. In particular, among the presented series, a derivative with a branched,
24 carbon atom tail-group behaves as a “supergelator” with up to twenty organic solvents forming
gels that are highly stable over time. The gelation behavior was analyzed using Hansen solubility
parameters, and the thermal stability and viscoelastic properties of select gels were characterized.
Microscopy, spectroscopy, powder X-ray diffraction, and computer modeling studies were consistent
with a hierarchical self-assembly process involving the formation of cyclic H-bonded hexamers
via the ISA carboxylic acid groups, which stack into elementary fibers stabilized by H-bonding
of the amide linker groups and π–π stacking of the aromatic groups. These new nanomaterials
exhibited potential for the phase-selective gelation of oil from oil–water mixtures and dye uptake
from contaminated water. The work expands upon the design and synthesis of supramolecular
self-assembled nanomaterials and their application in water purification/remediation.

Keywords: supramolecular organogel; self-assembly; isophthalic acid; Hansen solubility parameters;
rheology; phase-selective gelation; dye adsorption

1. Introduction

Supramolecular gels from low molecular weight gelators (LMWGs) [1–9] are a fascinat-
ing class of soft materials that have recently garnered significant interest in many biological
and material applications [10–12]. These materials have shown great potential in areas such
controlled release/drug delivery [13,14], tissue engineering [15], sensors [16], template
materials [17], catalysis [18], cosmetics [19], foods [20], optics and electronics [21], and envi-
ronmental remediation [22,23], as well as many others [4,10–12]. In most cases, LMWGs
undergo hierarchical self-assembly to form one-dimensional (1D) fiber-like structures
that eventually entangle into three-dimensional (3D), self-assembled fibrillar networks
(SAFINs) [1–9,24]. Solvent molecules become confined within the pores of the SAFIN
via capillary forces as the bulk liquid is rigidified into a viscoelastic solid-like gel [1–9].
Supramolecular gels from LMWGs are physical gels and thus form reversibly, driven by
the formation of non-covalent interactions such as H-bonding, π–π stacking, van der Waals,
and metal–ligand interactions [1–9,24]. Although a large number of LWMGs have been
reported to date, the rational design of LWMGs for the predictable gelation of specific
liquids to yield gels with specific properties still remains a significant challenge.
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The isophthalic acid (ISA) group (Figure 1) is a fascinating supramolecular synthon
used in a variety of unique and programmable supramolecular architectures [25–36]. Many
ISA derivatives self-associate to form either intermolecular, linear polymeric ribbons [37,38],
or disk-shaped cyclic hexamers [38,39] via H-bonded carboxylic acid dimers (Figure 1).
Supramolecular gelation of ISA derivatives has been accomplished via the incorporation
of a secondary H-bonding group (i.e., amide or urea) to drive the formation of fibrous
structures either via stacking of (1) H-bonded ribbons into thicker ribbons or sheets or
(2) cyclic hexamers (Figure 1) [40]. However, only two reported ISA gelators self-assemble
via these pathways (Figure 1) [40,41], while most ISA-based supramolecular gelator systems
involve different H-bonding motifs and/or driving forces [42–54].
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Recently, supramolecular gels have received significant attention for water remediation
applications including oil spill clean-up and adsorbents for the removal of contaminants
from industrial wastewater [22,23,55]. The phase-selective gelator behavior of LMWGs for
oils from oil–water mixtures may be useful to clean up marine oil spills, where the solidified
oil phase can be mechanically separated from water more easily than the fluid form [56].
Subsequently, both the oil and LMWG can be easily recovered after distillation [57]. More-
over, the high surface area and porosity of gels and the ability of the constituent LMWGs to
form non-covalent interactions with neutral, anionic, or cationic contaminants has been
demonstrated to be effective molecular adsorption from either wet or dried hydrogel or
organogel phases [23,58–60]. As a result, supramolecular gels have demonstrated great
potential as solid phase adsorbents for the removal of toxic contaminants or to selectively
remove components from complex aqueous mixtures to simplify analysis [61]. However,
despite these advances, significant challenges such as long adsorption time and low ad-
sorption capacity need to be improved before these materials can be put practice on large
scales in real situations.

Here, we report the design and synthesis of five new alkylated ISA derivatives
(Figure 2) and their supramolecular self-assembly and gelator behavior. These five com-
pounds and other related derivatives and the potential application of new materials derived
from these compounds have already been disclosed previously in several patents [62–66].
The compounds reported here differ from other related, reported ISA gelators [40–42] by
the structure of the alkyl tail-groups and the type and direction of the secondary H-bonding
linker group. The gelation behavior of these compounds in a variety of organic solvents



Gels 2022, 8, 285 3 of 23

was analyzed using Hansen solubility parameters (HSPs), and the gel properties and
self-assembly driving forces were examined. Finally, the application of these compounds
towards the removal of unwanted pollutants from contaminated water is also discussed.
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2. Results and Discussion
2.1. Synthesis

We recently reported a series of 5-alkylamido benzimidazolone (BZI) supramolecular
gelators [67]. BZI compounds with single alkyl tail-groups were ineffective gelators, while
branched, twin, Guerbet-type tail-groups were effective gelators for many different organic
solvents [67]. A similar design was used for this work, where the BZI head-group is replaced
with ISA. The chemical structures of the 5-alkylated ISA derivatives synthesized here are
shown in Figure 2. All five compounds were characterized using 1H NMR, 13C NMR, and
high-resolution mass spectrometry (see Figures S1–S15, Supporting Information).

The chemical structures of the 5-alkylamido ISA compounds in Figure 2 (i.e., ISA4,
ISA16L, ISA12, ISA16, and ISA24) are different than the alkylated ISA gelators previously
reported by Hamilton et al. [40] (compound 1) or Lv et al. (compounds C6IP, C6IP, C14IP
and C18IP) [41]. Both were proposed to self-assemble via H-bonded cyclic hexamer or linear
ribbon motifs (Figure 1). Hamilton et al.’s 5-alkylurea ISA gelator 1 features a urea instead
of an amide linker group, an additional aspartic acid moiety, and different hydrocarbon tail-
groups (i.e., two decyl chains) [40]. Lv et al.’s alkanoyl ISAs have different, non-branched
hydrocarbon tail-groups (i.e., hexyl, decyl, tetradecyl, and octadecyl chains), and the amide
linker-group is reversed, compared to the compounds reported here (Figure 2) [41]. Most
importantly, the synthesis of the compounds here (Scheme S1) was more efficient and
without the need for tedious chromatography purification steps.

2.2. Gelation Behavior

The gelation behavior of all 5 alkylamido ISAs was tested in up to 37 organic solvents
(Table S1). The compound ISA24 possessed the bulkiest tail-group, was the easiest to
solubilize in nearly all 37 solvents, and formed gels with 30 different solvents. Although
ISA12, ISA16, and ISA16L were significantly more difficult to completely solubilize, gels
were formed with thirteen, eleven, and thirteen different solvents, respectively (Table S1).
The four 5-alkylamides ISA12, ISA16, ISA16L, and ISA24 were best suited for gelling low
polarity, aprotic solvents (i.e., aromatics, halocarbons, linear and cyclic aliphatic hydro-
carbons), although ISA16, ISA16L, and ISA24 all gelled the highly polar solvent ethylene
glycol at low gelator concentrations. Most gels that formed with polar solvents (i.e., ethanol,
1-hexanol, and acetone) required considerably higher gelator concentrations (i.e., >2 wt%,
Table S1). The gelators ISA12, ISA16, ISA16L, and ISA24 were also “supergelators” for
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at least nine, six, eight, and twenty different solvents, respectively, at concentrations of
1 wt% or lower. The term “supergelator” has been commonly used throughout the liter-
ature for several decades in the field of supramolecular gels. In a general manner, this
term is used to qualify LMWGs that are able to gel a large amount of solvents at low
concentration, from 1% w/w and lower. To the best of our knowledge, the term was first
introduced in 1994 by Shinkai et al. to describe the gelation behavior of some cholesterol
derivatives [68], and the lowest gelator concentrations reached so far (0.03–0.07%) were
reported for α-D-galactopyranoside and α-D-mannopyranoside derivatives [69].

Clearly, the best overall gelator was ISA24, due to versatility in gelling the most
different types of solvents and efficiency in forming gels at lower gelator concentrations.
Indeed, the gels from ISA12, ISA16, and ISA16L were more challenging to form, requiring
higher temperatures and longer heating times, due to the significant decrease in viscosity,
which also inhibited proper mixing. Furthermore, many gels that did form from ISA12,
ISA16, and ISA16L were unstable over time, either collapsing to partial gels or releasing
significant amounts of solvent via syneresis (i.e., decalin and aromatic solvents, Table S1).
The compound with the shortest tail-group, ISA4, was the only compound that did not give
any positive inversion test results. Poor solute–solvent interactions and favorable packing
interactions amongst the short butyl tail-groups of ISA4 likely lead to more highly ordered
self-assembled structures that result in precipitates or crystallites, rather than providing
the steric stabilization required to form sample spanning, self-assembled fibrillar networks
(SAFINs) and gels.

Note that the chemical structure of the gelator ISA16L is similar to the previously
reported gelators CP14IP and CP18IP (Figure 2) [41]. The only differences are the reversed
direction of the amide linker group and minus or plus two methylene groups, respec-
tively (Figure 2). Although no data were reported on the gelation behavior of CP14IP and
CP18IP with low polarity solvents, both compounds were good gelators for high polarity
ethanol:water (97:3 to 92.5:7.5) solvent mixtures at 10 mM [41]. For this work, ISA16L only
formed crystallites/precipitates and not gels with similar ethanol:water solvent composi-
tions at 10 mM. Clearly, the subtle structural change of reversing the direction of the amide
group has a significant impact on the ability of the 5-alkylamido ISA compounds to form
gels with polar solvents.

2.3. Hansen Solubility Parameters

HSPs were employed to rationalize the outcome of the gelation experiments. HSPs
are a powerful empirical tool that were initially developed to select solvents for polymers,
which have been more recently applied to predict the gelation behavior of LMWGs [70–74].
Other approaches involving solvent parameters and computational approaches have been
developed, however, HSPs are perhaps regarded as the best approach, as HSPs consider
multiple parameters and are relatively simple to use [71,74]. The HSP approach takes
into account three types of intermolecular interactions, i.e., dispersive (δd), polar (δp), and
H-bonding interactions (δh) in MPa1/2 [70]. Typically, the outcomes for gel tests with
common solvents and LMWGs are categorized as gel (G), soluble (S), and insoluble (I) for
suspensions and precipitates, and the results are plotted in 3D “Hansen Space” [70–74].
Cluster analysis is then carried out to fit the gel regions with spheres with HSP values, i.e.,
origin coordinates and a radius size [70–74].

The results of the gelation tests with different solvents (Table S2) at 1 wt% were
plotted in 3D Hansen space using the HSPs for each solvent (Figure S16), which were
obtained from the literature [75]. Significant overlap was observed amongst all four LMWG
gel spheres, especially for the three smaller gelators ISA12, ISA16, and ISA16L. For the
branched gelators ISA12, ISA16, and ISA24, the increase in tail-group size progressively
shifted the gel sphere center to higher δp values (2.51–5.98 MPa1/2), higher δh values
(2.51–5.98 MPa1/2), and lower δd values (19.72–18.20 MPa1/2) as the sphere radius increased
(5.73–6.76 MPa1/2, Table S3). In other words, with increasing tail-group size, gelator–gelator
polar and H-bonding interactions become stronger, while dispersive interactions weaken
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relative to similar gelator–solvent interactions. The increase in sphere radius indicates that
the gelator versatility (i.e., the ability to gel more different types of solvents) increases with
gelator tail-group size.

Comparison of ISA16L and ISA16 shows the effect of branching on gelation behavior.
ISA16L and ISA16 are constitutional isomers with a linear sixteen carbon, and twin ten
and six carbon tail-groups, respectively. The effect of branching increased the sphere radius
from 4.27 to 5.88 MPa1/2 (Table S3), which suggests that branched structures improve
gelator–gelator interactions relative to solvent–gelator interactions. Note that the data
point for ethylene glycol is shown as a single outlier in Figure 3 for ISA16, ISA16L, and
ISA24 and may indicate the presence of a second gelation region at high δp and δh values.
The HSP results here could be used to predict the gelator properties of each gelator in
other single or multicomponent solvent mixtures not tested here that would be useful for
specific applications.
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2.4. Thermal Stability

To assess the thermal stability of the gels, the falling ball method was used to de-
termine the gel-to-sol transition temperatures (Tgel) at various gelator concentrations
(Figure 4) [76]. Experiments were carried out on gels with xylenes, decalin, and paraf-
fin oil to examine the effect of tail-group structure on Tgel with different types of hy-
drocarbon liquids (i.e., aromatics, cycloaliphatics, and linear, aliphatic hydrocarbon mix-
tures, respectively). For most gelator–solvent combinations, Tgel increased very sharply
with gelator concentration over a narrow concentration range (i.e., 0.05–0.5 wt%) just
slightly above the critical gelator concentration (CGC). In general, for the gels with xylenes
and decalin, the maximum Tgel (Tgel (max)) increased with decreasing tail-group length.
Tgel (max) increased in the order of ISA16L (50 ◦C) < ISA24 (~90 ◦C) < ISA12~ISA16
(~190 ◦C) for xylenes (Figure 4a) and ISA16L (23 ◦C) < ISA24 (~90 ◦C) < ISA12 (~150 ◦C)
< ISA16 (~200 ◦C) for decalin (Figure 4b), while tail-group length decreased in the order of
ISA16L < ISA24 < ISA16 < ISA12. Longer hydrocarbon tail-groups are more hydrophobic
and probably promote more favorable gelator–solvent interactions and weaker gels with
low polarity solvents, while shorter, more hydrophilic tail-groups promote more favorable
gelator–gelator interactions and more robust gels with low polarity solvents. Note that
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the gels of ISA16L with xylenes and decalin were weak and required high gelator concen-
trations (1–2 wt%) to just support the ball at 23 ◦C, despite the relatively low CGC values
(<0.4 wt%, Table S1).
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(diamonds, blue), ISA16 (squares, red), ISA16L (triangles, green), and ISA24 (circles, black).

In contrast, Tgel (max) for the paraffin gels with each gelator were very similar
(~200–220 ◦C). However, the minimum concentration at which Tgel (max) occurs decreased
in the order of ISA24 (0.15 wt%) < ISA16L~ISA12 (~0.25 wt%) < ISA16 (~0.30 wt%),
which correlates well with decreasing tail-group length, despite similar CGCs (0.1–0.2 wt%,
Table S1). Paraffin oil typically consists of saturated hydrocarbons between 5–15 carbon
atoms in length, which may enable a balance of gelator–gelator and gelator–solvent inter-
actions for a range of different gelator tail-group structures. Interestingly, the gels from
ISA12 and ISA16 with xylenes, and gels from ISA16 with decalin, exhibited exceptional
thermal stability, with Tgel (max) values 10–60 ◦C greater than the solvent bps (i.e., ~138
and ~190 ◦C, respectively). Although ISA24 was the best overall gelator, the gels with
xylenes and decalin did not exhibit the highest thermal stability (Figure 4a,b, respectively).

Figure 4d also compares the effect of gelator concentration on Tgel for gels from ISA24
with cyclohexane and toluene. For cyclohexane, Tgel exhibited a linear increase between
the CGC (~0.7 wt%) and the minimum concentration at which Tgel (max) of ~140 ◦C occurs
(~1.8 wt%). In contrast, for toluene, Tgel only increased moderately from 85 ◦C to 106 ◦C
over the same concentration range, similar to the gels of ISA24 with xylenes (Figure 4a).
The high Tgel (max) for cyclohexane is intriguing, considering that Tgel (max) is 60 ◦C higher
than the bp of neat cyclohexane (~80 ◦C), and that the bp of cyclohexane is considerably
less than neat toluene (~110 ◦C). Above 2 wt%, no apparent change in gel consistency was
observed. Further heating above Tgel (max) caused violent solvent evaporation.

Note that for most experiments, as the ball passed throughout the gel, no noticeable
change in appearance to a liquid phase was observed. This observation is consistent
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with Tgel values occurring well above the bp of the liquids, and consequently partial
decomposition of the gels (i.e., gel decomposition temperature, Td) must occur at this
temperature rather than true gel-to-sol transitions [77]. This high thermal stability can be
correlated to the self-assembly process in the gel state that is probably governed by strong
intermolecular interactions such as H-bonds.

2.5. Rheological Measurements

The mechanical properties of materials are important for practical applications, and for
organogels are deeply correlated to their viscoelastic behaviors. For this reason, we carried
out rheological measurements on the best performer of the presented series, ISA24. The
choice to reduce the rheological investigation only to ISA24 was dictated by considering
two factors: (1) the series studied is highly homogeneous in chemical structure since all
compounds only differ from the length or type of the alkyl chains (linear vs. branched),
(2) only ISA24 formed gels that were suitably stable upon scale-up for rheological exami-
nation. Gels from ISA12, ISA16, and ISA16L with low polarity solvents (i.e., xylenes and
decalin) were weak and unfortunately unstable over time. The alkyl chains may be either
too short (i.e., ISA12 and ISA16) to provide effective steric stabilization and/or favorable
tail-group–solvent interactions over a long period of time, or are long enough (i.e., ISA16L),
but may be prone to favorable inter-fiber tail-group stacking interactions due to the linear
structure, which eventually leads to phase separation and precipitation over time.

Organogels of ISA24 with decalin, toluene, cyclohexane, and crude oil were examined
at 1 wt%. For xylenes, 2 wt% gels were used, since stable gel samples at larger scales suitable
for rheological measurements could not be produced at 1 wt%. True gels exhibiting solid-
like behavior in the linear viscoelastic region (LVR) are characterized by a storage/elastic
modulus (G′) that is several times greater than the loss/viscous modulus (G′′), and that
G′ and G′′ are independent of frequency [78,79]. Typically, strain sweep experiments are
first carried out to determine the LVR and suitable strain values for frequency sweep
experiments. More specifically, the strain limit is above which the gel networks begin to
break down [60,61]. G′ deviates from linearity above these strain values until the yield
or crossover point is reached, where G′ and G′′ crossover takes places, i.e., G′ = G′′, the
gel-to-sol transition.

The dependence of the strain limit and the crossover strain on the solvent mostly
followed similar trends (Figure 5a). The strain limit increased in the order of cyclohex-
ane (0.7%) < xylenes (3.1%)~decalin (3.2%) < crude oil (4.0%) < toluene (5.3%), while
the crossover strain increased in the order of xylenes (34%) < decalin (50%) < crude oil
(60%) < toluene (108%) < cyclohexane (134%). Interestingly, the cyclohexane gel was the ex-
ception, whose gel network started to break down at lower strain values, despite exhibiting
higher resilience to complete breakdown than the gels with the other solvents. Aromatic
solvents such as toluene and xylenes and crude oil consist of aromatic hydrocarbons and
polyaromatic hydrocarbons (i.e., asphaltenes), which may weaken the gel networks from
ISA24 by interfering with π–π stacking interactions. Overall, all of these gels have relatively
large tanδ (G′′/G′ > 0.1) values, which are typical of so-called weak gels [80].

Frequency sweeps of the organogels (Figure 5b) revealed that G′ was independent of
frequency over the measured range and 4–8 times higher than G′′ over the entire frequency
range. Although G′ and G′′ data here were collected using a conventional rheometer
and are typical of a viscoelastic material such as a gel, others have shown that for low
frequencies and long relaxation times this may not be the case [8,81]. At low frequencies,
supramolecular gels from LMWGs may experience irreversible permanent deformations
and may not actually be physical gels, but rather may be “solid-like networks that respond
elastically for small deformations and are embedded in suspending fluids [8,81].” For
ISA24 in this work, the elastic modulus, G′, which is a measure of gel stiffness, increased
in the order of decalin (40 Pa) < toluene (60 Pa) < crude oil (70 Pa) < xylenes (170 Pa) <
cyclohexane (1380 Pa). Therefore, gel stiffness correlates well with the relative gel strengths,
which is not always the case for all gels. The rheology data show the relative stability or
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elasticity of the gels under mechanical stress, which likely reflects differences in the nano
and microstructures of the gel networks formed in the different liquids and is important
for most applications involving manipulation and transportation.
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2.6. Microscopy Studies

Self-assembled nanostructures from all five 5-alkylamido ISA derivatives were im-
aged by scanning electron microscopy (SEM). All five compounds formed ultrafine, self-
assembled nanofibers with widths <10 nm (Figure S17). Individual nanofibers best visual-
ized in images prepared by depositing and drying 0.1–1 mg/mL solutions (Figures S17–S26).
Ultrafine nanofibers of ISA4 were observed from xylenes:THF (1:1), even though ISA4
did not form any gels (Figure S18), while nanofibers of ISA12, ISA16, and ISA16L were
observed from toluene, xylenes, and xylenes:THF mixtures (Figures S17, S19 and S20).
THF was added as a co-solvent to improve solubility. Ultrafine nanofibers of ISA24 were
observed from cyclohexane (Figure S21), toluene (Figure S22), and chloroform (Figure S23),
as well as THF (Figure S24).

Figure 6 shows representative images of the smallest nanofibers of ISA24, which
are probably elementary nanofibers, based on their dimensions from SEM (Figure 6a),
high-resolution transmission electron microscopy (HR-TEM, Figures 6b and S25), and
atomic force microscopy (AFM, Figures 6c and S26) measurements. The width of the
nanofibers were measured to be ~7.0, ~4.6, and ~11.5 nm, respectively. The value of
~4.6 nm is considered to the most accurate, since HR-TEM images are direct 2D projections
of the self-assembled nanostructures. SEM and AFM widths of soft materials can be
artificially large due to edge electron scattering effects and tip convolution broadening
effects [82], respectively. AFM cross-section height measurements (Figures 6c and S26)
gave an average height of ~3.6 nm for individual nanofibrils and relatively small, flat
bundles (2–6 elementary nanofibers wide), which is slightly lower than the HR-TEM width.
However, these values are in fairly good agreement considering that the AFM height may
be underestimated due to the known limitations of AFM towards flattening soft matter
nanostructures [79].

These results suggest that the elementary nanofibers have symmetrical cross-sections,
which is consistent with the expected stacks of cyclic, H-bonded hexamers based on
the widths of computer models of the cyclic hexamers (Table S4 and Figure S27). The
experimentally measured diameter of 3.6–4.6 nm is in good agreement with the dimensions
determined from computer models of cyclic hexamers from ISA24. A cyclic hexamer of
ISA24 (Figure 1) is expected to have a diameter between 2.3 to 5.2 nm, where the minimum
of 2.3 nm accounts for only the rigid core and the maximum of 5.2 nm represents the
rigid core with fully extended alkyl chains. In contrast, the cross-sections of linear ribbons
(Figure 1) are expected to be only a few atoms thick (i.e., <0.5 nm), whereas stacks of
cyclic hexamers are several molecules thick (>0.5 nm) [83]. Furthermore, nanofibers from
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stacks of ribbons would be expected to give less uniform cross-sections than observed,
owing to a statistical distribution of heights/widths, regardless of the orientation relative
to the substrate.
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Figure 6. Microscopy images of elementary nanofibrils of ISA24 deposited from cyclohexane solution
(0.1 wt%). (a) Scanning electron microscopy (SEM) image. (b) High–resolution transmission electron
microscopy (HR–TEM) image. The contrast enhanced with a negative uranyl acetate stain. (c) Atomic
force microscopy (AFM) height image (1.955 µm × 1.065 µm, vertical scale bar represents 0–10 nm)
with a cross-sectional analysis across an individual elementary nanofiber in three different places.

Polarized optical microscopy (POM) images of organogels from ISA24 exhibited strong
birefringence (Figures 7a,b and S28), which is expected for highly ordered, anisotropic
structures. While the presence of nanofibers of ISA24 was inconclusive for the cyclohexane
gel (Figure 7a), nanofibers were clearly present for the toluene gel (Figure 7b). Consistent
with these results, cryo-SEM images of in situ aerogels formed upon removal of the corre-
sponding solvents clearly show different SAFIN morphologies (Figure 7c,d). In the context
of this report, in situ indicates that the aerogel or xerogel was formed at small scale (i.e.,
<0.1 mL) directly on the substrate for cryo-SEM analysis, while ex situ refers to aerogel
samples that were prepared separately on a larger scale (i.e., 1–20 mL), and deposited onto
a substrate for room temperature SEM analysis (see experimental section). In addition,
the aerogels described here correspond to samples that were freeze-dried, while xerogels
correspond to samples that were not frozen before solvent removal. The in situ aerogel
from cyclohexane exhibited two phases (Figure 7c) consisting of honeycomb structures and
sparse networks of nanofibers with widths between 40–230 nm, spanning the honeycomb
pores, whose diameters range between a few µm to tens of µm. In contrast, the toluene
sample (Figure 7d) was a single phase consisting of a dense network of significantly larger
nanofibers with widths between 90–1400 nm and pores with diameters from tens of nm
to one µm. The results strongly suggest that solvent type has a significant effect on the
microstructure of the SAFINs formed from ISA24 nanofibers.

An ex situ aerogel was also prepared at 10 mL scale, which resulted in a brittle monolith
that retained most of the volume of the initial organogel. SEM images of the ex situ aerogel
also exhibited honeycomb structures (Figure 7e). The majority of the sample consisted of
flakes with smooth surfaces (Figure 7f). The low yield of the honeycomb structures is likely
due to crushing the sample to flakes to facilitate removal from the sample vial mold. Ex
situ aerogels from toluene were not prepared due to the low melting point of toluene (i.e.,
−95 ◦C), which is not conducive for freeze-drying using common commercial freeze-driers
designed for water. Only solvents such as cyclohexane or benzene have melting and boiling
points (i.e., ~5 ◦C and ~80 ◦C, respectively) close to water (0 ◦C and 100 ◦C, respectively).
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Figure 7. Microscopy images of SAFINs of ISA24. POM images of organogels of ISA24 with
(a) cyclohexane and (b) toluene (2 wt%). Freeze-fractured cryo-SEM images of in situ aerogels of
ISA24 from (c) cyclohexane and (d) toluene organogels (2 wt%). SEM images of an ex situ, freeze-
dried aerogel of ISA24 from a cyclohexane organogel (2 wt%) at 23 ◦C (e,f). SEM images of dense, in
situ xerogels of ISA24 from (g) toluene and (h) cyclohexane (2 wt%) at 23 ◦C. AFM amplitude images
of a thick in situ xerogel of ISA24 from cyclohexane (2 wt%) (i).

The difference in the morphology of the SAFINs of ISA24 formed from cyclohexane
versus toluene are likely due to the large difference between the freezing points (fps)
of cyclohexane and toluene (6.5 and −95 ◦C, respectively). The honeycomb structure
observed from cyclohexane is due to the formation of solvent crystals, which can act as
porogens, by causing the self-assembled nanofibers of ISA24 to become concentrated and
squeezed onto the crystallite boundaries to form membrane structures [84,85]. This effect
is known to occur with solvents having high melting temperatures such as cyclohexane,
water, and others [84,85]. The presence of nanofibers in the in situ aerogel, which are absent
in the ex situ aerogel, probably results from the faster freezing rate of the significantly
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smaller sample size (i.e., µL versus several mL). Rapid freezing of a smaller sample may
enable “trapping” of individual nanofibers before they are pushed to the solvent crystal
boundaries. Therefore, we speculate that the native gel structure formed with cyclohexane
more accurately resembles the SAFIN formed from toluene, except the average nanofiber
widths are significantly smaller. In fact, cryo-SEM images did show several regions that
agree with that hypothesis (i.e., Figure S29d, red arrow). In addition, the surface of the
membrane structures forming the honeycomb walls likely resemble the collapsed xerogel
films shown in Figure 7h,i.

Xerogels are most commonly analyzed by microscopy under the assumption that the
network structures are related to those in the native, wet organogel state [86]. Here, the
morphology of xerogels of ISA24 cast from dried films of gels with toluene, cyclohexane,
and other solvents are shown in Figures 7g–i and S30, respectively. While the morphology
of the xerogel from toluene was remarkably similar to the corresponding in situ aerogel, the
size of the nanofibers was smaller (30–600 nm). In contrast, the xerogel from cyclohexane
(Figure 7h,i) consisted of a dense network of ultrafine nanofibers (Figure 7i), which although
they are too small to be resolved in SEM images (Figure 7h), could be easily seen at the gel
edges (Figure S21a) as well as easily resolved by AFM (Figure 7i). The AFM widths of the
nanofibers in Figure 7i are consistent with the AFM width of the elementary nanofiber in
Figure 6c (i.e., ~10 nm).

The results in Figures 6 and 7 suggest a relationship between SAFIN nano/microstructure
and mechanical properties for the cyclohexane versus toluene gel. For some gels, bundling
leads to thicker nanofibers that should have better mechanical properties [67,87], although
this is not entirely true for the present work, i.e., smaller nanofibers are observed in
cyclohexane than toluene, and the gel with cyclohexane is overall both stronger and stiffer.
The lower upper strain limit for the LVR for the gel with cyclohexane (~0.7%) is significantly
lower than toluene (~5.3%), which is consistent with the initial breakage of the smaller,
mechanically weaker bundles observed in the SAFINs from cyclohexane (40–230 nm)
instead of toluene (90–1400 nm). However, the higher stiffness and overall mechanical
strength of the gels with cyclohexane (~1380 Pa and 134%, respectively) instead of toluene
(~60 Pa and 108%, respectively) is consistent with the organization of smaller nanofibers
into larger, more robust structures, such as the thick sheets defining the honeycomb network
shown in Figure 7c,e, or a network of much smaller nanofiber bundles, which form a dense,
more highly cross-linked SAFIN as shown in Figures 7i and S29d (red arrow). The known
phenomenon of the formation of honeycombs due to solvent freezing effects strongly
suggests that the latter best represents the native structure for the gel with cyclohexane.

Since many electron microscopy techniques require high vacuum conditions, and
often powder X-ray diffraction patterns are dominated by the amorphous nature of the
solvent (the major component of the gel), gel samples are most commonly examined as
“xerogels”, which are the SAFIN gel networks that result after the solvent has been removed.
However, during the solvent evaporation process, capillary forces are known to eventually
induce disruptions and collapse of the native gel network [86]. Therefore, the dried gels
(xerogels and/or aerogels) are often assumed to have similar morphology as the native gel
network, although it may not always be ensured. In any case, the different morphologies
observed from different solvents (Figures 7, S18–S24 and S28–S30) strongly suggest the
solvent molecular properties play a key role in the resulting SAFIN morphology.

2.7. Nuclear Magnetic Resonance (NMR) Spectroscopy
1H NMR studies were carried out to probe intermolecular interactions involved in the

self-assembly of ISA24 in CDCl3. Interestingly, at concentrations precluding gel formation
(i.e., 1.9 mM), the signals for ISA24 were absent (Figure S31). In contrast, at the same
concentration in DMSO-d6, the signals for ISA24 are sharp and strong (Figure S31c). ISA24
does not gel DMSO-d6, and probably exists as free molecules since DMSO-d6 is a well-
known strong H-bond acceptor that disrupts many H-bonded assemblies. The absence
of signal in CDCl3 is consistent with the complete absence of any detectable mobile, free
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gelator, or low-order aggregates, because they are all incorporated into large, polymeric,
low mobility self-assembled aggregates (i.e., nanofibers and/or SAFINs), which are usually
not visible by solution-state 1H NMR spectroscopy due to the strong signal broadening
induced by long correlation times [88–91].

2.8. ATR-FTIR Spectroscopy

Attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was
carried out to gain further insight into the self-assembly of ISA24 in the bulk powder,
organogel, and xerogel states. The stretching frequency of carbonyl groups of H-bonded
dimers is well known to decrease relative to other, more weakly H-bonded or non-H-
bonded (monomeric) forms. ATR-FTIR spectra of ISA24 in all three states showed broad
carbonyl bands centered between 1693–1699 cm−1 and ~1660 cm−1, which are consistent
with H-bonded carboxylic acid dimers and H-bonded amide carbonyl groups, respectively
(Figure S32) [30,92–94].

The position of the carbonyl bands for ISA24 are consistent with FTIR data for other
ISA derivatives that form cyclic hexamers. Recently, Sockalingam et al. reported a carbonyl
stretch at ~1695 cm−1 for a cyclic H-bonded hexamer of 5-hydroxyISA with an 18-crown-6
and seven water molecules in the cavity [93], while Zimmerman et al. reported carbonyl
stretches at ~1712 and 1690 cm−1 for carboxyl acid dimers of double, cyclic H-bonded
ISA hexamers functionalized with dendritic groups [92]. In this work, an additional
carbonyl band was observed at ~1718 cm−1 in the ATR-FTIR spectrum for the bulk powder
(Figure S32), which probably corresponds to a weakly H-bonded or non-H-bonded carbonyl
group (i.e., ISA24 monomer).

In the amide II region, the ATR-FTIR spectra of the bulk powder, xerogel, and
organogel states display vibrational bands at 1539, 1549, and 1556 cm−1, respectively,
which are due to N-H bending of the amide linker groups (Figure S32). The position of
these signals is characteristic of H-bonded amide N-H groups. The increased blue-shift
from the bulk powder to the xerogel to the gel indicates the amide N-Hs are involved in
increased H-bonding interactions in that order. These results all clearly confirm (1) the
formation of H-bonded carboxylic acid dimers in all three states, which is consistent with
cyclic, H-bonded hexamers, and (2) H-bonded amide groups, which is consistent with
stacks of cyclic hexamers stabilized by H-bonds.

2.9. Powder X-ray Diffraction

Powder X-ray diffraction (PXRD) was used to gain further insight into the molecular
packing of ISA24 within the dried gel phases. All PXRD patterns were characteristic
of ordered, discotic columnar materials (Figures 8 and S33) [95,96], which is consistent
with the 1D aggregates observed in microscopy images (Figures 6 and 7), i.e., stacks of
cyclic, H-bonded hexamers (Figure 1). One or more strong Bragg reflections appear at
low angles (2θ < 4◦), while multiple weak, higher-order reflections occur at intermediate
angles (4◦ < 2θ < 16◦), as well as a broad halo and sharp, well-defined peaks at wide angles
(2θ > 16◦) [95,96]. The intense reflections at low angles/large d-spacings correspond to
intercolumnar distances, while the broad halo in the wide-angle region is characteristic
of the liquid-like ordering of alkyl chains (hch) [95,96]. The sharp, well-defined peak
at ~0.31 nm is typical of long-range core–core π–π stacking (h0) within columns of flat
molecular cores (i.e., cyclic hexamer aggregates here, Figure 1) [95,96]. The inter-disk
distance of 0.31 nm here is significantly small for an assumed π–π stacking, which usually
falls within the range 0.35–0.36 nm and is consistent with the formation of elongated
fiber-like aggregates. H-bonding between the amide functional linker groups is likely
responsible for the observed decrease in the inter-disk distance, as previously shown for
other disk-shaped compounds with peripheral alkyl amide groups [97].
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Figure 8. PXRD patterns of representative (a) lamello-columnar (DL) and (b) rectangular columnar
(Colr) phases in aerogels of ISA24 randomly observed from freeze-dried cyclohexane organogels
(2 wt%). Schematic representation of the proposed columnar phases of ISA24. (c) Side and (d) top
views of the lamello-columnar phase (DL). (e) Side and (f) top view of the rectangular columnar
phase (Colr). dL = repeating interlayer distance. h0 = distance between discoids. ar, br = Colr phase
unit cell parameters.

All of the PXRD patterns for ISA24 were indexed using LCDiXRay [95] and assigned
to either lamello-columnar (DL) or rectangular columnar (Colr) phases. Figure 8a shows
an example of a PXRD pattern of the DL phase of ISA24, which exhibits five reflections at
approximately 2.7 (001), 1.3 (002), 0.9 (003), 0.45 (hch), and 0.31 nm (h0). The ratio of the
reciprocal d-spacings of the first three reflections is 1:2:3, which indicates a pronounced
layered structure with a repetitive distance, dL, of ~2.7 nm. This value of dL is small relative
to the calculated diameter of cyclic hexamer disks from ISA24 (Table S5 and Figure S33).
Therefore, the disks are probably tilted approximately 60◦ to accommodate enough space
for the alkyl tail-groups while maintaining the relatively short dL of ~2.7 nm (Figure 8c,d).
Tilting of the cyclic hexamer disks within the columns relative to the column long axis
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may also account for the slight difference measured between the AFM cross-section height
(~3.6 nm) and the HR-TEM width (~4.5 nm). The DL systems were also observed for the
dried gels of ISA24 from other solvents such as toluene and CHCl3 (Figure S33, Table S5).

Figure 8b shows an example of a PXRD pattern assigned to the Colr phase of ISA24
in an ex situ, freeze-dried aerogel from cyclohexane (2 wt%). Six peaks are present at 3.62
(110), 2.71 (200), 1.38 (400), 0.98 (150), 0.44 (hch), and 0.32 (h0) nm, from which the unit cell
parameters of ar = 5.42 nm and br = 4.86 nm were calculated. A schematic representation of
the Colr phase from ISA24 with the lattice parameters is shown in Figure 8e,f. Colr phases
of ISA24 were also observed from a xerogel and aerogel from benzene as well as xerogels
from cyclohexane (Figure S33 and Table S6). Changes in the intensities and d-spacings of
the peaks were observed, which indicate different lattice dimensions due to shrinkage [98].
While the method of drying clearly effects the morphology of the gel network structures
formed, it does not appear to effect the supramolecular organization of ISA24. Both DL or
Colr phases from cyclohexane gels were produced randomly in the xerogels or aerogels
(Figures 8 and S33, Tables S5 and S6), which leads us to believe that other conditions are
responsible (i.e., solvent type, gelator concentration, gelation temperature, equilibration
time, cooling rate, solvent evaporation rate, freezing rate and time, etc.).

2.10. Phase-Selective Gelation

Phase-selective organogelators (PSOGs) of organic solvents from biphasic mixtures
with water by LMWGs have attracted significant interest over the last decade for the
clean-up of marine oil spills [22,23,55–57]. Such technologies have the potential to prevent
the flow of organic liquids over water bodies as well as facilitate removal from otherwise
liquid–liquid mixtures. The technical requirements for oil spill clean-up include high gelator
solubility in a carrier liquid, efficient gelator ability, rapid gelation at room temperature,
low toxicity, and low cost [22,23].

The excellent gelator ability of ISA24 with low polarity organic solvents motivated
us to explore its potential as a PSOG for solvent:water mixtures. In principle, the phase-
selective gelation of oil in the presence of water may be challenging due to water’s strong
ability to compete for H-bonding sites in the gelator molecules. The PSOG ability of ISA24
towards kerosene and crude oil was tested for biphasic mixtures with water using the “vial
inversion” test after heating the samples at ~100 ◦C, followed by cooling and equilibration
at 23 ◦C for at least 30 min. The kerosene gel phase (~0.5 wt%) was able to hold its own
weight in addition to the weight of the top aqueous phase (Figure S34), whereas the crude
oil gel phase (~1 wt%) was unstable and fell during vial inversion tests. The presence of
water apparently only affected the integrity of the crude oil gel.

Since heating would be impractical for industrial-scale spills, three other methods to
trigger the gelation of kerosene from kerosene:water mixtures by ISA24 were also explored.
First, using the co-solvent method, a 0.2 M solution of ISA24 in methanol (0.2 mL) was
added to a 1:1 kerosene:water mixture (2 mL). After 24 h, the kerosene phase was selectively
gelled by ISA24 (2 wt%), while the liquid water phase remained separate. The second
method involved the addition of bulk ISA24 powder (9.6 mg) to a 1:1 kerosene:water
mixture (2 mL), followed by vortex mixing for 5 min. Although the solid did not completely
dissolve after vortex mixing, the kerosene phase did gel selectively after 24 h (1 wt%).
Finally, bulk ISA24 powder (10.4 mg) was also added to a 1:1 kerosene:water mixture
(2 mL), followed by ultrasonic bath mixing for 5 min. Again, although ISA24 was not
completely solubilized, the top kerosene layer formed a gel within 5 min (1 wt%). All
three kerosene gels formed using a co-solvent, vortex mixing, or ultrasonic bath mixing
resulted in organogels that were strong enough to hold their own weight as well as the
liquid aqueous phase. The PSOG behavior for ISA24 suggests the potential use for marine
oil spill clean-up.
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2.11. Dye Removal from Water

Recently, gel-based materials from LMWGs have demonstrated promise as solid phase
adsorbents for the removal of dyes from contaminated water [45,99]. Organogel networks
have low solubility in water at low temperatures, high porosity, low density, and high
internal surface area allowing easy diffusion of molecular species of interest within their
structures. A variety of LMWGs have been reported to adsorb dyes from aqueous solutions
at rates ranging from minutes to several days [23,58–60]. Considering the 3D network
structure, ISA24 was expected to be an excellent adsorbent for the removal of dyes from
water. Therefore, the dye removal ability of the 3D gel network from ISA24 was evaluated
for the toxic cationic dye Crystal Violet (CV, Figure 9).
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Dye adsorption was examined by adding aerogel powder of ISA24 to an aqueous
solution of Crystal Violet (CV). Over time, the color of the freeze-dried gel visually changed
from white to violet, and the solution went from violet to colorless and transparent as the
dye was efficiently adsorbed (Figure 9). Aliquots were removed over time and analyzed
by UV-Vis spectroscopy (Figure 9), which showed that the UV-Vis band of CV between
450–650 nm decreased over time and disappeared completely after 43 h (Figure 9a). After
43 h, nearly all of the dye was adsorbed, and the absorption capacity was calculated to
be ~90 mg/g. Therefore, these results indicate that the gel from ISA24 is efficient for
the adsorption of cationic dyes, such as CV from water. Similar experiments were also
carried out using the “wet” organogels from ISA24 with cyclohexane; however, the rate
of adsorption was significantly slower due to the lower surface area in contact with the
aqueous phase. The transfer of CV from the aqueous phase to the cyclohexane oil phase
did not occur in the absence of ISA24. The effectiveness of CV dye absorption from water
demonstrated that 5-alkylamido ISA derivatives such as ISA24 could play an important
role in the removal of contaminants from polluted water or industrial water treatments.

3. Conclusions

In summary, this work focused on how to design new LMWGs based on the ISA
supramolecular synthon via a highly efficient synthesis method. These new alkylamido ISA
gelators were highly efficient organogelators, especially for low polarity organic solvents,
as evidenced by their supergelator ability for many solvents. We demonstrated that the
gelation region(s) in Hansen space and stability of the gel over time can be tuned with
changes to the tail-group chemical structure. Optimized gelator performance was achieved
for the branched ISA24 derivative, gelling a wide variety of solvents at low concentrations,
which is noteworthy. Unlike for previously reported BZI gelators [67], branched tail-
groups were not required for gelation. Microscopy, spectroscopy, and PXRD data were all
consistent with the formation of nanofibers from stacks of cyclic, H-bonded hexamers and
a self-assembly process driven by H-bonding, π–π stacking, and van der Waals interactions.
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For low polarity solvents, the nature of the solvent plays a significant role in bundling
of the nanofibers and the resulting SAFIN morphology. Finally, the selective gelation of
an oil phase from oil: water mixtures and dye adsorption experiments demonstrated the
potential of these compounds for water purification applications such as oil spill clean-up
and as solid phase adsorbents for removing soluble contaminants from contaminated
water, respectively. This work is anticipated to inspire the further design of alkylated
ISA supramolecular chemistry as well as enrich the rapid development of alkylated ISA
multifunctional materials.

4. Materials and Methods
4.1. General Information

All chemicals were commercially available and used without further purification.
ISOCARB 12 (2-butylhexanoic acid), ISOCARB 16 (2-hexyldecanoic acid), and ISOCARB
24 (2-decyltetradecanoic acid) were acquired from Sasol America (Houston, TX, USA).
Syncrude sweet crude oil was acquired from Syncrude (Edmonton, AB, Canada). Gasoline
(regular unleaded) was acquired from a local Safeway gas station. Motor oil (Tech 2000, SAE
10W30) was acquired from the local market. N,N-dimethylformamide (anhydrous, >99.8%)
was acquired from Acros. 3-bromohexanoyl chloride and hexadecane were acquired from
TCI America (Portland, OR, USA). CDCl3 (D-99.8%) and DMSO-d6 (D-99%) were used
as received from Cambridge Isotope Laboratories (Tewksbury, MA, USA). Potassium
hydroxide (85%), sodium chloride, dimethyl sulfoxide, potassium iodide, ethylene glycol,
methanol, acetone, ethyl acetate, diethyl ether, chloroform, benzene, hexanes, silicon oil,
and olive oil were acquired from Fisher Scientific. All other chemicals were acquired from
the Sigma-Aldrich chemical company (Mississauga, ON, Canada). Deionized (DI) water
was purified using a Milli-Q ultrapure unit.

4.2. Synthesis and Characterization of Gelators ISA4, ISA16L, ISA12, ISA16, and ISA24

The details are presented in the Supporting Information. All reactions were performed
under a nitrogen atmosphere using standard Schlenk techniques unless otherwise stated.

4.3. Nuclear Magnetic Resonance (NMR) Spectroscopy
1H and 13C NMR spectra were recorded with a Varian AMX600 spectrometer. Chemi-

cal shifts (δ) are in ppm. Multiplicities are denoted as follows: s = singlet, m = multiplet,
br = broad.

4.4. Mass Spectrometry (MS)

High-resolution electrospray ionization (HR-ESI) mass spectra were acquired using
an Agilent Technologies 6220 orthogonal acceleration time-of-flight (oaTOF) instrument in
negative ion mode.

4.5. Gelation Test

The gelation behaviors of the 5-alkylated ISA compounds were examined using
the “vial inversion test” [24]. The procedure involved placing the 5-alkylated ISA com-
pound (1–100 mg) and a liquid (1 mL) into a glass vial (4 mL, outer diameter = 15 mm,
height = 45 mm) with a threaded top, which was sealed with Teflon tape and a screw-cap
lid. The mixture was then immersed in an ultrasonic bath (Bransonic 3510R-MT, 117 V,
50–60 Hz) until a fine suspension was obtained, which required times ranging from 5 s to
30 min. The suspension was then heated to the liquid boiling temperature until the solid
fully dissolved and a transparent, clear solution was achieved. The mixtures were then
slowly cooled to 23 ◦C. After 30 min at 23 ◦C, the vial was inverted in order to test whether
or not the resulting mixture visibly flowed or dropped to the bottom of the inverted the
vial due to its weight influenced by gravity (i.e., the vial inversion test). The gels were
designated as clear (CG), turbid (TG), and opaque (OG). Samples that did not form clear
solutions with heating were characterized as insoluble (I), while samples that formed
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clear solutions with heating but precipitated with cooling were labeled precipitates (P).
Mixtures that remained as a clear solution were categorized as solution (S). The critical gel
concentrations (CGCs) were determined by carrying out a series of vial inversion tests at
different gelator concentrations, which typically involved gelator increments of 1–2 mg/mL
(or 0.1–0.2 wt%). The CGC was the lowest gelator concentration at which the sample did
not flow or fall at 23 ◦C.

4.6. Hansen Solubility Parameters

HSPs were initially developed to explain the solubility of polymers in different
solvents [75]. This concept was later applied by Raynal and Boutellier to reason why
molecular gelators gel some solvents and not others [71,74]. Solvents were defined by
three types of HSP interactions, which include dispersive (δd), H-bonding (δh), and polar
interactions (δp), and were obtained through the HSPiP software [75] and the literature.
The results of the gelation tests in various solvents and their HSPs [73,75] of ISA4, ISA16L,
ISA16, and ISA24 are summarized in Table S2. Figure S16 shows the results of the gelation
tests plotted in 3D Hansen space. Green, blue, and red data points indicate gels, solutions,
and insoluble/precipitates, respectively. The HSP and radius for each gelation sphere
were determined by the genetic algorithm, single or double sphere-fit method using HSPiP
software [63,68]. Since ethylene glycol was the only data point in second sphere region
(high δp and δh values), the second gelation sphere calculated by the HSPiP was ignored
and was taken to be a single point with no radius.

4.7. Gel-to-Sol Transition Temperature Measurements

Gel-to-sol transition temperatures (Tgel) were determined using the “falling ball”
method [100]. A 2 mm diameter stainless steel ball (33.2 ± 0.1 mg) was placed on the top
of the gel in a sealed screw-cap vial. The vial was immersed in a silicon oil bath and the
temperature was slowly increased (1–2 ◦C/min). Tgel was accepted to be the temperature
at which the ball touched the bottom of the vial.

4.8. Rheological Measurements

Rheological data were acquired using a Discovery hybrid rheometer HR-3 (TA in-
struments, New Castle, DE, USA) equipped with a parallel plate geometry with a 40 mm
diameter cross-hatched plate (used gap = 1 mm) and a Peltier system for temperature
control to measure the elastic modulus (G′, storage modulus) and the viscous modulus
(G′′, loss modulus). The gel samples were prepared ex situ in vials and transferred to the
lower Peltier plate using a spatula. All measurements were carried out in triplicate at 25 ◦C.
Strain sweep measurements were performed between 0.01–100% at a frequency of 1 Hz in
order to measure the mechanical strengths of the gels and define the linear visco-elastic
region (LVR). Frequency sweep measurements were carried out over the frequency range of
1–100 rad/s at amplitude strain values of 0.1, 0.5, 1, 2, and 2 wt% for the gels with xylenes,
cyclohexane, crude oil, toluene, and decalin, respectively.

4.9. In Situ Aerogel Preparation (for cryo-SEM)

In situ refers to samples that were prepared at small scale (i.e., <0.1 mL) directly on
microscopy sample substrates. A piece of organogel was placed between two copper rivets
and rapidly frozen by plunging into liquid N2 for five min. The frozen organogel was then
fractured to reveal the frozen surface, and the frozen solvent was sublimed at −100 ◦C for
30 min. The resulting fractured aerogel surface was then sputter-coated with a Pt film for
120 s (thickness ~5 nm) using a cryo-coater (Leica ACE600).

4.10. Ex Situ Aerogel Preparation

Ex situ refers to aerogel samples that were prepared at large scale (i.e., 1–20 mL) and
later transferred onto microscopy sample substrates. Organogels (1–20 mL, 2 wt%) in glass
vials were rapidly frozen by plunging into liquid N2. After cooling for 30 min, the frozen
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organogels were then freeze-dried at −50 ◦C and 0.01 mbar (Labconco FreeZone Freeze
Dryer). The frozen organogels were dried for 72 h to give solid aerogel monoliths that had
approximately the same volume of the precursor wet gel but were not crack free.

4.11. Thick Xerogel Film Preparation

Thick xerogel films were deposited using the most common method involving drying
of the gel [79]. A small piece of gel was placed onto the substrate and air-dried at 23 ◦C for
16 h or longer.

4.12. Thin Xerogel Film and Self-Assembled Nanostructure Synthesis

Thin xerogel films and self-assembled nanostructures were prepared from respective
solutions of a 5-alkylamido ISA dissolved in solvents at concentrations precluding gel
formation. A droplet of the solution (5–10 µm) was deposited onto the substrate and the
excess liquid was removed by blotting with filter paper (Whatman #1) to generate a thin
film that was air-dried at 23 ◦C for 0.5–24 h.

4.13. Polarized Optical Microscopy (POM)

Polarized optical microscope (POM) images were acquired using a Zeiss Axio Scope
A1 in different contrast and polarization modes. All samples were examined on glass
microscope slides.

4.14. Scanning Electron Microscopy (SEM)

All SEM samples were deposited onto ultra-thin carbon-coated copper TEM grid
substrates (400 mesh, Electron Microscopy Sciences (EMS), Hatfield, PA, USA). Thick
xerogel samples and ex situ aerogels were coated with gold/platinum (5 nm) of using a
Gatan 682 PECS Ion Beam Sputtering and Etching System prior to analysis. Images were
acquired using a field emission scanning electron microscope (Hitachi S-4800 or S-5500
FE-SEM) operating at 5–30 kV. Ex situ aerogel powders were applied to TEM grids coated
with carbon paint.

4.15. High-Resolution Transmission Electron Microscopy (HR-TEM)

Nanofibrils of ISA24 deposited from a solution of ISA24 in cyclohexane (0.2 mg/mL)
were negatively stained with a droplet (10 µL) aqueous uranyl acetate (2 wt%) on the
TEM sample grid. After 120 s, the excess uranyl acetate solution was blotted away with
filter paper (Whatman #1) and air-dried on a hot plate (40 ◦C, 1 h) to produce a solid
thin film. HR-TEM images were acquired using a high-resolution transmission electron
microscope (JEOL 2200 FS TEM—200 kV Schottky field emission instrument equipped with
an in-column omega filter). Bright field images were obtained using energy filtered zero
loss beams (slit width of 10 ev).

4.16. Cryo-Scanning Electron Microscopy (cryo-SEM)

In situ, freeze-fractured aerogel samples were imaged using a Zeiss NVision40 SEM at
−140 ◦C, using an accelerating voltage of 3 keV and an in-lens energy and angle selective
backscattered electron (EsB) detector.

4.17. Atomic Force Microscopy (AFM)

All samples for AFM examination were deposited and dried onto freshly cleaved
mica substrates (1 cm2, Ted Pella, Redding, CA, USA). AFM images were acquired using a
Digital Instruments/Veeco Instruments MultiMode Nanoscope IV atomic force microscope
equipped with an E scanner. Silicon cantilevers (MikroMasch, Portland, OR, USA) with
low spring constants (4.5 N/m) were used in tapping mode at low scan rates (0.5–1 Hz)
and an amplitude set point of 1 V for optimum height profiles. All images were flattened
to remove the background curvature of substrate surfaces. The structures observed in the
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AFM images are assumed to be related to those in the native wet gel state, which may or
may not be true [79,86].

4.18. Computer Modeling

The geometries of cyclic hexamers were optimized in the gas phase using the Polak–
Ribiere conjugate gradient algorithm of the Hyperchem 7.51 program (Hyperchem, Hyper-
cube Inc., Gainsville, FL, USA) through semi-empirical calculations, using the AM1 method
with an RMS gradient of 0.01 kcal/Å mol [67].

4.19. Attenuated Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) Spectroscopy

FTIR spectra were recorded at 23 ◦C using a Digilab FTS 7000 Series spectrometer
equipped with am Attenuated Total Reflectance (ATR) accessory (Harrick MVP-pro).

4.20. Powder X-ray Diffraction (PXRD)

PXRD data were acquired between 1◦ ≤ 2 Theta≤ 30◦ (step size = 0.01◦) with a Bruker
model D8/Discover X-ray diffractometer using CuKa radiation (λ = 1.542 Å) at 50 kV and
10 mA. The resulting data were analyzed using EVAtm software. All PXRD patterns were
indexed using LCDiXRay [95] software.

4.21. Crystal Violet (CV) Adsorption

CV adsorption was performed by adding ISA24 aerogel powder to an aqueous solu-
tion of CV. The adsorption of CV over time was monitored using a Perkin-Elmer UV-Vis
spectrophotometer. Typically, the aerogel solid (4 mg) was added to an aqueous solution of
CV (0.1 mM, 10 mL). After each time interval, an aliquot (0.2 mL) was removed and diluted
to 2 mL for UV-Vis examination. The amount of dye absorbed (DA, %) was calculated
using the equation:

DA = (1 − (ci − ct)/ci) × 100

where ci and ct are the initial and concentrations after time t of CV, respectively. The
maximum adsorption capacity, Q (in mg of CV/g of aerogel), after the longest t was
calculated using the equation:

Q = (ci − ct) V/m

where V is the volume (in L) and m is the mass (in g) of the dried gel powder.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8050285/s1, synthesis procedures for ISA4, ISA16L, ISA12,
ISA16, and ISA24; Scheme S1. Synthesis of 5-alkanamido ISA derivatives; Figures S1–S3: 1H NMR,
13C NMR and HRMS spectra of ISA4; Figures S4–S6: 1H NMR, 13C NMR and HRMS spectra of
ISA16L; Figures S7–S9: 1H NMR, 13C NMR and HRMS spectra of ISA12; Figures S10–S12: 1H
NMR, 13C and HRMS spectra of ISA16; Figures S13–S15: 1H NMR, 13C NMR and HRMS spectra
of ISA24. Table S1: Appearances of ISA gelators in different liquids and CGC values (wt%) of the
gels; Table S2: Hansen solubility parameters (MPa1/2) for and gelation tests with various solvents for
5-alkylamido ISA derivatives (1 wt%); Figure S16: Solubility data for organogelators ISA12, ISA16,
ISA16L, and ISA24 represented in Hansen space; Figure S17: SEM images of nanofibrils deposited
from 5-alkylated ISA derivatives; Figure S18: SEM images of self-assembled nanostructures of ISA4
deposited from solutions; Figure S19: SEM images of xerogels, SAFINs, self-assembled nanofibers
of 5-alkylamido ISAs deposited from toluene solutions (0.1 mg/mL); Figure S20: SEM images of
SAFINs of ISA12, ISA16, and ISA16L deposited from xylenes: THF (19:1) solutions; Figure S21: SEM
images of self-assembled nanostructures of ISA24 deposited from cyclohexane; Figure S22: SEM
images of self-assembled nanostructures of ISA24 deposited from toluene; Figure S23: SEM images
of self-assembled nanostructures of ISA24 deposited from CHCl3; Figure S24: SEM images of self-
assembled nanostructures of ISA24 deposited from THF; Figure S25: HR-TEM images of nanofibrils
from ISA24 formed in cyclohexane (0.02 wt%); Figure S26: AFM height images of nanofibrils formed
by ISA24 in cyclohexane (0.02 wt%) on freshly cleaved mica; Table S4: Measured nanofiber widths
and cyclic hexamer diameters from computer models (Figure S20) for alkylamido ISA derivatives;
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Figure S27: Ball-and-stick computer models of cyclic hexamers from 5-alkylamido ISAs and their
approximate maximum diameters; Figure S28: POM images of gels of ISA24 with different solvents;
Figure S29: Cryo-SEM images of ISA24 from cyclohexane (2 wt%); Figure S30: FE-SEM images of
xerogels of ISA24 from different solvents; Figure S31: 1H NMR spectra of ISA24; Figure S32: Partial
ATR-FTIR spectra of ISA24; Figure S33: PXRD patterns of ISA24; Table S5: Powder X-ray diffraction
data of lamello-columno phases of ISA24 from dried gel samples; Table S6: Powder X-ray diffraction
data of rectangular columnar (Colr) phases of ISA24 from dried gel samples; Figure S34: Digital
photos of the phase selective gelation by ISA24.
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