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Abstract

Background: Most investigators of brain–computer interface (BCI) research believe that BCI can be achieved through
induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)–based BCI is one of the
standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However,
variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding
and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we
present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological
questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. Findings: We
validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization
(ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and
ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets
(38 subjects) included reasonably discriminative information. Conclusions: Our EEG datasets included the information
necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and
less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI
BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire,
EEG coordinates, and EEGs for non-task-related states.
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Data Description
Background and purpose

Motor imagery (MI)–based brain–computer interface (BCI) has
attracted great interest recently. Compared with other BCI
paradigms, MI BCI can provide users with direct communication
without any limb movement or external stimulus (for example,
P300-based BCI). MI BCI uses “induced” brain activity [1] from the
cortex, rather than “evoked” brain activity. Although the concept
of MI BCI is fascinating, it has many obstacles. Among these is
the fact that BCI researchers have tended to focus on subject-

to-subject transfer (training subject-independent algorithm). To
achieve effective subject-to-subject transfer, it is important to
understand the variations in performance between subjects [2].
Predicting a subject’s performance by using the resting state or
the background noise from EEG are some examples of this [3–5].

In this paper, we recorded MI BCI EEG and EMG datasets si-
multaneouslywith 2 classes (100 or 120 trials for each class) from
52 healthy subjects.We also simultaneously collected 20 trials of
real hand movement datasets of EEG and EMG for each subject.
To study various forms of evidence of performance variation and
subject-to-subject transfer, we collected subjective answers to a
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psychological and physiological questionnaire, aswell as EEG re-
sults. In addition, we recorded the locations of 3D EEG electrodes
and non-task-related EEG (resting state, eyeball and headmove-
ments, and jaw clenching). Here, we validated our datasets using
the percentage of bad trials, spectral analysis, and classification
analysis. These datasets were stored in the GigaScience database,
GigaDB [6].

Experimental design

Subjects
We conducted a BCI experiment for motor imagery movement
(MI movement) of the left and right hands with 52 subjects (19
females, mean age ± SD age = 24.8 ± 3.86 years); the experiment
was approved by the Institutional Review Board of Gwangju In-
stitute of Science and Technology. Each subject took part in the
same experiment, and subject ID was denoted and indexed as
s1, s2, . . . , s52. Subjects s20 and s33 were both-handed, and the
other 50 subjects were right-handed. All subjects gave written
informed consent to collect information on brain signals and
were paid for their participation. The data collected were used
only for research purposes.

Recording software and device
EEG data were collected using 64 Ag/AgCl active electrodes. As
shown in Fig. 1, a 64-channel montage based on the interna-
tional 10-10 system was used to record the EEG signals with 512
Hz sampling rates. The EEG device used in this experiment was
the Biosemi ActiveTwo system. The BCI2000 system 3.0.2 [7] was
used to collect EEG data and present instructions (left hand or
right hand MI). Furthermore, we recorded EMG as well as EEG si-
multaneously with the same system and sampling rate to check
actual hand movements. Two EMG electrodes were attached to
the flexor digitorum profundus and extensor digitorum on each
arm.

For each subject, EEG channel locations (3D coordinates)were
collectedwith a 3D coordinate digitizer (Polhemus Fastrak). Elec-
trode location was measured as the average of three measure-
ments of the digitizer to obtain a stabilized position and prevent
hand shaking.

Environment
All experiments were conducted at our laboratory during one of
four time slots: T1 (9:30–12:00), T2 (12:30–15:00), T3 (15:30–18:00),
or T4 (19:00–21:30). The experiments began in August 2011 and

ended in September 2011. The background noise level was 37–39
decibels.

Experiment and datasets
For each subject, we recorded data for non-task-related and task
(MI)-related states, as follows:

� Six types of non-task-related data: We recorded 6 types of
noise data (eye blinking, eyeball movement up/down, eye-
ball movement left/right, head movement, jaw clenching,
and resting state) for 52 subjects. Each type of noise was col-
lected twice for 5 seconds, except the resting state, which
was recorded for 60 seconds.

� Real hand movement: Before beginning the motor imagery
experiment, we asked subjects to conduct real hand move-
ments. Subjects sat in a chair with armrests and watched a
monitor. At the beginning of each trial, the monitor showed
a black screen with a fixation cross for 2 seconds; the subject
was then ready to perform hand movements (once the black
screen gave a ready sign to the subject). As shown in Fig. 2,
one of 2 instructions (“left hand” or “right hand”) appeared
randomly on the screen for 3 seconds, and subjects were
asked to move the appropriate hand depending on the in-
struction given. After the movement, when the blank screen
reappeared, the subject was given a break for a random 4.1 to
4.8 seconds. These processes were repeated 20 times for one
class (one run), and one run was performed.

� MI experiment: The MI experiment was conducted with the
same paradigm as the real handmovement experiment. Sub-
jects were asked to imagine the hand movement depending
on the instruction given. Five or six runswere performed dur-
ing theMI experiment. After each run,we calculated the clas-
sification accuracy over one run and gave the subject feed-
back to increase motivation. Between each run, a maximum
4-minute break was given depending on the subject’s de-
mands.

The entire procedure of the experiment is presented in
Table 1.

Motor imagery instructions
Before the MI experiment began, we asked each subject to move
his/her fingers, starting from the index finger and proceeding
to the little finger (depicted in Fig. 3) and touching each to
their thumb within 3 seconds after onset. Each subject prac-
ticed these actual fingermovements, and then performed theMI

Figure 1: EEG channel configuration—numbering (left) and corresponding labeling (right).



EEG for motor imagery BCI 3

Figure 2: Experimental paradigm. One trial of the MI experiment.

Table 1: Experimental procedure.

Duration
Number Task (min)

1 Filling in a consent form and questionnaire 10
2 EEG electrode placement 20
3 Acquisition of the 6 types of non-task-related data 2
4 Practicing actual finger movements 3
5 RUN 1 6
6 Filling out questionnaire 4
7 RUN 2 6
8 Filling out questionnaire 4
9 RUN 3 6
10 Filling out questionnaire 4
11 RUN 4 6
12 Filling out questionnaire 4
13 RUN 5 6
14 Filling out questionnaire 4
15 Online experiment 6
16 Digitizing 3D coordinates of EEG electrodes 15
17 Removing electrodes and cleaning laboratory 20

Sum 126

experiment. When imagining the movement, we asked subjects
to imagine the kinesthetic experience [8], rather than imagining
the visual experience.

Questionnaire
We asked subjects to fill out a questionnaire during the MI ex-
periment, as shown in Table 2. Before beginning the MI experi-
ment, subjects answered 15 questions (questions numbered 101

to 115). After every run, subjects answered another 10 questions
(questions numbered 210 to 219). After the MI experiment, we
asked the subjects to answer a final set of questions (questions
numbered 301 to 304). All numerical values of the questions
were stored as a Microsoft Excel file (∗.xlsx).

Data format and structure
The MATLAB structure of the EEG (1st to 64th channel) and EMG
(65th to 68th channel) data (“∗.mat”) for each subject is shown
below:

� rest: resting state with eyes-open condition
� noise:

- eye blinking, 5 seconds × 2
- eyeball movement up/down, 5 seconds × 2
- eyeball movement left/right, 5 seconds × 2
- jaw clenching, 5 seconds × 2
- head movement left/right, 5 seconds × 2

� imagery left: 100 or 120 trials of left hand MI
� imagery right: 100 or 120 trials of right hand MI
� n imagery trials: 100 or 120 trials for each MI class
� imagery event: value “1” represents onset for each MI trial
� movement left: 20 trials of real left hand movement
� movement right: 20 trials of real right hand movement
� n movement trials: 20 trials for each real hand movement
class

� movement event: value “1” represents onset for each move-
ment trial

� frame: temporal range of a trial in milliseconds
� srate: sampling rate
� senloc: 3D sensor locations
� psenloc: sensor location projected to unit sphere

Figure 3: Motor imagery instruction. We asked subjects to imagine four actual finger movements: touching each index, middle, ring, and little finger to the thumb
within 3 seconds. Before the MI experiment began, subjects practiced executing the four movements within 3 seconds.
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Table 2: Questionnaire for motor imagery experiment.

Questionnaire
Number Individual information Subject ID

101 Time slot (1 = 9:30/2 = 12:30/3 = 15:30/4 = 19:00)
102 Handedness (0 = left/1 = right/2 = both)
103 Age (number)
104 Sex (female = 0/male = 1)
105 BCI experience (0 = no/number = how many times)
106 Biofeedback experience (0 = no/number = how many times)

Before motor imagery experiment
107 3. How long did you sleep? (1 = less than 4 h/2 = 5 ∼ 6 h/3 = 6 ∼ 7 h/4 = 7 ∼ 8 h/5 = more than 8 h)
108 4. Did you drink coffee within the past 24 hours? (0 = no, number = hours before)
109 5. Did you drink alcohol within the past 24 hours (0 = no, number = hours before)
110 6. Did you smoke within the past 24 hours (0 = no, number = hours before)
111 7. How do you feel? Relaxed 1 2 3 4 5 Anxious
112 Excited 1 2 3 4 5 Bored
113 Physical state Very good 1 2 3 4 5 Very bad or tired
114 Mental state Very good 1 2 3 4 5 Very bad or tired
115 8. BCI performance (accuracy) expected? (%)

During motor imagery experiment
Run 1 (after the first run)

210 1. Can you continue to the next run? (0 = no/1 = yes)
211 2. How do you feel? Relaxed 1 2 3 4 5 Anxious
212 Excited 1 2 3 4 5 Bored
213 Attention level High 1 2 3 4 5 Low
214 Physical state Very good 1 2 3 4 5 Very bad or tired
215 Mental state Very good 1 2 3 4 5 Very bad or tired
216 3. Have you nodded off (slept awhile) during this run? (0 = no/number = how many times)
217 4. Was it easy to imagine finger movements? Easy 1 2 3 4 5 Difficult
218 5. How many trials did you miss? (0 = none/number = how many times)
219 6. BCI performance (accuracy) expected? (%)

Run 2 (after the second run)
220 ∼ 229 . . .

Run 3 (after the third run)
230 ∼ 239 . . .

Run 4 (after the fourth run)
240 ∼ 249 . . .

Run 5 (after the fifth run)
250 ∼ 259 . . .

After the motor imagery experiment
301 1. How was this experiment? Duration Short 1 2 3 4 5 Long
302 Procedure Good 1 2 3 4 5 Bad
303 Environment Comfortable 1 2 3 4 5 Uncomfortable
304 2. BCI performance (accuracy) of whole data expected? (%)

� subject: subject’s two-digit ID - “s#”
� comment: comments for the subject
� bad trial indices

- bad trials determined by voltage magnitude
- bad trials correlated with EMG activity

Reliability

Methods
For preprocessing, we used Butterworth filtering with fourth or-
der for high-pass and band-pass filtering. We validated the EEG
datasets in three different ways:

� First, we checked the number of bad trials in each sub-
ject’s data. If a band-passed (8–30 Hz) trial had an ampli-

tude greater than ±100 μV [9–11] within 500–2500 msec, the
trial was declared bad. The frequency band is involved in so-
matosensory rhythm (SMR) [1, 12, 13]. The time window was
determined by an algorithm for selection of a discrimina-
tive time interval (see the Appendix in [13]). The percentage
of bad trials was estimated for each subject. The bad trials
were not considered in the following analysis. The bad trial
indexes were added for each subject dataset, as shown in the
section titled “Data format and structure.”

� Second, we investigated whether each trial is correlated with
EMG (e.g., real hand movement) adopting Vaughan and col-
leagues’ [14] 1998 idea, which was using correlation between
class labels and EMG activity. In the prescreening of EMG
in the real hand movement experiment, we observed high-
frequency activity (50–250 Hz) during real hand movement.
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We calculated Pearson correlation between the ranked EMG
power of high-frequency activity and the label of time points,
as follows:
- High-pass filtering of all EMG trials above 0.5 Hz to remove
drifts;

- Common average reference;
- Band-pass filtering of all trials with 50–250 Hz;
- Hilbert transform;
- Take absolute and squared magnitudes for each complex
value of all trials;

- Extract data in resting window (−1000–0 msec) and task-
related window (0–3000 msec) for each trial;

- Prepare labels for each time point within a trial:
∗ Tag “−1” value for time points in resting window;
∗ Tag “+1” value for time points in task-related window;

- Both squared EMGmagnitudes and label of time points are
decimated (averaged) by a factor of 8. Then calculate Pear-
son correlation between ranked squared EMG magnitudes
and label of time points;

- Execute permutation test over time points within a trial:
- Calculate Pearson correlation between ranked permuted
features and labels;

- Repeat 100 times;
- Make probability density function (PDF) of the values of
Pearson correlation;

- Calculate P-values (one right-tailed test) over all trials and
four EMG channels;

- If Bonferroni-corrected P-value is smaller than 0.01 and
the correlation value is greater than 0.8 (empirically de-
termined from real hand movement EMG data), then it is
declared a bad trial correlated with EMG.

Finally, the EMG-correlated EEG trial indices were added for
each subject dataset, as shown in the “Data format and struc-
ture” section.

� Third, we checked event-related desynchroniza-
tion/synchronization (ERD/ERS) of SMR for each subject
[1]. To calculate ERD/ERS for each channel, we followed the
same procedure as that in [1], as follows:
- High-pass filtering of all EEG trials above 0.5 Hz to remove
drifts;

- Laplacian filtering;
- Band-pass filtering of all trials with 8–14 Hz;
- Hilbert transform of all trials;
- Absolute magnitude taken for each complex value of all
trials;

- Magnitude of Hilbert-transformed samples averaged
across all trials;

- Baseline correction for each trial to obtain a percentage
value for ERD/ERS per the formula ERD% = A−R

R × 100,
where A is each time sample and R is the mean value of
the baseline period (−500 to 0 msec).

� Last, we validated the discriminability of the left versus right
hand MI EEG data as classification accuracy. All trials for
each subject were pre-processed by high-pass filtering and
common average reference, and then filtered both spectrally
(8–30 Hz) and temporally (0.5–2.5 seconds after stimulus on-
set). For the feature extraction algorithm, we used 2 spatial
filters of the common spatial pattern (CSP) for each class [12,
13]. For classification, we used Fisher’s linear discriminant
analysis (FLDA).We performed cross-validation in the follow-
ing way. For each class, we divided all trials of MI data into
10 subsets each. Seven subsets were chosen randomly and
used to train CSP and FLDA, and the remaining 3 subsetswere
used to test them. This procedure was repeated 120 times by

choosing 3 among the 10 subsets randomly. Finally, 120 clas-
sification accuracies were estimated and averaged.

Results
Percentage of bad trials. We calculated the percentage of bad tri-
als for each subject, as shown in Fig. 4A. The percentages of bad
trials within the spectral and temporal discriminative ranges
were below 5% for most subjects. Furthermore, we calculated
the percentage of EMG trials correlatedwith labels of time points
for each MI trial, as shown in Fig. 4B. Two subjects (s29 and s34)
showed that more than 90% of their trials were correlated with
EMG; most of the trials demonstrated a greater power of high-
frequency EMG (50–250 Hz) in the task-related period after onset
than the resting period before onset. Thus, these two subjects
were declared bad subjects and were discarded in the further
analysis. Rest of subjects has at least 10 trials per class. The lit-
erature [9] showed that the upper confidence limits of chance
with α = 5% were 70% (classification accuracy) in a 2-class prob-
lem, with 10 trials for each class. If a subject had higher accuracy
than the random chance level depending on the number of tri-
als [9], we classified the subject into the discriminative group. On
the other hand, we applied the samemethod to real handmove-
ment trials to test our method. We observed that most trials
(more than 85%) were correlated to the power of high-frequency
EMG (50–250 Hz) and the correlation values were higher than 0.8.
Here, although we set the P-value threshold at 0.05, a few tri-
als were not correlated with the labels of resting or task-related
states. Thus, our threshold of P-values was set at 0.01. Further-
more, according to the observed correlation distributions of real
hand movement data, we set 0.8 as a correlation threshold. Fi-
nally, if the correlation value is greater than the 0.8 threshold
and the P-value is smaller than 0.01 in MI datasets, the trial was
classified as a bad trial correlated with real hand movement.

Most existing studies detected EMG activity through man-
ualmonitoring. They recorded EMG and EEG simultaneously and
monitored EMG burst during the experiment. On the other hand,
in the published literature [15], the resting state of EMG was
recorded and the significant threshold from the resting EMGwas
defined. Furthermore, in other work in the literature [14], cor-
relation values between target position (cursor movement con-
trol application in BCI) and EMG activity were calculated, and
they were compared with the correlation values of EMG class la-
bels and EEG class labels. Also, according to the literature [15],
t-values between the EMGs of the operant hand and the non-
operant hand were calculated. We believed that the correlation
between EMG activity and time point labels within a trial could
provide the solution for detecting which EEG trial was correlated
to EMG. We attempted the voltage thresholding method, but
therewere trials correlatedwith EMG, and even EMGactivitywas
smaller thanthe threshold. We also tried to compare the voltage
distribution between the resting state and task-related EMG, but
there were trials correlated to EMG although the distribution of
EMG of a trial is similar to that of the resting state. Finally, 38
subjects had higher classification accuracy than their own ran-
dom chance (yellow diamond marker), with a confidence level
of α = 5%, as shown in Fig. 4C.

ERD/ERS. The ERD/ERS results of mu rhythm (8–14 Hz) are
depicted in Fig. 5. Figure 5A shows the grand averaged ERD/ERS
(%) ofthe C3 and C4 channel over the 36 subjects who had dis-
criminative information (as shown in Fig. 4C). The powers of
mu rhythm in the C3 and C4 channel decreased in both left
and right hand MI. The contralateral channel showed bigger
desynchronization in the corresponding class. The last row in
Fig. 5A shows the difference over time of ERD/ERS in the C3 and
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(C) Cross-validated classification accuracies

Figure 4: Estimated percentage of bad trials and classification accuracies for all subjects. (A) Each class contained 100 or 120 trials. If any amplitude in 8–30 Hz band-
passed trial was greater than 100 μV within 500–2500 msec, then the trial was classified as a bad trial. (B) If a power level of 50–25 0Hz in EMG had correlations with the

labels of resting and task-related time points within a motor imagery trial and the correlations were greater than 0.8 (correlation threshold estimated from real hand
movement EMG data), then it was declared a bad trial correlated with EMG. (C) Cross-validated classification accuracies were estimated by using Common Spatial
Pattern (CSP) and Fisher’s linear discriminant analysis (FLDA). Yellow diamonds indicate the random chance levels depending on the number of total trials (excluding
bad trials) for each subject.

C4 channels. The C4 channel showed a bigger difference than
the C3 channel. Fig. 5B shows the topographies at specific time
points, for instance, 500, 1000, 1500, and 2000 msec. Those time
points are marked in Fig. 5A as a cyan-colored vertical line. At
500 msec, the occipital areas were activated (“alpha inhibition”
[1, 16]). The occipital alpha ERD was continued to 2000 msec.
We also tested whether each trial contains occipital alpha ERD
or not by using permutation test, just like EMG trial detection.
We found that most trials have the occipital alpha ERD for all
subjects. Common spatial pattern (CSP) filters (representing the
filtering weight for each channel) trained by the 38 subjects were
estimated, as shown in Fig. 6A; prominent CSP weights existed
around SMC only, but not in occipital. It means that the occipital
alpha ERD may not affect the class-labeled data. It is expected
that the activation of the occipital area may be related to pro-
cessing of visual stimulus. However, the occipital alpha activ-

ity was not influenced on the quality of our left/right motor im-
agery data. At 1000 msec, contralateral channels showed bigger
ERD than ipsilateral channels. For left hand MI, the right cen-
tral and parietal areas showed bigger ERD than the left hemi-
sphere. In Fig. 5C, bar graphs of left hand MI show that the con-
tralateral ERD (C4 channel) is stronger than the ipsilateral ERD
(C3 channel).

Classification. The mean accuracy of all BCI performances
(Fig. 4C) over the 50 subjects, excluding bad subjects, was 67.46%
(±13.17%) in our datasets. In BCI2000 MI datasets [17–19], the av-
erage accuracywas 60.42% (±11.68%) over 109 subjects using CSP
and FLDA [20]. In our datasets, 14 subjects (26.92% of 52 subjects)
showed low BCI performance (below random chance, which is
the upper confidence limit of chance with α = 5%), as shown in
Fig. 6B. This is greater than a report on 99 subjects [21] showing
that 6.7% of the subjects had accuracies lower than 60% (here,
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P = 0.00038

P = 0.01488

Figure 5: Event-related desynchronization of somatosensory rhythm (8–14 Hz) from discriminative subjects (38 subjects). (A) The first and second rows show ERD of

the C3 and C4 channels in left and right hand motor imagery, respectively. The last row shows the difference in ERDs between left and right motor imagery. The
gray shaded region is the baseline period. Cyan-colored vertical lines represent time points such as 500, 1000, 1500, and 2000 msec. (B) Topographies of ERDs at the
cyan-colored time points in (A). Initials “L” and “R” indicate left and right motor imagery movements, respectively. (C) Comparison of ERD at C3 and C4 channels within

500–2500 msec. P-values were estimated by paired t-test.

(B) Sorted classification accuracies

Figure 6: Trained spatial filters for left and right hand motor imagery data and
sorted cross-validated classification results. (A) To demonstrate the discrimina-
tive feature of our dataset, CSP filters were trained by averaged covariance ma-

trix of 38 subjects who had high BCI performance (>random chance). (B) Sorted
accuracies are depicted in increasing order. Fourteen subjects showed low BCI
performance (<random chance marked with yellow diamond). Because of sort-
ing, the number on the x-axis does not correspond to subject numbers “s01” to

“s52.”

the average accuracy over the 99 subjects was not reported).
Comparing with the datasets of [19], our datasets have more tri-
als, even though bad trials were rejected and excluded from the
results. The EEG Motor Movement/Imagery Dataset [19] has MI
data of 109 subjects, but the number of total trials for each sub-
ject is about 20 trials, which has a random chance level of 65%
(α = 5%).
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